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Abstract. Usually, to calculate a temperature distribution in a gas restricted by a solid surface the Fourier
equation is applied with the temperature continuity condition on the gas-surface boundary. It is correct when
the Knudsen number, de�ned as the ratio between the molecular mean free path and a characteristic scale of the
gas �ow, is so small that the gas rarefaction can be neglected. If the Knudsen number is not small then the
Boltzmann equation must be applied. A numerical solution of this equation requires much computational e�orts.
However, for a moderately small Knudsen number, the Fourier equation can be still applied but the gas rarefaction
must be taken into account via the temperature jump boundary condition. This condition is introduced via the
temperature jump coe�cient. The knowledge of this coe�cient is very important in many engineering �elds such
as aerothermodynamics of space vehicles, vacuum systems, mechanical and electrical microsystems (MEMS) and
in many other situations where the Knudsen number is not so small to neglect the gas rarefaction. The aim of
the present work is to calculate the temperature jump coe�cient for gaseous mixtures because in practice one deals
with mixtures more often than a single gas. A study of the in�uence of the intermolecular interaction potential
and chemical composition upon this coe�cient is also presented. This work also show us how to avoid a numerical
solving of the kinetic Boltzmann equation for a speci�c problem and, at the same time, take into account a gas
rarefaction.
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1. Introduction

Usually, to calculate the temperature distribution in a gas restricted by a solid surface the Fourier equation
is applied with the temperature continuity condition on the gas-surface boundary, i.e. Tg = Tw, where Tg is
the temperature of the gas near the surface and Tw is the surface temperature. It is correct when the Knudsen
number Kn, de�ned as the ratio between the molecular mean free path and a characteristic scale of the gas
�ow, is so small, say Kn < 0.01, that the gas rarefaction can be neglected. If the Knudsen number is in the
range 0.01 ≤ Kn ≤ 0.1 the gas rarefaction can not be neglected and the Fourier equation with the temperature
continuity condition can not be applied because there is a temperature jump on the gas-surface boundary. In
this range of the Knudsen number the Boltzmann equation must be solved but its solution is very di�cult and
requires much computational e�orts. To avoid the solution of the Boltzmann equation and to consider the gas
rarefaction we can solve que Fourier equation with the temperature jump boundary condition, which reads

Tg = Tw + ζT
µ

P

(
2kTw

m

)1/2
∂T

∂x′

∣∣∣∣
x′=0

, (1)

where x′ is the coordinate normal to the surface directed towards the gas with the origin at the surface, µ is
the stress viscosity of the mixture, P is the local pressure of the mixture, m is the mean molecular mass of the
mixture and k is the Boltzmann constant. The dimensionless quantity ζT is the temperature jump coe�cient,
which must be calculated applying the Boltzmann equation. When ζT is known the Fourier equation with the
temperature jump condition (1) can be solved.

A knowledge of the temperature jump coe�cient is very important in many engineering �elds such as
aerothermodynamics of space vehicles, vaccum systems, mechanical and electrical microsystems (MEMS) and
in many other situations where the gas rarefaction can not be neglected.

Nowadays there are many works devoted to numerical calculation of the temperature jump coe�cient for a
single gas, see e.g. Refs. (Loyalka, 1989; Sone et al., 1989; Barichello and Siewert, 2000; Siewert, 2003) in the
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open literature. In practice one deals with gaseous mixtures more often than with a single gas and there are
very few work about this topic, see e.g. Refs. (Loyalka, 1974; Onishi, 1997).

The aim of the present work is to calculate the temperature jump coe�cient ζT as a function of the molar
concentration for some mixtures of the noble gases such as Helium (He), Neon (Ne), Argon (Ar) and Xenon
(Xe). The calculations are based on the discrete velocity method (Sharipov and Subbotin, 1993) applied to
the McCormack model equation (McCormack, 1973). A study fo the in�uence of the intermolecular interaction
potential and chemical composition upon this coe�cient is presented.

2. Methodology

To calculate the temperature jump coe�cient we consider a binary gaseous mixture occupying a semi-in�nite
space x′ ≥ 0 over an in�nite solid surface �xed at x′ = 0 and having a temperature Tw = T0. The mixture has
a small temperature gradient ξT normal to the surface, which is constant far from the surface, i.e.,

T (x′) = T0

[
1 +

(
ζT +

x′

`0

)
ξT

]
, at x′ →∞, (2)

where

`0 =
µv0

P0
, v0 =

(
2kT0

m

)1/2

, (3)

is the mean free path. The quantity v0 is a characteristic molecular velocity and

m = C0m1 + (1− C0)m2 (4)

is the mean molecular mass of the mixture. The quantity mα (α = 1, 2) is the molecular mass of specie α and
C0 is the equilibrium concentration de�ned as

C0 =
n01

n01 + n02
, (5)

where n0α is the equilibrium number density of specie α.
The concentration of the mixture is not constant and we have to take into account a concentration gradient

ξC established due to the temperature gradient. So, the asymptotic behavior of the concentration has the form

lim
x′→∞

dC

dx′
=

C0

`0
ξC = const. (6)

The concentration gradient is established so as the thermal di�usion is compensated by the ordinary di�usion.
As a result, both species of the mixture are at rest. Assuming the ordinary di�usion to be equal to the thermal
di�usion the relation between the concentration gradient ξC and the temperature gradient ξT is the following

ξC = −(1− C0)aTξT, (7)

where aT is the thermal di�usion factor.
When the temperature and concentration gradients are established the normal heat �ux can be calculated

as

qx = −κ
T0

`0
ξT, (8)

where κ is the thermal conductivity coe�cient of the mixture which includes both the heat �ux through a
mixture with an uniform concentration and the heat �ux due to a concentration gradient. Because of the heat
conservation law the heat �ux qx does not vary in the whole space.

To calculate the temperature jump coe�cient ζT we solved the McCormakc kinetic equation (McCormack,
1973). The �rst step to solve this equation consist of linearize the distribution function. Since we assumed the
temperature gradient ξT to be small (ξT ¿ 1), the distribution function of each species can be linearized as

fα(r, c) = fM
α (x, c)[1 + hα(x, c)ξT], hα ¿ 1, (9)

where fM
α is the local Maxwellian corresponding to the state of the mixture at the in�nity, i.e.

fM
α (x, c) = nα∞(x)

[
mα

2πkT∞(x)

]3/2

exp
[
− c2

α

T∞(x)/T0

]
, (10)
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T∞(x) = T0[1 + xξT], (11)
nα∞ = nα0[1− xξT(1 + ηα)], (12)
η1 = (1− C0)aT, η2 = −C0aT. (13)

Note that the following dimensionless quantities were introduced:

x =
x′

`0
, cα =

( mα

2kT

)1/2

vα, (14)

where vα is the molecular velocity of species α.
The perturbation function hα obey the two coupled Boltzmann equations which for the problem in question

read

cαx
∂hα

∂x
= `0

(
mα

2kT0

)1/2 2∑

β=1

L̂αβhα − cαx

(
c2
α −

5
2
− ηα

)
, α = 1, 2. (15)

L̂αβhα is the linearized collision operator between species α and β. Here we used the McCormack model
(McCormack, 1973) to write this operator as

L̂αβhα = −γαβhα + γαβνα −
(mα

m

)1/2

ν
(2)
αβ

(
qα − mα

mβ
qβ

)
cαx +

[
γαβτα − 2

mαβ

mβ
(τα − τβ)ν(1)

αβ

] (
c2
α −

3
2

)

+2[(γαβ − ν
(3)
αβ )Παxx + ν

(4)
αβ Πβxx]

[
c2
αx −

1
2
(c2

αy + c2
αz)

]
+

8
10

(mα

m

)1/2
[
(γαβ − ν

(5)
αβ )qα + ν

(6)
αβ

×
(

mβ

mα

)1/2

qβ

]
cαx

(
c2
α −

5
2

)
, (16)

where mαβ is the reduced mass of the mixture, the dimensionless moments of the distribution function are given
as

να(x) =
1

π3/2

∫
exp (−c2

α)hα(x, cα) dcα, (17)

τα(x) =
1

π3/2

∫
exp (−c2

α)hα(x, cα)
(

2
3
c2
α − 1

)
dcα, (18)

Παxx(x) =
1

π3/2

∫
exp (−c2

α)hα(x, cα)
(

c2
αx −

1
3
c2
α

)
dcα, (19)

qα(x) =
1

π3/2

(
m

mα

)1/2 ∫
exp (−c2

α)hα(x, cα)cαxc2
α dcα. (20)

The quantities ν
(k)
αβ are given in Ref. (Sharipov and Kalempa, 2002) and the parameters γαβ are proportional

to the collision frequency between species α and β and appear only in the combinations

γ1 = γ11 + γ12, γ2 = γ21 + γ22. (21)

We de�ned γ1 and γ2 as:

γα =
P0α

µα
, (22)

where P0α is the equilibrium partial pressure and µα is the partial viscosity given in Ref. (Sharipov and
Kalempa, 2002).

With the help of Eq. (8) we may reduce the number of unknown moments in the collision operator (16)
using the following relation

C0q1(x) + (1− C0)q2(x) = −mκ

2kµ
. (23)
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To solve the system of kinetic equations (15) we assumed the impermeability condition on the surface with
the di�use scattering of gaseous particles, i.e.

hα(0, cα) =
2
π

∫

c′αx<0

c′αxhα(0, c′αx) exp (−c′2α ) dc′α, cαx ≥ 0, (24)

and used the discrete velocity method (Sharipov and Subbotin, 1993). Once the equation is solved and the
temperature pro�le is known then the temperature jump coe�cient ζT is calculated as

ζT = lim
x→∞

τ(x), (25)

where

τ(x) = C0τ1 + (1− C0)τ2. (26)

The temperature jump coe�cient was calculated with the relative numerical error less than 0.1%. The
numerical accuracy was estimated by comparing the results for di�erent grid parameters.

3. Numerical results and discussion

The numericall calculation were carried out for the mixtures Ne-Ar, He-Ar and He-Xe. These mixtures have
quite di�erent atomic mass ratios and allow us to study the dependence of the temperature jump coe�cient on
this parameter.

The in�uence of the intermolecular interaction potential upon the temperature jump coe�cient also was
studied using two intermolecular interactions potentials: the rigid spheres model and a realistic potential. To
calculate the molecular diameter dα of every species α the experimental data on the viscosities µα of the single
gases He, Ne, Ar and Xe at the temperature T = 300K given in Ref. (Kestin et al., 1984) were used. For
the realistic potential the Omega integrals Ω(ij)

αβ that appear in the expressions for the quantities ν
(k)
αβ were

calculated using the empirical expressions given in Ref. (Kestin et al., 1984) assuming the temperature equal
to 300K. These expressions reproduce all transport coe�cients of the mixtures within the experimental error.

The Figs. (1)-(3) show the results obtained in the present work for the temperature jump coe�cient as a
function of the concentration C0 for both interaction potentials.

1.93

1.94

1.95

1.96

1.97

1.98

1.99

2

2.01

0 0.2 0.4 0.6 0.8 1

ζT

C0

Rigid spheres

cc
c

c c c c c c c c c cc

c
Realistic potential

++

+

+
+

+ +
+

+

+

+
+

++

+

Figure 1: Mixture of Ne-Ar: temperature jump coe�cient vs concentration

From these data we may conclude the following:
• At the limits corresponding to a single gas (C0 = 0 and C0 = 1) the temperature jump coe�cient is

exactly the same as that obtained from the Shakov model in Ref. (Sharipov, 2003). This is a natural
result because the McCormack model is reduced to the Shakov model in the case of a single gas.
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• This coe�cient is very sensitive to the intermolecular interaction potential. The di�erence between ζT
for the rigid sphere and that for the realistic potential reaches 3%, 12% and 26% for the mixtures Ne-Ar,
He-Ar and He-Xe, respectively, i.e. the di�erence increases by increasing the mass ratio m2/m1. For the
rigid spheres ζT has a non-monotone dependence on the concentration. It has a minimum near C0 = 0.5
and a maximum near C0 = 0.99. For the realistic potential ζT is always larger than that of a single gas.
Thus, the intermolecular interaction potential changes qualitatively the dependence of the temperature
jump coe�cient on the mixture concentration.

• As the temperature jump coe�cient is very sensitive to the interaction potential so what results are more
reliable? Since the diameters of each species for the rigid spheres were calculated from experimental data
on the viscosity of the single gases they cannot provide a good agreement with experimental data on the
other transport coe�cients. At the same time, the realistic potential provides experimental values of all
transport coe�cients. Naturally, the results based on the realistic potential are more reliable than those
based on the rigid spheres.

• Small quantity of the heavy component in a mixture changes signi�cantly the value of this coe�cient.
For instance, the mixture He-Xe with the concentration C0 = 0.99 contains just 1% of Xe, while the
temperature jump coe�cient of this mixture di�ers from that for a single gas for 7%.
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Figure 2: Mixture of He-Ar: temperature jump coe�cient vs concentration
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Figure 3: Mixture of He-Xe: temperature jump coe�cient vs concentration

• The value of the temperature jump coe�cient increases by increasing the mass ratio m2/m1. So, the
mixture He-Xe has the larger values for the temperature jump coe�cient.

4. Conclusion

The temperature jump coe�cient was calculated as a function of the molar concentration for three mixtures
of the noble gases: Ne-Ar, He-Ar and He-Xe. The calculations were carried out for two intermolecular interaction
potentials: rigid spheres and realistic potential. It was found that the temperature jump coe�cient is strongly
sensitive to the interaction potential. So, reliable results on this coe�cient can be obtained just on the basis
of the realistic potential, while an application of the rigid spheres model can give a qualitatively di�erent
dependence of this coe�cient on the mixture concentration.
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