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Abstract. The heat transfer with phase change and mass loss occurs in many engineering problem, and is of great technological 
importance. Problems of this type are inherently nonlinear due to the moving boundary. A phenomenon that has been gainning the 
researchers attention in the last decades is the heating caused by the friction between the air and space vehicle structure in the 
atmospheri ,reentry producing a surface recession due to the material loss. This phenomenon is known as ablation in the aerospace 
area. In this work an analysis of the transient ablation problem in a rectangular prism that was modeled as a two-dimensional 
diffusion problem, was accomplished in order to obtain the ablative thickness and speed. The Generalized Integral Transformed 
Technique (GITT) was used to solve the resultant equations. This technique transforms the original partial differential equation 
system into an ordinary differential equation system. A computer program was implemented using the Fortran Language to solve 
this equation system and IMSL Libraries routines. The variables of interest such as the temperature distribution, the ablative  
thickness and speed were obtained for heat fluxes different in the boundary. 
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1. Introduction 
 

The transient heat transfer in solids with thermal protection are the great technological importance and in numerous 
engineering applications, Hsiao & Chung (1984). An example of theses applications includes the aerodynamic heating 
caused by the high speed with that the space vehicles reach as in the release as in atmospheric reentry. 

A variety of systems of thermal protection has been proposed (Hatori & Pessoa-Filho, 1998; Sutton, 1982; Steg & 
Lew, 1962). Among these systems the more used are the ones with ablative materials. 

Heat transfer with ablation in a two-dimensional region subjected to time variant heat fluxes at boundary were 
studied by Hsiao & Chung (1984). Due to non-linear features of this problem, exact analytical solutions are practical 
non-existent. Although many approximate analytical and numerical solutions to the ablation problem have been 
published in the literature, (Zien, 1981; Chung et al., 1983; Kurokawa et al., 2003), they are only restricted to the case 
of one-dimensional heat transfer process. Pantaleão (2003) studied the two-dimensional ablation problem in which the 
Galerkin finite element method was used for the space discretization, together with a totally implicit time iteration 
scheme. 

The ablation phenomenon is complex involving heat and mass transfer, physical evaporation or pyrolysis, chemical 
reactions among another (Lacaze, 1967; Kreith, 1973). Due the complexity of the phenomenon, a convenient proposal 
to model the problem is to use a model that involves phase change with moving boundary with partial or whole loss of 
mass. 

The process of heat transfer with ablation is inherently non-linear due to moving boundary, initially unknown 
(Chung & Hsiao, 1985; Zien, 1978; Chung et al., 1983; Zien, 1981). 

A technique that has been used to obtain exact solutions of complex problems is the Generalized Integral 
Transform Technique (GITT) (Cotta & Özisik, 1987; Cotta, 1993; Diniz, 1996; Diniz et al., 1993). This technique is an 
analytical/numerical hybrid tool. 

In this work the two-dimensional ablation problem is studied, considering a heat transfer with phase change and 
moving boundary. The GITT will be used in the analytical development, where for the problem solution a coupled 
system of ordinary differential equations should be solved. This system will be numerically solved by implementation 
of an algorithm in Fortran language using the IMSL library (IMSL, 1979). 
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2. Modeling of the problem 

 
In the problem formulation it is considered a two-dimensional heat transfer in the stagnation point of a revolution 

body, which was approached to the long rectangular prism geometry. Also, it is assumed that the longitudinal length is 
much greater than the other dimensions, hence the end effects can be neglected. Fig. 1 depicts the problem geometry 
under consideration, where 1q  and 2q  are the uniform transient heat input and heat loss, respectively. 

 

 
 

Figure 1. Schematic representation of ablation process model in the stagnation point region. 
 
This problem is better described whether we divide the process in two periods: one named preablative, where the 

plate becomes warm due to the incident heat flux until the temperature surface reaches the fusion temperature of the 
material. In the other one, named ablative, where occurs material fusion that is dragged off to the environment, Fig. 2. 

 

 
(a) (b) 

 
Figure 2. Description of ablation problem under consideration: (a) preablative and (b) ablative. 

 
3. Formulation mathematical 
 

The governing equations that model these two periods, in the dimensionless form, are given as: 
Preablative period: 
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Ablative period: 
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with initial and boundary conditions: 
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where: ),,( τθ yxin  is the temperature distribution obtained for the preablative period. The initial condition for the 
ablative period is the ),,( τθ yx  value for the time fττ = . Due to boundary moving by the phase change process, there 
is a boundary velocity equation, named restriction condition, that results from the energy balance in the interface, Hsiao 
& Chung (1984): 
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where ),( τyS  and ν  are respectively the position of the boundary and the inverse of Stefan number. 

 
4. Analytical solution 
 

In this work the Generalized Integral Transform Technique (GITT) was utilized to obtain the solution of the two-
dimensional ablation problem. Considering that temperature potential of the preablative phase can be defined by: 
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Then, there is two problems: one for ),,(1 τθ yx  and other for ),,(2 τθ yx . Applying the GITT, the appropriate 

eigenvalue auxiliary problem is described in Kurokawa (2003) and the ),,(1 τθ yx  function can be expresses by:  
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δ  is the Kronecker delta. 

 

To obtain the values )(~̂
τθim , the ordinary differential equation below must be solved: 
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The solution obtained for Eq. (16) is: 
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For ),,(2 τθ yx , a new eigenvalue auxiliary problem was defined in the Kurokawa’s work (2003), where the 

solution of the potential problem is given by: 
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where the values of )(~̂ τimZ  were obtained solving the following ordinary differential equation: 
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Then the solution of the Eq. (21) is: 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++−++−= ∫∫

ττ

ττλµτττλµττλµτ
0

2
1

2
12

0

2
1

2
122

2
1

2
111 ])exp[()(

6
])exp[()(1

6
)0(])(exp[)(~̂ dQldQ

l
llQlZ &  (23) 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++−= ∫

τ

ττλµτµ
µ

µ
µ

τλµτ
0

2
1

2
2

*
2

*
22

2
1

2
1 ])exp[()()cos(2)cos()0(2])(exp[)(~̂ dQlllQlZ ii

i
i

i
ii

&    (24) 

 
Therefore, the temperature distribution in the preablative phase is given by: 
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For fττ > , it begins the phase change period, called ablative period. A variable transformation applied to Eqs. (7) 

and (13) turns this in a homogeneous problem, defined as: 
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and after a coordinate transformation, defined as x−=1η , the boundary position is denoted as: 
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where ξ  represents the ablative thickness. 

Again, defining an appropriate eigenvalue auxiliary problem, Kurokawa (2003), the following ordinary differential 
equation is obtained applying the TTIG to the ablative phase: 
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The transformed restriction equation for the coupling is: 
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With transformed initial condition: 
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Therefore, the Eqs. (28) and (29) form an infinite system of coupled ordinary differential equations that is solution 

for the studied two-dimensional ablation problem, with the Eq. (30) being the initial condition. 
The numerical results for the temperature solution were calculated through a Fortran language program. So, it was 

necessary to transform this infinite system in a suitable finite system of order N. Making N sufficiently great we obtain 
a good approximated solution for the infinite problem. The numerical solution was performed using available IMSL 
subroutines (1979). 
 
5. Results 
 

Results were obtained by analytical/numerical hybrid analysis through of application GITT for an ablation problem 
modeled by a diffusion equation. In the present study, it is assumed constant heat fluxes 21 =Q  and 02 =Q , heat input 
and heat loss, respectively, where 1Q  and 2Q  are dimensionless heat flux. 

 

 
 

Figure 3. Determination of the time-interval for the beginning of the ablative phase. 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 – Paper CIT04-0399 
 

The preablative phase solution allows determining the time where the ablative phase begins. It’s occur when 
averaged dimensionless temperature ),( τφ x , defined by Eq. (31), in the position 0=x  is equal to 1: 
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Figure 3 exhibits the results obtained to determine the dimensionless time value for the beginning of the ablative 

phase, mτ . The temperature distribution for the preablative phase at mτ  is the initial condition for the ablative phase. 
Fig. 3 shows that the ablative phase starts at 196.0=mτ . 

Fig. 4 presents the dimensionless temperature distribution in the solids, showing the temperature profiles for the 
following dimensionless time values: (a) 025.0=τ , (b) 05.0=τ , (c) 075.0=τ , (d) 1.0=τ , (e) 125.0=τ , (f) 

15.0=τ , (g) 175.0=τ  and (h) 196.0== ττm . 
 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 

 
 

(d) 
 

Figure 4. Temperature distribution of the preablative phase. 
 

Note that the case in study is a particular case of the two-dimensional problem, once 02 =Q  represents a one-
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dimensional problem. A comparison between the time value for the beginning of the ablative phase obtained by the 
one-dimensional formulation ( 197.0=mτ ) provided by Kurokawa et al. (2003), with the present work value 
( 196.0=mτ ) shows a good agreement, where both results applied the GITT. 

In this work a solution was presented for the heat transfer problem for a two-dimensional phase change ablation in 
solids. It is noticed that the temperature distribution, Fig. 4, exhibits a stratified profile, that also occurs in the one-
dimension case. 
 

 
 

(e) 
 

 
 

(f) 
 

 
 

(g) 

 
 

(h) 
 

Figure 4. … temperature distribution of the preablative phase (continuation). 
 

As previously mentioned, a simplification of phenomenon was considering, since the ablation phenomena is treated 
merely as a phase change process with boundary moving, neglecting other physical effects. 
 
6. Final Coments 

 
The principal objective this work was to validate the results obtained for a two-dimensional ablation problem by the 

application of the GITT. Once considering the heat loss null, the modeling mathematical of the two-dimension problem 
transform in a one-dimension ablation problem. Therefore, the GITT should be a useful tool for complex problem 
solution involving non-linear heat transfer. 
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