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Abstract. Calculations utilizing the numerical solutions for the interfacial convective heat transfer coefficient with the fluid flowing 
through a packed bed, arbitrary bed temperature and arbitrary inlet fluid temperature have been carried out. The numerical 
technique employed for discretizing the governing equations is the control volume method with a boundary-fitted non-orthogonal 
coordinate system. The SIMPLE algorithm is used to handle the pressure-velocity coupling. The temperature distributions of the 
fluid and the influence of the porosity on the average heat transfer coefficient at the steady periodic state are presented. 
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1. Introduction 
 
The transport phenomena in porous media have been of continuing interest for last decades. This interest stems 

from the complicated and interesting phenomena associated with transport processes in porous media. The wide 
applications available have led to numerous investigations in this area. Such applications can be found in solar receiver 
devices, building thermal insulation, heat exchangers, energy storage units, etc. Our attention in this study focuses 
laminar and turbulent flow through a packed bed where represents an important configuration for efficient heat and 
mass transfer. A common model used for analyzing such system is the so-called “local thermal equilibrium” assumption 
where both solid and fluid phase temperatures are represented by a unique value. However, in many instances it is 
important to take into account distinct temperatures for the porous material and for the working fluid. In transient heat 
conduction processes, for example, the assumption of local thermal equilibrium must be discarded, according to 
references Kaviany (1995) and Hsu (1999). Also, when there is significant heat generation in any one of the two phases, 
namely solid or fluid, average temperatures are no longer identical so that the hypothesis of local thermal equilibrium 
must be reevaluated. This suggests the use of equations governing thermal non-equilibrium involving distinct energy 
balances for both the solid and fluid phases. Accordingly, the use of such two-energy equation model requires an extra 
parameter to be determined, namely the heat transfer coefficient between the fluid and the solid material Kuznetsov 
(1998). 

Quintard, M., (1998) argues that assessing the validity of the assumption of local thermal equilibrium is not a 
simple task since the temperature difference between the two phases cannot be easily estimated. He suggests that the 
use of a two-energy equation model is a possible approach to solving to the problem. 

Kuwahara et. al (2001) proposed a numerical procedure to determine macroscopic transport coefficients from a 
theoretical basis without any empiricism. They used a single unit cell and determined the interfacial heat transfer 
coefficient for the asymptotic case of infinite conductivity of the solid phase. Nakayama et. al (2001) extended the 
conduction model of Hsu (1999) for treating also convection in porous media. Having established the macroscopic 
energy equations for both phases, useful exact solutions were obtained for two fundamental heat transfer processes 
associated with porous media, namely, steady conduction in a porous slab with internal heat generation within the solid, 
and also, thermally developing flow through a semi-infinite porous medium. 

In all of the above, only laminar flow has been considered. When treating turbulent flow in porous media, however, 
difficulties arise due to the fact that the flow fluctuates with time and a volumetric average is applied Gray & Lee 
(1977). For handling such situations, a new concept called double decomposition has been proposed for developing a 
macroscopic model for turbulent transport in porous media Pedras & de Lemos (2000) Pedras & de Lemos (2001a) 
Pedras & de Lemos (2001c) Pedras & de Lemos (2001b) Pedras & de Lemos (2003). This methodology has been 
extended to non-buoyant heat transfer Rocamora & de Lemos (2000), buoyant flows by de Lemos & Braga (2003) and 
mass transfer by de Lemos & Mesquita (2003). Based on this same concept, de Lemos & Rocamora (2002) have 
developed a macroscopic turbulent energy equation for a homogeneous, rigid and saturated porous medium, considering 
local thermal equilibrium between the fluid and the solid matrix. A general classification of all methodologies for 
treating turbulent flow and heat transfer in porous media has been recently published de Lemos & Pedras (2001). 

This work proposes a macroscopic heat transfer analysis using a two-energy equation model for conduction and 
convection mechanisms in porous media. Saito & de Lemos (2004) proposed an extension of the transport model of de 
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Lemos & Rocamora (2002) considers local thermal non-equilibrium. The contribution herein consists in documenting 
and testing a detailed numerical model for obtaining the interfacial heat transfer coefficient for variable porosity. 

 

2. Microscopic Transport Equations 
 
Microscopic transport equations for incompressible fluid flow in a rigid homogeneous porous medium have been 

already presented in the literature and for that they are here just presented (e.g. reference de Lemos & Rocamora 
(2002)). They read, 
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where the subscripts f and s refer to fluid and solid phases, respectively. Here, ρ  is the fluid density, u  is the fluid 
instantaneous velocity, p  is the pressure, µ  represents the fluid viscosity, T  is the temperature fk  is the fluid thermal 

conductivity, sk  is the solid thermal conductivity, pc  is the specific heat and S  is the heat generation term. If there is 

no heat generation either in the solid or in the fluid, one has further 0SS sf == . 
 

3. Decomposition of Flow Variables in Space and Time 
 
Macroscopic transport equations for turbulent flow in a porous medium are obtained through the simultaneous 

application of time and volume average operators over a generic fluid property ϕ  Gray & Lee (1977). Such concepts 
are mathematically defined as, 
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where 
f

V∆  is the volume of the fluid contained in a Representative Elementary Volume (REV) V∆ . 
The double decomposition idea introduced and fully described in Pedras & de Lemos (2000) Pedras & de Lemos 

(2001a) Pedras & de Lemos (2001c) Pedras & de Lemos (2001b) Pedras & de Lemos (2003), combines Eqs. (5)-(6) and 
can be summarized as: 
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     where         ϕϕϕϕϕ iiii −=〉′〈−′=′ . (8) 

Therefore, the quantity ϕ  can be expressed by either, 

ϕϕϕϕϕ ′++
′

〉〈+〉〈= iiii , (9) 
or 

ϕϕϕϕϕ ′+〉′〈++〉〈= iiii . (10) 

The term ϕ ′i  can be viewed as either the temporal fluctuation of the spatial deviation or the spatial deviation of the 
temporal fluctuation of the quantityϕ . 

 

4. Macroscopic Flow and Energy Equations 
 
When the average operators (5)-(6) are applied over Eqs. (1)-(2), macroscopic equations for turbulent flow are 

obtained. Volume integration is performed over a Representative Elementary Volume (REV), Gray & Lee (1977) and 
Slattery (1967) resulting in, 
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Continuity: 0=⋅∇ Du . (11) 

where, i
D 〉〈= uu φ  and i〉〈u  identifies the intrinsic (liquid) average of the time-averaged velocity vector u . 
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where the last two terms in Eq. (12), represent the Darcy and Forchheimer contributions by Forchheimer (1901). The 
symbol K  is the porous medium permeability, Fc  is the form drag or Forchheimer coefficient, ip〉〈  is the intrinsic 
average pressure of the fluid, and φ  is the porosity of the porous medium. 

The macroscopic Reynolds stress i〉′′〈− uuρφ  appearing in Eq. (12) is given as, 
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is the macroscopic deformation tensor, 2iik 〉′⋅′〈=〉〈 uu  is the intrinsic turbulent kinetic energy, and 
φ

µ t , is the 

turbulent viscosity, which is modeled in de Lemos & Pedras (2001) similarly to the case of clear flow, in the form, 
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The intrinsic turbulent kinetic energy per unit mass and its dissipation rate are governed by the following equations, 
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where, kc , 1c , 2c  and µc  are nondimensional constants. 
Similarly, macroscopic energy equations are obtained for both fluid and solid phases by applying time and volume 

average operators to Eqs. (3)- (4). As in the flow case, volume integration is performed over a Representative 
Elementary Volume (REV) resulting in, 
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where i
sT 〉〈  and i

fT 〉〈  denote the intrinsically averaged temperature of solid and fluid phases, respectively, iA  is the 

interfacial area within the REV and in  is the unit vector normal to the fluid-solid interface, pointing from the fluid 
towards the solid phase. Eqs. (18) and (19) are the macroscopic energy equations for the fluid and the porous matrix 
(solid), respectively. 

Further, using the double decomposition concept, Rocamora & de Lemos (2000) have shown that the fourth term 
on the left hand side of Eq. (18) can be expressed as: 

i
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Therefore, in view of Eq. (20), Eq. (18) can be rewritten as: 
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5. Interfacial Heat Transfer Coefficient  
 
In Eqs. (19) and (21) the heat transferred between the two phases can be modeled by means of a film coefficient ih  

such that, 
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where, ih  is known as the interfacial convective heat transfer coefficient and VAa ii ∆=  is the surface area per unit 
volume and Ai is the interfacial heat transfer area. 

For determining ih , Kuwahara et. al (2001) modeled a porous medium by considering an infinite number of solid 
square rods of size D , arranged in a regular triangular pattern (see Fig. (1)). They numerically solved the governing 
equations in the void region, exploiting to advantage the fact that for an infinite and geometrically ordered medium a 
repetitive cell can be identified. Periodic boundary conditions were then applied for obtaining the temperature 
distribution under fully developed flow conditions. A numerical correlation for the interfacial convective heat transfer 
coefficient was proposed by Kuwahara et. al (2001) as, 
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Eq. (23) is based on porosity dependency and is valid for packed beds of particle diameter D . 
This same physical model will be used here for obtaining the interfacial heat transfer coefficient ih  for 

macroscopic flows. 
 

6. Periodic Cell and Boundary Conditions 
 
In order to evaluate the numerical tool to be used in the determination of the film coefficient given by Eq. (22), a 

test case was run for obtaining the flow field in a periodic cell, which is here assumed to represent the porous medium. 
Consider a macroscopically uniform flow through an infinite number of square rods of lateral size D , placed in a 
staggered fashion and maintained at constant temperature Tw. The periodic cell or representative elementary volume, 

V∆ , is schematically showed in Fig. (1) and has dimensions 2H × H. Computations within this cell were carried out 
using a non-uniform grid of size 90×70 nodes, as shown in Fig. (2), to ensure that the results were grid independent. 
The Reynolds number µρ /DRe DD u=  was varied from 4 to 400 and the porosity, 21 )H/D(−=φ . 

 
Figure 1. Physical model and coordinate system. 
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Figure 2. Non uniform computational grid. 

 
The numerical method utilized to discretize the microscopic flow and energy equations in the unit cell is the 

Control Volume. The SIMPLE method of Patankar (1980) was used for the velocity-pressure coupling. Convergence 
was monitored in terms of the normalized residue for each variable. The maximum residue allowed for convergence 
check was set to 10-9, being the variables normalized by appropriate reference values. 

For fully developed flow in the cell of Fig. (1), the velocity at exit ( 2=H/x ) must be identical to that at the inlet 
( 0=H/x ). Temperature profiles, however, are only identical at both cell exit and inlet if presented in terms of an 
appropriate non-dimensional variable. The situation is analogous to the case of forced convection in a channel with 
isothermal walls. Thus, boundary conditions and periodic constraints are given by: 

On the solid walls:  
0=u , wTT = . (24) 

On the periodic boundaries: 
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The bulk mean temperature of the fluid is given by: 

( )
∫
∫=

udy

uTdy
xTB  (28) 

Computations are based on the Darcy velocity, the length of structural unit H  and the temperature 
difference ( )( )wB TxT − , as references scales. 

 

7. Preliminary Laminar Results and Discussion 

7.1 Periodic Flow 
 
Preliminary results for velocity and temperature fields were obtained for different Reynolds numbers. In order to 

assure that the flow is hydrodynamically and thermally developed in the periodic cell of Fig. (1), the governing 
equations were solved repetitively in the cell, taking the outlet profiles for u and θ  at exit and plugging them back at 
inlet. In the first run, uniform velocity and temperature profiles were set at the cell entrance for 1=Pr  and DRe  = 100, 
giving θ =1 at x/H=0. Then, after convergence of the flow and temperature fields, u and θ  at x/H=2 were used as inlet 
profiles for a second run, corresponding to solving again the flow for a similar cell beginning in x/H=2. Similarly, a 
third run was carried out and again outlet results, this time corresponding to an axial position x/H=4, were recorded. 
This procedure was repeated several times until u and θ  did not differ substantially at both inlet and outlet positions. 
Resulting non-dimensional temperature profiles are shown in Fig. (3) showing that the periodicity constraints imposed 
by Eqs. (25)-(27) was satisfied for x/H > 4. For the entrance region ( 40 << H/x ), θ  profiles change with length 

H/x  being essentially invariable after this distance. Under this condition of constant θ  profile, the flow was 
considered to be macroscopically developed for DRe  up to 400. 
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7.2 Developed Flow and Temperature Fields 
 

Macroscopically developed flow field for Pr = 1 and ReD = 100 is presented in Fig. (4), corresponding to x/D=6 at 
the cell inlet (see Fig. (3)). The expression “macroscopically developed” is used herein to account for the fact that 
periodic flow has been achieved at that axial position. Figure (4) indicates that the flow impinges on the left face of the 
obstacles, surrounds the rod faces and forms a weak recirculation bubble past the rod. When the Reynolds number is 
low (not shown here), the horizontal velocity field in between two rods appears to be very similar to what we observe in 
a channel, namely the parabolic profile, particularly at inlet and outlet of unit cell. As DRe  increases, stronger 
recirculation bubbles appear further behind the rods. Temperature distribution pattern is shown in Fig. (5) and Fig. (6), 
also for DRe =100. Colder fluid impinges on the left surface yielding strong temperature gradients on that face. 
Downstream the obstacle, fluid recirculation smoothes temperature gradients and deforms isotherms within the mixing 
region. When the Reynolds number is sufficiently high (not shown here), the thermal boundary layers covering the rod 
surfaces indicate that convective heat transfer overwhelms thermal diffusion. 

 

 
 

 
 

 
 

Figure 4. Velocity field for 1=Pr  and DRe  = 100. Figure 5. Isotherms for 1=Pr , DRe  = 100 and φ  = 0.65 
 
Figure (6) shows the periodic cells used to calculate the interfacial convective heat transfer coefficient ih . The 

porosity is described for each periodic cell. Therefore, φ  = 0.65 is represented in Fig. (5); φ  = 0.44; φ  = 0.55; φ  = 
0.75 and φ  = 0.90 are represented in Fig. (6a); (6b); (6c) and (6d) respectively. 
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Figure 3. Dimensionless temperature profile for 1=Pr  and DRe  = 100. 
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(a) φ  = 0.44  (b) φ  = 0.55  

    
(c) φ  = 0.75  (d) φ  = 0.90  

Figure 6. Isotherms for 1=Pr  and DRe  = 100. 
 

7.3 Film Coefficient hi 
 
Determination of ih  is here obtained by calculating, for the unit cell of Fig. (1), an expression given as, 
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where Ai = 8D × 1. The overall heat transferred in the cell, Qtotal, is giving by, 
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where Bu  is the bulk mean velocity of the fluid and the logarithm mean temperature difference, ∆Tml is, 
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Eq. (29) represents an overall heat balance on the entire cell and associates the heat transferred to the fluid to a suitable 
temperature difference mlT∆ . As mentioned earlier, Eqs. (1)-(4) were numerically solved in the unit cell until 
conditions Eqs. (25)-(27) were satisfied. 
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Figure 7. Effect of DRe  on ih  for 1=Pr . 

 
Once fully developed flow and temperature are fields are achieved, for the fully developed condition ( Hx 6> ), 

bulk temperatures were calculated according to Eq. (28), at both inlet and outlet positions. They were then used to 
calculate ih  using Eqs. (29)-(31). Results for ih  are plotted in Fig. (7) and Fig. (8) for DRe  up to 400. Also plotted in 
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this figure are results computed with correlation (23) using φ = 0.65. The figure seems to indicate that both 
computations show a reasonable agreement. 

1

10

100

1 10 100 1000Re D

h i
 D

/k
f
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φ = 0.65
φ = 0.90
  Correlation of Kuwahara et. al (2001)
Seqüência7

 
Figure 8. Effect of DRe  on ih  for 1=Pr  with correlation of Kuwahara et. al (2001) and variable porosity. 

8. Concluding remarks 
 
For a porous medium, a computational procedure for determining the convective coefficient of heat exchange 

between the porous substrate and the working fluid was detailed. As a preliminary result, a macroscopically uniform 
laminar flow through a periodic model of isothermal square rods was computed, considering periodic velocity and 
temperature fields. Quantitative agreement was obtained when comparing the preliminary results herein with 
simulations by Kuwahara et. al (2001)]. Further work will be carried out in order to simulate fully turbulent flow and 
heat transfer in porous media by means of the proposed two-energy equation. Ultimately, it is expected that a 
correlation for the heat transfer coefficient be obtained so that the exchange energy between the solid and the fluid can 
be accounted for. 
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