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Abstract.  This paper relies on the Constructal Design to optimize the geometry of a cavity that penetrates into a solid conducting 
wall.  The objective is to minimize the global thermal resistance between the solid and the cavity.  There is uniform heat generation 
on the solid wall.  We studied three shapes of the cavity: rectangular, triangular, and elliptical.  The total volume and the cavity 
volume are fixed with variable aspect ratios.  The cavity shape is optimal when it penetrates the conducting wall completely.  The 
rectangular cavity performs better than the elliptical and triangular ones.  On the other side, the elliptical cavity has better 
performance than the triangular one.  We also optimized a first construct, i.e., a cavity shaped as T.  The performance of the T-
shaped cavity is superior to that of the rectangular cavity optimized in the first part of the paper. 
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1. Introduction 
 

Geometry matters. This is the lesson we have learned from Bejan’s Constructal Theory (Bejan, 2000). The 
principle is the same in engineering and nature: the optimization of flow systems subjected to constraints generates 
shape and structure (Rosa et al., 2004). 

 The field of heat transfer has demonstrated for many years how the principle of generating flow geometry works.  
The oldest and most clear illustration is the optimization of fins.  Recent work on this subject account the optimization 
of the architecture of assemblies of fins (Kraus et al., 2001). Many more examples are found in the growing volume of 
techniques for the cooling of compact and miniaturized packages of electronics (Peterson and Ortega, 1990, Kim and 
Lee, 1995, and Bar-Cohen and Kraus, 1998).  

This paper proposes the study of the constructal design of another, equally basic feature of a solid wall with heat 
transfer:  the open cavity. Open cavities, for example, are the regions formed between adjacent fins. They are essential 
promoters of nucleate boiling and condensation:  see, for example, the vapotron effect (Biserni et al., 2001, and Falter 
and Thompson, 1996).  Open cavities are also important morphological features in physiology (Bejan, 2000).   

We consider the optimization of the cavity shape in the most fundamental sense, without application to a particular 
device or field.  We rely on the constructal method (Bejan, 2000, Biserni et al., 2004, and Rocha et al., 2004):  the 
cavity shape is free to change subject to volume constraints, and in the pursuit of maximal global performance.  The 
global performance indicator is the overall thermal resistance between the volume of the entire system (cavity and 
solid) and the surroundings.  

We start considering two-dimensional geometries where the overall volume and the cavity volume are rectangles 
with variable geometric aspect ratios (Biserni et al., 2004). Next, we explore elliptical and triangular cavities and 
compare the performance of these shapes of cavity with the rectangular one in the same basis. Finally, we investigate 
the simplest first construct: the T-shaped cavity. 
 
2. Rectangular Cavity 
 

Consider the two-dimensional conducting body shown in Fig. (1).  The external dimensions (H, L) vary.  The third 
dimension, W, is perpendicular to the plane of the figure.  The total volume occupied by this body is fixed, 
 

V = HLW (1) 
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Figure 1. Isothermal rectangular cavity into a two-dimensional conducting body with uniform heat generation. 
 

Alternatively, the area A = HL is fixed.  The dimensions of the rectangular cavity (H0, L0) also vary.  The rectangular 
cavity volume is fixed, 
 

V0 = H0L0W (2) 
 
The constant volume constraint is justified in many applications:  the cost of material and the weight and space of the 
heat transfer device make this constraint indispensable in design work.  In constructal design, this constraint is part of 
the mechanism of generating the optimal geometric form that fills a given space.  This constraint may be replaced by 
the statement that the volume fraction occupied by the cavity is fixed, 
 

LH
LH

V
V 000 ==φ  (3) 

 
The solid is isotropic with the constant thermal conductivity k.  It generates heat uniformly at the volumetric rate 

q'''[W/m3].  The outer surfaces of the heat generating body are perfectly insulated.  The generated heat current (q'''A) is 
removed by cooling the wall of the cavity.  The cavity wall temperature is maintained at Tmin.  Temperatures in the solid 
are higher than Tmin.  The highest temperatures (the "hot spots") are registered at points on the adiabatic perimeter, for 
example, in the two corners indicated with Tmax in Fig. (1). 

The isothermal cavity wall assumption is made for simplicity in demonstrating the construction of optimal cavity 
shape.  This assumption means that the heat transfer coefficient on the internal (exposed) surface of the cavity is 
sufficiently large, so that wall conduction poses a larger thermal resistance than convection.  This assumption can be 
relaxed in future applications of this constructal method.  In a more realistic model, the cavity wall temperature and heat 
flux would be related, and the wall temperature distribution would vary with the shape of the cavity. 

An important thermal design constraint is the requirement that temperatures must not exceed a certain level.  This 
makes Tmax a constraint.  The design also calls for installing a maximum of heat generation rate in the fixed volume, 
which, for example, corresponds to packing the most electronics into a device of fixed size.  In the present problem 
statement, this design objective is represented by the maximization of the global thermal conductance q'''A/(Tmax – 
Tmin), or by the minimization of the global thermal resistance (Tmax – Tmin)/(q'''A). 

The numerical optimization of the geometry consisted of simulating the temperature field in a large number of 
configurations, calculating the global thermal resistance for each configuration, and selecting the configuration with the 
smallest global resistance.  The conduction equation for the solid region is 
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where the dimensionless variables are 
 

k/A'''q
TTT~ min−

=  (5) 
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The boundary conditions are indicated in Fig. (1).  The maximal excess temperature, Tmax

~ , is also the dimensionless 
global thermal resistance of the construct, 
 

k/A'''q
TTT~ minmax

max
−

=   (7) 

 
The global objective function maxT~  can be determined numerically, by solving for the temperature field in every 
assumed configuration, and then calculating Tmax

~  to see whether maxT~  can be minimized by varying the configuration. 
Equation (4) was solved using the MATLAB partial-differential-equations (pde) toolbox (MATLAB, 2000). The 

grid refinements to achive grid independence and the accuracy of the numerical results can be learned in Cesare et al. 
(2004).  Figure (2) shows that the thermal resistance can be minimized by selecting the shape of the cavity. 

 

 
 

Figure 2.  The minimization of the global thermal resistance when the external shape of the heat generation body is 
fixed and the cavity is rectangular. 

 
The thermal resistance decreases when the volume fraction (φ) occupied by the cavity increases. 

 
3. Elliptical Cavity 
 

The elliptical cavity domain is shown in Fig. (3).  We kept the two global constraints: the total volume of the 
system, Eq. (1), and the total volume of the cavity  
 

V0 = πH0L0W /4 (8)   
 

The volume fraction of the volume occupied by the elliptical cavity is given by  
 

φ  = V0 / V = πH0L0 / 4HL (9)   
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Figure 3. Isothermal elliptical cavity into a two-dimensional conducting body with uniform heat generation. 
 
The heat transfer conduction mathematical model for the points inside the region of conductivity k showed in Fig. (3) is 
given by Eqs. (4 - 6).  The boundary conditions and the objective function, Eq. (7), are the same used in Section 2.  
Figure (4) shows the minimization of the thermal resistance with respect to the cavity aspect ratio for several values of 
the volume fraction (φ) using a square heat generation body. 
 

 
 

Figure 4. The minimization of the global thermal resistance when the external shape of the heat generation body is fixed 
and the cavity is elliptical. 

 
4. Triangular Cavity 
 

The triangular cavity domain is shown in Fig. (5). We kept the two global constraints: the total volume of the 
system, Eq. (1),  and the total volume of the cavity, given by  
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V0 = H0L0W /2 (10)   
  
 The volume fraction of the volume occupied by the cavity is given by  
 

φ  = V0 / V = H0L0 / 2HL (11)   
 

The heat transfer conduction mathematical model for the points inside the region of conductivity k showed in Fig. 
(5) is still given by Eq. (4 - 6).  The boundary conditions and the objective function, Eq. (7), are the same used in 
section 2.  Figure 6 shows the minimization of the thermal resistance with respect to the cavity aspect ratio for several 
values of the volume fraction (φ) using a square cavity. 

 

 
 

Figure 5. Isothermal triangular cavity into a two-dimensional conducting body with uniform heat generation. 
 

 
 
Figure 6. The minimization of the global thermal resistance when the external shape of the heat generation body is fixed 

and the cavity is triangular. 
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5. Comparison among the rectangular, elliptical and triangular cavities 
 

Comparing Figs. (2, 4, and 6), we can learn that the rectangular cavity has better performance than the other ones 
and the elliptical cavity performs better than the triangular cavity.  However, these results are restricted to the case 
where H/L = 1, i.e., the body is square.  To clarify the preceding observation, we conducted a second level of the 
numerical optimization.  The scheme consisted of repeating the preceding work (Figs. (2, 4, and 6)) for many values of 
the second parameter, H/L.  Figure (7) confirms that the rectangular cavity is better than the other ones. 

 

 
 

Figure 7. The effect of the external shape H/L on the global thermal resistance minimized as in Fig. 2, 4 and 6. 
 

Figure (7) also shows that an optimal H/L ratio does not exist, i.e., the geometry of Figs. (1, 3, and 5) can be 
optimized only with respect to one degree of freedom. This means that a second optimization opportunity does not exist 
because the global resistance minimized with respect to H0/L0 varies monotonically with H/L.  Figure 8 shows that the 
cavities reach their best shape when they penetrate the body almost completely, i. e., L ≡ L0. 

 

 
Figure 8. The optimal shape of the cavity as function of H/L. 
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6. First Construct 

 
The preceding section showed us that the rectangular cavity performs its cooling job better. Constructal design 

(Bejan, 2000) teaches us that one direction in which the optimization of intrusion geometry can be pursued is that of 
increasing the complexity of the growing structures, in spaces that grow as they are cooled by expanding flow 
structures.  When the heat generated by the volume is removed through one port, and when the smallest volume element 
size is fixed, the optimization of geometry generates a tree-shaped flow structure (Bejan, 2000).  The simplest tree-
shaped structure is a 'first construct', or an optimized assembly of elemental volumes.  Considering the elemental 
rectangular cavity, the simplest first construct is the T-shaped tree (Bejan et al., 2002). 

Figure 9 shows the T-shaped intrusion formed by a 'stem' intrusion (L1 × D1) that branches into two elemental 
intrusions (L0 × D0). 

 

 
 

Figure 9. First construct of rectangular cavities arranged as T. 
 

The global size of the construct (HL = A) is fixed in Fig. (9).  The solid material has the conductivity k and 
generates heat volumetrically at the uniform rate q'''.  The perimeter of the HL rectangle is insulated.  The surface of the 
cavity is isothermal at Tmin.  The hot spot of temperature Tmax occurs at one or more points in the solid.  The objective 
continues to be the minimization of the global thermal resistance Tmax

~ , which is defined in the same way shown in Eq. 
(7). 

The geometry of the T-shaped construct is subjected to two constraints, the volume fraction occupied by the cavity 
 
 

LH

D2/DLDL2 10100 
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=φ  (12) 

 
 

and the volume fraction occupied by the rectangle defined by the ‘stem’ intrusion, 
 
φ1 = D1L1 / HL (13) 
 
The structure has three degrees of freedom, which are represented by the ratios H/L, L0/L1 and D0/D1.  In the 

following sequence of optimization of results, we fixed H/L = 1, optimized L0/L1 by minimizing maxT~ considering a 
fixed value of D0/D1, and then repeated the optimization for other values of D0/D1.  

Figure 10 shows that there is an optimal D0/D1 when φ1 is fixed and the global thermal resistance is minimized with 
respect to L0/L1.  We named these results (D0/D1)opt, (L0/L1)opt and ( maxT~ )min. 
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The procedure used in Fig. (10) is repeated in Fig. (11) where the results using several values of φ1 were collected. 
Figure (11) shows that the (D0/D1)opt ratio decreases when φ1 increases while (L0/L1)opt is approximately insensitive to 
changes in φ1. Figure (11) also shows that the global thermal resistance decreases as φ1 increases.  It is interesting to 
note that all the minimized global thermal resistance values calculated in Fig. (11) are at least 25% smaller than the 
values of the minimized global thermal resistance showed in Fig. (2) under the same thermal and volume fraction 
conditions. These results were expected because the T-shaped cavity has more degrees of freedom than the rectangular 
cavity showed in Fig. (1), i. e., it has more freedom to vary its geometry.  The values of the global thermal resistance 
calculated in Fig. (11) agree well with the results obtained by Biserni et al. (2004) using a different constraint, i. e., 
instead of φ1 Biserni et al. (2004) used the area defined by the “T”, [2L0 (L1 + D0 / 2) / HL], as a constraint.  

 
 

 
Figure 10. The effect of the ratio L0/L1 on the global thermal resistance and on the D0/D1 ratio. 

 

 
 

Figure 11.  The behavior of the minimized global thermal resistance and the optimized geometry as the constraint φ1 
varies. 
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7. Conclusions 

 
Several conclusions and ideas for future research emerged from this study.  The rectangular cavity performs better 

than the elliptical and triangular ones.  The elliptical cavity has better performance than the triangular one.  All of the 
studied cavities reach their best shape when they penetrate the body almost completely.  This result is independent of 
the shape of the cavity. 

Since we assume isothermal cavity, future work may extend this investigation to the case where the heat transfer on 
the internal surface of the cavity is accounted for by a constant heat transfer coefficient.  

We compare the performance of the elemental volume showed in Fig. (1) with the performance of the first 
construct drawn in Fig. (9) under the same thermal conditions, uniform heat generation, and the same volume fraction 
occupied by the cavity, φ.  Figure (11) shows that, when compared to the rectangular cavity, the T-shaped configuration 
performs better. This performance improves when φ1 increases. All the minimized global thermal resistance values 
calculated in Fig. (11) are at least 25% smaller than the values of the minimized global thermal resistance showed in 
Fig. (2). The T-shaped cavity, the more complex one, has more degrees of freedom. Actually, it has more freedom to 
vary its geometry. The minimized global thermal resistance calculated for the best T-shaped cavity is 29,4 % smaller 
than the minimized one shown in Fig. (2). These results agree well with the ones calculated by Biserni et al., 2004. 
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