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Abstract. Recent results on the temperature-jump problem in the rarefied gas dynamics field are presented. In
particular, results obtained from different kinetic equations with two different types of surface-gas interaction law,
are analyzed. Analytical and computational aspects on the discrete-ordinates method, used to develop the solution,
are reported.
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1. Introduction

In analyzing the temperature distribution of a rarefied gas near to the gas-solid interface, a difference between
the temperature of the gas near to the wall and the temperature of the wall is noted (Welander, 1954). This
analysis, which can be also seen as the analysis of the heat exchange in the region, depending on the gas species,
can be associated with the evaluation of the temperature-jump coefficient of the gas. Over the years, starting
from a basic paper by Welander (Welander, 1954), a long list of papers on this subject can be referenced
(Loyalka, 1989; Onishi, 1997; Barichello and Siewert, 2000; Williams, 2001; Barichello et al., 2002; Sharipov,
2003; Sharipov, 2004; Siewert, 2003a). Of course, in dealing with a gas of arbitrary rarefaction, a modeling
based on the Boltzmann equation or kinetic (model) equations must be considered. Since the recent interest
on the microsystems field renew the interest on the rarefied gas dynamics (RGD) theory, analytical, numerical
and computational tools have been studied, and, investigations have been sought for improvements in regard
to previous results. In particular, a recent analytical version of the discrete-ordinates method (Barichello and
Siewert, 1999) has been used to solve a wide class of problems in the RGD field (Barichello et al., 2001; Barichello
et al., 2002;Siewert, 2003b), including the temperature-jump problem (Barichello and Siewert, 2000; Barichello
et al., 2002; Siewert, 2003a). This approach has been shown adequate to deal with several kinetic equations
and the linearized Boltzmann equation (LBE), along with different types of gas-surface interaction laws. An
advantage that has been noted in using this approach, is exactly the fact of looking the results of a wide class
of models under the same basic methodology and having, then, good conditions for a more general analysis of
modeling x accurate results x computational efforts, when trying to solve problems of practical interest.

In this work, in addition to show some recent results on the temperature-jump problem for different models,
in order to analyse the dependence on the model equation as well the gas-surface interaction law, we present
basic steps involved in applying the ADO (analytical discrete ordinates) methodology to solve the temperature-
jump problem, using for this, the BGK model equation. In addition to the use a different approach regarding to
the elementary functions in terms of which the general solution is written, differently of the previous paper on
this subject (Barichello and Siewert, 2000), we present here results based on the use of the Cercignani-Lampis
boundary condition.
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2. General Formulation

We consider as a starting point, the kinetic equation written in terms of a perturbation h(7,c), to the
distribution function from the absolute Maxwellian, as

cy%h(y,c)+sh(y,c):aw*"/?/ / / e " K(c' : 0)h(y, ¢')dc,dc,dc, (1)

with

e = a2ner/?, (2)

where oy is the collision diameter of the gas particles (in the rigid-sphere approximation), ng is the (constant)
density of gas particles and [ is a mean-free-path, which, at this point, we leave arbitrary. Still, we note that, in
Eq. (1), the three components (c,, ¢y, ¢;) of the velocity vector (with magnitude c) are expressed in dimensionless
units and we use the dimensionless spatial variable y > 0 to measure the distance from the wall.

2.1. The scattering kernel and the mean-free-path

In regard to the scattering kernel K(c' : ¢), in order to represent all the cases we want to describe in this
work, we write it, in a general form, as

K(c',c) = %n(d)n(f/‘) o1+ 3711(e” - €©) +02(c” —w)(c® —w)| + BM(c,¢), (3)

where 7(c) is the collision frequency, and

M(c',c) = (4/15)(c" - ¢)(c® = 5/2)(c* — 5/2). (4)
Here
1 1 Vo Vo
Yo1 Vo M1 v Yo2 VoVs — V2 and w T (5a,b,c,d)
and
Vi = / n(c)c”e*czdc. (6)
0

In writing the scattering kernel as in Eq. (3), we can define three kinetic equations:

The CLF Model (3 =0)

The CLF model of Cercignani (Cercignani, 1966) and Loyalka and Ferziger (Loyalka and Ferziger, 1968) is a
variable collision frequency model, obtained, from Eq. (3), for the case 5 = 0. Since, for this model, the collision
frequency is arbitrary (Barichello and Siewert, 2003), we have studied variants of this model ( Barichello et al.,
2002; Camargo, 2003), defined by the rigid-sphere case, where

2

1
n(c) = (c+ %)ﬂ'l/zerf(c) +e ¢ (7)
and the Williams model

n(e) = c. (8)

The BGK model (=0 and n(c) = 1)

The well known and commonly used BGK model (Bhatnagar et al., 1954), which is a constant collision
frequency model, can be seen, in fact, as a particular case of the CLF model for what, the scattering kernel
results as

K(c',c) =1+2c -c+(2/3)(c* —3/2)(c* — 3/2). (9)
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The S model (=1 and n(c) = 1)
For this constant collision frequency model (Sharipov and Seleznev, 1998), we consider Eq. (4) and write

K(c',c) =1+2c -c+(2/3)(c? —3/2)(c* —3/2) + M(c/,c). (10)
Having defined the three different kinetic equations we want to refer in this work, we note that we can

evaluate the mean-free-path, based on viscosity (I, ) or thermal conductivity (I;), via each one of those models
(Barichello and Siewert, 2003). In consequence, we obtain, from Eq. (2), for the CLF model, rigid-sphere case,

ep = 0.2788040528277 and & = 0.2753345876233, (11a,b)

for the Williams model

€p = 1—§7r*1/2 and & = gﬂflﬂ, (12a,b)
for the BGK model

ep=1 and e =1, (13a,b)
and, for the S model

ep=1 and & = g (14a,b)

In evaluating the ratio e,/e; one can see that while the CLF model (including the particular case of the
BGK model) yields poor results for the Prandtl number, from the S model one obtains 2/3.

2.2. The gas-surface interaction and the boundary-conditions

We supplement Eq. (1) with a boundary condition. In this work, we use, to describe the surface-gas
interaction, two different boundary-conditions law. The classical diffuse-specular approach, where some fraction
(1 — @) of the particles is reflected specularly and the remaining fraction « is reflected diffusely

2 o0 o0 o0 ,
h(o,c,,.,cy,cz)z(1—a)h(o,cz,—cy,cz)+7a/0 [ [ e 10,6, —,, ) deldel e, (15)

for ¢, € (0,00) and all ¢, e c,. Here a € (0,1] is the accommodation coeflicient.

As a second choice, to describe the interaction with the surface, we use the Cercignani-Lampis (Cercignani,
1988; Siewert, 2003a) boundary condition, which is defined in terms of two accommodation coefficients: «; €
(0, 2] the tangential momentum accommodation coefficient and a,, € (0, 1] the energy accommodation coefficient.
Since a; can be greater than unity, this type of law allow us to consider the back scattering, which can be useful
for dealing with rough surfaces (Sharipov, 2003). Following this approach, Eq. (1) is supplemented by a boundary
condition written as

o0 o0 o0
h(0, ¢z, ¢y, c.) = / / / h0, ¢, —¢,, ¢, )R(c" : ¢)de, dc,,de, (16)
—o0 J —00 JO

for ¢, € (0,00) and all ¢, and ¢, with

R(c,, ¢l ¢ i ep ey, c.) = 2—C;"’T(c' 1ep)S(c i ey)T(C, : es) (17)
xr Yy Tzt Ty Yy -z F(Q_Oét)atan x " T y Yy z " zZ)
[(1—an)y — 93]2]
T(x:y) =exp|—————|, 18
(@59) =exp |- =E = (18)
~[2(1 = 1/2 1— 1/2,, _ .12
Sa:y)=1Io [—( ) xy}exp {_ (1 =an) Ty = a] (19)
(7% (77}
and, where, for computational convenience, we rewrite the modified Bessel function Iy(z) as
In(2) = Iy(z)e™? (20)
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In addition, since we are dealing with a half-space problem, we impose, in order to complete the definition
of the temperature-jump problem, the Welander condition (Welander, 1954) on the temperature perturbation,
at infinity, such that

d,
Jim d—yT(y) =K, (21)

where K is considered specified.
Once we have the problem defined by Egs. (1), (15) or (16) and (21) we seek to compute some quantities,
as, for example, the temperature and the density perturbations

2 e e o0 2
1) =5r [ [ [ b oy e (@ - 32 dendeyde. (22)
and
N(y) = 77_3/2/ / / €_Clzh(y: Cz, Cy, €z )degdeyde, . (23)

3. A Reformulation

Looking back to Egs. (22) and (23), we see that the quantities of interest are related to integrals of the
distribution function h. Keeping that in mind and looking for simpler problems, more amenable to analytical
procedures, we define

(oo} (oo}
hi(y,cy) = / / ¢1(ca, c2)h(y, o, ¢y, cz)dede. (24)
—00 J —00
and
(oo} (oo}
mawe) = [ [ dalencohly,cacyre)dendes (25)
—00 J —00
such that, if we multiply Eq. (1), firstly by (Barichello and Siewert, 2000)
1
¢1(Cz,cz) — _e—(cm2+czz) (26)
T

and integrate over all ¢, and ¢, and next we repeat the procedure and multiply Eq. (1) by
1 .
¢2(Cz; Cz) — _(czz + sz _ 1)67(cw2+652) (27)
™

and integrate over all ¢, and c;, we find we can write, for the BGK model (K defined in Eq. (9)), with ¢, = ¢,

€5 T €) + B0, =er QM) [ QT (€. )ae (28)
) -0
for y € (0,00), &€ € (—o0, 00), where
0O = | 10 | 29
and
_ [ @3 e -1/2) 1 30
Q(é) (2/3)1/2 0| ( )

Following analogous procedure, to the one described above, with the boundary condition defined by Eq. (15)
we obtain, for the Maxwell (diffuse-specular) boundary condition

HO.9 = (1~ )HO, - + A. [ T e H(0, e (31)



Proceedings of the ENCIT 2004, ABCM, Rio de Janeiro — RJ, Brazil — Paper CIT04-0433

and, for the Cercignani-Lampis boundary condition defined by Eq. (16)

HO.9-A [ T HO,-€) (¢, £)d8 (32)
with

A*z[%“ 8] (33)

S o

and, for &, '€ (0, 00),

’ _ 1/2¢ _ ¢n27 _ 1/2 ¢4
F(g,6) = gexp |:_ [(1 an)a §-=¢'] :|IO |:2(1 Zn) ff:|

Qpn

(35)

We then use the definitions of the components h; and hy to rewrite the quantities of interest, given by
Eqgs. (22) and (23) as

r) = 2o [T [ €52 ] mgge-ag (36)
and
N =7 | § ]T | w9t 1)

Before proceeding the development of a solution for the H problem, we follow Siewert (Siewert, 2002) and
note, as a special case regarding to the Cercignani-Lampis boundary conditions, that the cases «, — 0 and
an, = 1 lead, respectively, to specular and diffuse behavior, regarding to the boundary condition. However,
it is not possible to obtain, from the Cercignani-Lampis boundary condition, as a particular case, the general
diffuse-specular behavior.

4. A Discrete Ordinates Solution

To solve the vector problem H we develop a discrete ordinates solution, based on the ADO approach
(Barichello and Siewert, 1999). Following previous work (Barichello and Siewert, 2000) and noting Egs. (13),
we define

G(y,6) = Q7' (OH(y,©) (38)

and

T(¢) =7 2QT(6)Q(e)e ¢, (39)

where Q(&) is defined in Eq. (30), such that the problem given by Eq. (28) is rewritten, for y € (0,00) and
& € (—00,00) as

sa%G(y,f) L G(y,6) = [ Z T(E)G, (y,¢)de’ (40)

the “so-called” G problem (Barichello and Siewert, 2000). Analogous transformation we apply to the boundary
condition.
We write the discrete-ordinates version of Eq. (40)

N
i&d%G(y, £6) + Gy, £6) = ) we¥(6)[G ;&) + Gy, —&)), (41)
k=1
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fori =1,2,...,N. We note that, in writing Eqgs. (41) we have used a “half-range” quadrature scheme with N
nodes {&} and weights {wy,} defined in the interval [0, 00). Continuing to follow the usual procedure developed
in earlier works, we seek for exponential solutions of Egs. (41) and we find the general solution in a form

2N
Gy, &) = Y [A;®x(v;)e ¥/ + Bj®(v;)e?/ ). (42a)
j=1

where @ (v;) and v; are defined from the eigenvalue problem
(D — 2W)U = AU (42b)
with A = (1/v?) and

B, (1)) = 2iyjouag{(yj )L (v £ &)L, .., (v £ §N)I}Uj. (42¢)

Here, the block matrix

D= diag{(1/§1)21, (1/6)°L, .., (1/5N)21}, (42d)

where I is the 2 x 2 identity matrix and W is a 2IV x 2N matrix, where each 2 x 2N submatrix is given by

Ri=(1/6)* [ ®(6) @¥(&) ... wx®En)], (42¢)

fori=1,2,...,N.
Since it is a conservative problem, we have to add a number of exact solutions, once some of the separation
constants v; are unbounded. For this specific case we consider

Fi(¢) = (2/3)1/? { &1 ] and F = { ; } , (43a,b)

and going back to H(y, £) we write

2N

H(y, &) = [A1 + Bily — O] F1(9) + [4s + Ba(y — O] F2 + Q&) D 48 (vj)e ¥/ (44)
j=3
where, based on the expected behavior of the solution at infinity, we consider B; = 0 for j = 3,--- ,2N. To

have the solution completely established, we still have to determinate the other arbitrary constants. In this
sense, from the Welander condition, given by Eq. (21), we obtain that B; = K(3/2)'/2. On the other hand,
since F satisfies the homogeneous version of the boundary conditions we follow previous works and use the
normalization condition (Kriese et al., 1974; Onishi, 1997)

lim [N(y)+T(y)] = 0. (45)

Yy—r00

which give us that Ay = —(2/3)'/?4; and By = —(2/3)'/?B,. In this way, we write our final solution as

2N

a6 = /324 | § 0 hprar €0 vaee Y [eamer] o

j=3

where the remaining 2N — 1 unknowns are obtained (least squares) by using the 2N boundary conditions given
by either Eq. (31) or (32).
Thus, the final expressions, considering K = 1, for the temperature perturbation is

2N
T(y)=y+(2/3)"/2 A1 +2/3)  A; e v/vi [(2/3>1/2M1(uj) + Mz(’/j)]v (47)
j=3
with
N 2
My(vy) =772 " wpe™ (6 = & + 5/4)[® (v, €) + (v, =9)], (48)
k=1
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where ®(v;, ££) are the components of the vectors defined in Eq. (42c) and

N
Ms(vj) = 772y wpe (€7 = 1/2)[8 (v, €) + B (v, —)]. (49)
k=1

We also express the density perturbation as

2N
Niy) = =y = (2/3)" P A0 + 37 Ay e/ | (2/3)° My () + M) (50)
7j=3
with
N 2
Ms(vj) =7 2 " wpe (6 = 1/2)[®(v;, ) + B(vj, —©)] (51)
k=1
and
N 2
My(v;) =772 " wpe ™ [@(v), ) + B(vj, =€) (52)
k=1

The temperature-jump coefficient is written in terms of the asymptotic behavior

d
Tasy(o) = Cd_yTasy(m”I:O; (53)
where
Towy(y) =y + (2/3)'74 (54)
and
1/2
c=(3) "4 (55)

5. Computational Aspects and Concluding Comments

The computational procedures, in order to implement the discrete-ordinates solution, has been widely de-
scribed in a series of papers on these RGD problems based on the ADO approach (Barichello et al., 2001;
Barichello and Siewert, 2000; Barichello et al., 2002) . We briefly repeat here, however, some basic steps. To
evaluate Eqgs. (47), (50) and (55), the first thing we have to do is to define a quadrature scheme. One of the
very good aspects in regard to the ADO approach is the use of arbitrary quadrature schemes, which allow us
to deal with class of problems using the same basic methodology. In general (Barichello et al., 2001; Barichello
et al., 2002) the interval of interest is mapped to the interval [0,1] and then the Gauss-Legendre scheme is
linearly mapped to this interval. As a second step the eigenvalue problem, given by Eq. (42b) is solved (using
known libraries as LAPACK) and finally the linear system to define the arbitrary constants in the solution is
solved. The discrete-ordinates solution based on this (ADO) approach has been shown to be easy to implement,
fast, accurate and adequate to deal with a wide class of problems in RGD, in particular, the temperature-jump
problem.

In regard to the results presented in Tables 1 to 4, and Figs. 1 and 2, we note, in agreement with previous
papers, that the temperature-jump coefficient varies very slightly depending on the model to be used. In
opposition, the accommodation coefficient is an important parameter to be taken into account in this analysis.

For an appropriate choice of the mean-free-path, both constant collision frequency models used here, the
BGK and the S model, lead to the same jump coefficient and provide good approximations when compared with
the LBE results. A slightly difference in regard to the temperature and density perturbations (Knackfuss and
Barichello, 2004) is noted. However, in using the ADO approach to develop a solution for the derived H vector
problem, based on the S model, more intensive analytical tools have to be used (Knackfuss and Barichello,
2004).

As extension of this work, the temperature-jump problem has been evaluated for mixtures of binary gases,
including the analysis of the Cercignani-Lampis boundary conditions.
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Table 1: The Temperature-Jump Coefficient, Table 2: The Temperature-Jump Coefficient,
a = 0.5, Diffuse-specular boundary condi- ay = 0.5, a, = 0.5 Cercignani-Lampis bound-
tions. ary conditions.
[ Model [ ¢ | [ Model | ¢ |

BGK 3.629125%° BGK 2.78041°

Williams 3.435960° S=1) 4.17061°

Rigid-sphere | 3.476180° S (e =3/2) 2.78041°

Sk=1) 5.44369¢ S 4.170¢

S(e=3/2) 3.62912¢ LBE 2.72824

LBE 3.54857 Ref®=(this work) Ref’=(RFK & LBB, 2004)

Ref® =(this work; LBB & CES,2000) Ref®=(MC, 2003) Refc=(FS, 2003)  Ref?=(CES, 2003b)

Ref°=(RFK & LBB, 2004) Ref!=(CES, 2003a)

Table 3: BGK model, The Temperature- Jump Coefficient (,
Cercignani-Lampis boundary conditions

| o | anp =0.25 | an = 0.5 | an =0.75 | ap =1 |
0.25 5.7895 3.8418 2.7241 2.0055
0.5 3.8859 2.7804 2.0584 1.5566
0.75 3.2223 2.3660 1.7797 1.3598
1 3.0447 2.2509 1.7003 1.3027

Table 4: The temperature T'(y) and density N(y) perturbations, BGK
Model, Cercignani-Lampis boundary conditions, ay = 0.5, N = 40

T(y) N(y) T(y) N(y)

y a, = 0.5 a, = 0.5 a, =1 ap, =1

0.0 2.10157 —2.56938 1.18961 —-1.08900
0.1 2.34143 —2.71400 1.37629 -1.30803
0.2 2.51598 —2.83371 1.51921 -1.46634
0.3 2.67076 —2.94749 1.64968 -1.60728
0.4 2.81423 -3.05829 1.77328 -1.73864
0.5 2.95014 -3.16724 1.89241 -1.86377
0.6 3.08054 -3.27491 2.00837 -1.98451
0.7 3.20674 -3.38167 2.12194 —2.10196
0.8 3.32960 -3.48770 2.23367 -2.21686
0.9 3.44976 -3.59315 2.34391 —2.32975
1.0 3.56767 —-3.69812 2.45293 —2.44099
2.0 4.67538 —4.73195 3.50592 -3.50413
3.0 5.72288 -5.75046 4.52874 -4.52919
4.0 6.74708 —6.76147 5.54032 -5.54115
5.0 7.76037 —7.76823 6.54671 —6.54745
6.0 8.76804 —8.77248 7.55042 —7.55099
7.0 9.77261 -9.77519 8.55266 -8.55307
8.0 10.7754 —10.7769 9.55404 -9.55433
9.0 11.7772 -11.7781 10.5549 -10.5551
10.0 12.7783 —12.7788 11.5555 -11.5556
20.0 22.7804 —22.7804 21.5565 -21.5566
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Figure 1: Temperature, N =40 and a; = 0.5
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Figure 2: Temperature jump coefficient, NV = 40
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