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Abstract. The present work reports an analytical-numerical method that deals with the approximate solution of the boundary layer 
equations for transient convective heat transfer of a Newtonian fluid flowing over a plate, in laminar regime. The transients are 
caused by the applied uniform wall heat flux on the upper face of the plate. The first step in the solution procedure is the utilization 
of the Integral Method where the Karman-Pohlhausen approximation is used to obtain polynomial forms for the steady velocity and 
transient temperature fields in the fluid and the solid. From the polynomial forms of the velocity and temperature fields, the integral 
form of the energy equations in the fluid and in the solid are obtained. By coupling the thermal boundary layer and the interface 
temperature a non-linear partial differential equation for the temperature interface is established, and solved by means of a finite-
difference method. For illustration of the proposed analytical-numerical approach, a typical application dealing with air heating on 
a flat plate is considered.This work provides new data on the unsteady behaviour of convective heat transfer, in addition to other 
previous theoretical and experimental studies. 
 
Keywords: external forced convection, transient convection, integral method,  heat transfer coefficient. 

 
Nomenclature 
a thermal diffusivity m2.s-1 
C constant 
h convective heat transfer coefficient W.m-2.K-1 
Pr Prandtl number 
t time variable s 
T fluid temperature K 
U velocity component parallel to the plate m.s-1 
V velocity component perpendicular to the plate m.s-1 
 
Greek symbols 
δ dynamic boundary layer thickness m 
δt thermal boundary layer thickness m 
φ heat flux density W.m-2 
λ thermal conductivity W.m-1.K-1 
ν kinematic viscosity m².s-1 
θ temperature difference (T-T∞ ) K 
 
1. Introduction 
 

The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the 
dimensioning of thermal systems used in various energy processes. The solution of a heat transfer problem between a 
fluid and a solid often requires the knowledge of the heat transfer coefficient, which incorporates flow features and 
thermal properties of both media. In the absence of complementary data, there is a practical trend to extrapolate the 
available correlations for steady-state situations to transient regime as well. However, in many cases, especially when 
the boundary conditions are time-dependent, this solution path seems to be inadequate and a fully unsteady approach is 
needed, (Wang et al.,  1977, Chung and Kassemi, 1980, Petit et al., 1981, Pierson and Padet, 1985, Remy et al., 1995, 
Polidori et al., 1998, Rebay and Padet, 1999, Polidori et al., 1999, Rebay et al., 2000, Polidori and Padet, 2002, Padet 
and De Lorenzo, 2002, Lachi et al, 2004). 
 

While the integral and differential methods have been widely employed in the solution of steady-state external 
convection problems, and are well-documented even in various textbooks, like Schilichting (1968), besides Ozisik 
(1980) and Kakaç (1993) in heat conduction analysis, much less information is readily available in its use within 
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transient situations caused by temporal fluctuations of either wall and/or fluid boundary conditions. 
 

The aim of this work is related to this so-called conjugated problem by considering the transient thermal interaction 
between a laminar boundary layer flow and a semi-infinite flat plate, from a theoretical viewpoint. The unsteady 
behavior of the analyzed system is due to the generation of an impulsive wall heat flux on the upper face of the flat 
surface. Results for the time and space evolution of surface temperature, heat flux and deduced convective heat 
exchange coefficient will be presented. 
 

For illustration of the proposed analytical-numerical approach, a typical application dealing with air heating is 
considered, where we present the time and space temperature evolutions in the fluid and solid. 
 
2. Mathematical modelling 
 

We consider a semi-infinite flat plate, initially at an equilibrium temperature which is located in a parallel free air 
stream whose velocity and temperature values are respectively U∞ and T∞. The flow is laminar, and assumed to be 
incompressible. Its thermal properties are considered as constant. The generated dynamical boundary layer is assumed 
to be steady and independent of the temperature field. At a given time, a uniform heat flux step φ0 is suddenly applied 
on the upper surface of the plate and continuously maintained as illustrated in Fig. 1. The plate with a finite thickness is 
absolutely insulated at the bottom. The schematic representation of the physical problem is shown in Fig. 1. 
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Figure 1 – Schematic representation of the studied physical problem. 
 
 
2.1. Governing equations 
 

Under steady-state flow but transient heat transfer conditions, the mass, momentum and energy conservation 
equations in boundary layer formulation are given by:  
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The formulation of the problem for the unsteady temperature distribution in the solid plate, after neglecting 

longitudinal heat conduction, is given by: 
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The initial and boundary conditions to be satisfied by the velocity and temperature profiles within the fluid are as 

follows: 
 

t
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For the solid plate: 

 
sT ( y,x,0 ) T   ,   -e<y < 0∞=  (6) 
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with the heat balance at the solid-fluid interface (y = 0): 
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The following temperature differences are defined for convenience: 

 
θ  = (T - T∞ ), θs = (Ts - T∞ ) and θp = (Tp - T∞ ). (9) 

 
where Tp is the temperature at the fluid-wall interface. The problem can be represented by the time dependent semi-

integral form of the energy equation, written in dimensionless form. In the fluid boundary layer we integrate the energy 
equation over y from y = 0 to y = δt: 

 

t t

f
0 0 y 0

 dy U   dy  a
t x

δ δ θθ θ
=

∂ ∂ ∂
+ = −

∂ ∂ ∂∫ ∫ y
 (10) 

 
The integral method can also be used for solving the unsteady conduction in the solid medium: 
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The solution methodology applied to Eq. (10) is based on the third and second order polynomial Karman-

Pohlhausen approximations for, respectively, velocity and temperature fields. The assumed velocity profile is given by: 
 

33 y 1 yU U      
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where  C x  , C 5
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∞

= =  

 
Substitution of the boundary conditions in the fluid temperature profile gives the form: 
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By applying the boundary conditions within the plate, the polynomial temperature distribution becomes: 
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Note that the above coefficients are also functions of the time variable, t. Substituting the profiles (12) and (13) 

into the integral energy equation, Eq. (10), yields the following partial differential equation: 
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Similarly, the substitution of Eq. (14) into (11) yields the following differential equation for the unknown interface 
temperature θp (x,t) and thermal boundary layer thickness, δt : 
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The solution of Eq. (16) above may be written integro-differential form as follows: 
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Thus, the proposed physical problem has been reduced to the coupled one-dimensional partial differential 

equations, Eqs. (15) and (16), with two unknown variables δt and θp. Note that the boundary layer thickness is in fact a 

function of time, t, as well. 

 

For convenience we now substitute p

t
G θ

δ=  given by Eq. (17) into Eq. (15). We obtain the final form of the 

energy equation (15), whose solution gives the interfacial temperature distribution (x,t) in terms of a single 

dependent variable. After this substitution the resulting equation is then given as: 
pθ
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This equation in terms of the unknown surface temperature is solved by a finite-difference method with an explicit 
numerical scheme, which leads to a 6th-order polynomial form (see Eq. 20 below). The knowledge of (x,t) from 
numerical solution of the above-mentioned equation, permits to deduce the convective exchange coefficient by making 
use of the heat flux distribution φf(x,t) at the interface: 

pθ
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θ θ
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3. Numerical computation and results 
 

In this paper we will focus on the illustrative example that is summarized as: the fluid used is air, initially at the 
ambient temperature. The free stream velocity is taken as U∞ = 1 m/s and the applied heat flux is φo = 100 W/m2. The 
thickness of the plate is 7 mm and its thermal diffusivity is 1.67 10-4 m2/s. 

Eq. (18) was solved by use of the finite difference method with an explicit upwind numerical scheme. The 
integration time step was kept constant and equal to ∆ t = 0.005 s, while the space step varied from ∆ x = 2.10-4 m near 
the plate leading edge, to ∆ x = 10-3 m beyond the abscissa x = 1 cm. 
 

Using the subscript j to denote time, and subscript i to represent the x location, the numerical representation used 
for the discretized form of Eq. (18) is given by: 
 

6 5 4 3 2 1 0

6 5 4 3 2

p p p p p p
      A A A A A A Aθ θ θ θ θ θ+ + + + + + = 0  (20) 

 
A computer Borland Turbo Pascal program was written to solve Eq. (18) for each mesh node (i+1, j+1), by means 

of an iterative scanning process applied to the closed interval where positive roots exist. Such intervals are identified 
with the aid of the Sturm rule and after bracketing the root of the equation we use a hybrid algorithm with the Newton-
Raphson and Bisection schemes. The root returned is then further refined until its accuracy is known to within ± 10-6. 
 

Figure 2 shows the interface temperature distribution as a function of time and distance. It can be observed, when 
time increases, that the space distributions of the interfacial temperature for different times are monotonously 
increasing. For large time values the temperature profile tends to the steady state solution. 
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Figure 2 – Solid/fluid interfacial temperature evolutions. 
 
The transient evolutions of the local convective heat transfer coefficient deduced from Eq. (19) are shown in Figure 

3. During the first stages of the process, it can be seen that the heat transfer to the fluid is entirely governed by the 
conduction phenomenon in the solid. For small values of time the solid plate absorbs more energy than the fluid, 
therefore the heat flux evolution at the interface is lower than the interfacial temperature one. Consequently, the 
convective heat transfer curves decrease rapidly at small values of time. The very short transitional stages observed here 
are due mainly to the large temperature variations within the thermal boundary layer, which just starts to be formed. At 
large times the heat transfer coefficient tends to its steady state value. 
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Figure 3 – Transient convective heat transfer coefficient, at different locations x. 

 
 
In order to see the transient evolutions inside the wall and the fluid boundary layer, we sketched on Figures 4 and 5 

the temporal temperature evolutions inside the two media for the fixed time values 0.035 and 0.35 s, and for some 
selected x positions. These evolutions confirm that with the inclusion of the wall thickness into the modeling, the 
convection heat transfer phenomenon is delayed and the time required for establishment of the steady-state is a longer 
one, for in this case, the wall absorbs a portion of the incident energy. These profiles in terms of the y coordinate, 
plotted for five different abscissa x, were assumed parabolic, and as the time variable increases they gradually take in 
the solid a linear form characteristic of the final steady regime. 

 
Figures 6 and 7 show the spatial distribution of the heat flux deduced from the temperature derivatives at the 

interface, for different times. For any given position along the interface we always have the algebraic sum of the two 
heat flux distributions equal to the impulsive uniform heat flux φ0, as required by the interface thermal balance. 
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Figure 4 – The solid and the fluid temperature evolutions inside the solid and the fluid for the fixed time, t=0.035 s. 
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Figure 5 – The solid and the fluid temperature evolutions for the fixed time value 0.35 s. 
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Figure 6 – Spatial heat flux distributions (at the fluid interface). 
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Figure 7 – Spatial heat flux distributions (at the plate interface). 
 
4. Conclusion 
 

An analytical-numerical approach has been employed in order to characterize the time and space evolution of the 
convective exchanges in the laminar boundary layer of a finite flat plate suddenly heated on the upper surface. The 
analysis has been developed for a finite thickness plate with air cooling. The transient evolutions of the temperatures 
inside the plate and within the fluid are presented and critically discussed. This analysis shows the effect and the 
difficulties of the thermal coupling induced by the presence of a plane wall with non-negligible thickness. 
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