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Abstract. Flow in a hydrocyclone cannot be suitably described using isotropic turbulence models since streamline curvature and
rotation of fluid particlesimpose anisotropy to turbulence.

Main fluid dynamic phenomena in hydrocyclone flow are determined by inertia forces due to radial equilibrium between
pressure and centrifugal forces and can be essentially approached through an ideal flow modeling concept. Further
improvement in modeling this flow implies consideration of viscosity and turbulence. Models using the concept of turbulent
viscosity tend to be too diffusive preventing the capture of the so called cyclonic effect (increasing of rotation velocity for smaller
distances from the axis). This feature can be captured using more robust models known as Complete Reynolds Stress Moddls
which require seven additional differential equationsto solve the problem.

This paper presents a modified k-& turbulence model that can be adjusted to reproduce the performance of the RSM in
describing velocity profiles in the hydrocyclone operating without an air core. Using only two additional equations this model
requires roughly onethird of the computational resources required by RSM.

Keywords. Turbulence, hydrocyclonejodified k-&turbulence model
1. Introduction

The problem of a turbulent jet impinging orthogonally onto a sarfexs been dealt with by the present authors in
two recent publications (Guerra e Silva Freire (2003, 2004)). Tinaiskcations analyzed both the velocity and the
temperature fields with an emphasis on a description of the inner layers aithatfthe time, both works specifically
analyzed the existence of the so called universal law of theinvaiew of its relevance for the calculation of the wall
shear stress and of the wall heat transfer. For walljets;annot positively say that the log-law is a well esthbt
concept. In fact, several authors (Patel (1962), Tailland and Math867), Ozarapoglu (1973), Irwin (1973)) have
reported a large range for values for the log-law constahis. Certainly raises some important questions as to the
validity on the use of the log-law for the estimation of surfacddricind the heat transfer coefficient.

Almost at the same time however, other researchers (Ozdeahiwhitelaw (1992)) showed that for an oblique
impinging jet the law of the wall could be observed for both the wglacid the temperature fields. More than that,
these authors proposed a functional behavior for the log-law prantieat resorted to a scaling procedure based on
the stream-wise evolution of the flow by the maximum jet vefot¢n fact, Narasimha et al. (1973) were the first to
acknowledge that the traditional use of the nozzle diamete¢heaseference scaling for wall jet flows was not
appropriate. They proposed a scaling length that would take into consideratitmtbediution.

The purpose of the present work is to carry out further figg®ns on scaling laws governing the motion of a
orthogonal jet impinging onto a surface. Here, for the firsetime will present data for the longitudinal turbulent
intensities. The law of the wall, for both the velocity and theperature fields, will also be investigated under the light
of some new data.

Thus, at this point, it important to make it clear to the retdgrother authors have specifically studied the role of
the scaling laws in wall jet flows. That is the casehef work of Wygnanski et al. (1992) where the relevance of the
wall to the evolution of the large coherent structures irfltive was studied. Here, in the impinging jet, the problem is
further complicated by a deflection of the streamlines and by the presens@aghation point.

A turbulent jet impinging orthogonally onto a surface is a geometrical arrangeoremonly used in industry to
promote high rates of heat exchange. The studies have concentrated onstigatiome of different features of the
phenomenon because of the several important aspects associated to the praserstudies normally solve for the
velocity and the temperature fields in regions around but not at tastagpoint.

In fact, a question that has been the object of many investigations ihthadb®f the heat transfer coefficient at
the stagnation point. Cases where the Reynolds number is low enough so that taafbe rendered laminar,
asymptotic methods can be used to find analytical solutions in all flgienseexcept near the stagnation point, which
presents a strong singularity. Consequently, even for this simple flow conditicuation of the heat transfer
coefficient at the stagnation point is very difficult. The resulhd & severe lack of information on the flow behaviour
in the stagnation region exists. The reason for this is clear, due todhessales that define this region, the placement
of dedicated instrumentation is always very difficult.
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The flow structure of an impinging jet produced by a nozzle cahidtdy complex due to the ambient fluid
entrainment, flow separation, interaction of the flow with thgiimgement or confining walls, and generation of
vortices. In this work, we will provide experimental data on turiutemi-confined and unconfined impinging jets..
Once understood the flow structure, one can foresee how this dgnaff@cts the heat transfer process. Results are
presented for the turbulent characteristics of a round jet. Thk mwcludes measurements for the radial mean and
instantaneous velocity profiles and pressure distributions. Theityefield was measured through a hot-wire system.

In regard to the behavior of the heat transfer coeffica@nthe stagnation point (Lee and Lee (1999,2000),
Kendoush (1998), Nishino et al. (1996)). If the Reynolds number is low enouttatsthe flow can be rendered
laminar, then asymptotic methods can be used to find analyticgiossl in all flow regions but near the stagnation
point, where a strong singularity is present. Thus, even fosithigle flow condition, calculation of the heat transfer
coefficient at the stagnation point is very difficult to achieve.

For turbulent flows, the correct description of the flow fieldrisatly complicated by the necessary specification of
turbulence models that can capture all relevant charaiteraft the problem. Frequently, turbulence models of the
eddy viscosity type are used together with some heat tramsfdogy consideration for the description of the
temperature field (see, e.g., Behnia et al. (1998, 1999), Gibson e H&9&))(This leads to a serious difficulty at the
stagnation point where the Reynolds analogy between eddy-diffuaiityeddy-viscosity breaks down. Indeed, when
the equations of motion are integrated to the wall and the hypothesi®gtant turbulent Prandtl number is used, the
calculated heat transfer rates at the stagnation point are eth$erexceed by much the actual values.

Despite the critics of many researchers, the use of fumaditions to by-pass the difficulties involved with the
modeling of low Reynolds number turbulence is still an attractigans to solve problems in a simple way. Cruz and
Silva Freire (1998) have proposed an alternative approach wherevall functions are used to describe the velocity
and temperature fields in the wall logarithmic region. Asdtlagnation point is approached, these functions reduce to
power-law solutions recovering Stratford's solution. The paper of @i Silva Freire resorted to Kaplun limits for an
asymptotic representation of the velocity and temperateldsfiResults were presented for the asymptotic structure of
the flow and for the skin-friction coefficient and Stanton number at &tie w
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Navier-Stokes equations are as follows:
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taking the time average of these equations we obtain the so called Rematiens:

ou, _

—=0 1-4
ox (1-4)

U, 10P 0 ou, —
j =-— + \Y —uu; | +F (1-5)
ox, pox; 0x;| O0X,

J

where P is the averaged pressure field and Fi is theggetzody force vector field. The capital letters and the
overbar on the correlation of fluctuating velocities mean that these tipsmatee time averaged values.

. . Uy .
Since these equations are only four and there are ten unknowws (lf-l’ 1) — remembering that the Reynolds

uu, . . L .
tensor ' ! is symmetrical — it is necessary to model the six elements of the Beyrdurbulent tensor.
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Trying to get a transport equation for tHéuj through algebraic manipulations and averaging process results in
other unknown terms which have higher order correlations of fluctuegiiogities. These new unknowns also require
additional equations that will again introduce new higher orderlatimes terms in a endless process that is known as
the closure problem of Reynolds equations for turbulent flow. To hrpkidis process and get a closed system of
equations for turbulent flow it is necessary to model the unknown terms.

The goal of the turbulence models is to provide additional equations which togethequetlons (1-4) and (1-5)
form a closed system of equations for turbulent flow modelling.

1.2. Turbulent Viscosity Concept

The simplest approach to model turbulent stresses that dpperation (1-5) was suggested by Boussinesq who,
for some specific kinds of flow, postulate a relationship between the Reynoldestaes the local deformation rate of
the mean flow similar to that observed between the stressrt@nd the deformation rate in a laminar flow of a
Newtonian fluid. The expression below, proposed by Komolgorov, is a generalisatierBifussinesq hypothesis:

— 2 ou, 0V,
R e e

—uu; =——-ko; +v;
3 ox;  0x

it (1-6)

:l U12 +u22 +U32

where 2 is the kinetic energy of the turbulence.

The parametevT is called turbulent viscosity and is a property of the flotdfighereas the molecular viscosity is
a fluid property.

The expression (1-6) implies that the main axis of theutarth tensor have the same direction of the main axis of
the mean flow deformation tensor which can only be a reasonable proposalibtiience is isotropic.

In the flow in hydrocyclones the spiralled stream lines (highiywed) imply a high degree of anisotropy. In such
flow conditions, it is expected that the deformation rate of thennflew has different values for azimuthal, radial and
axial directions. The same can be said on the turbulence fiocmighemselves. Bradshaw [1973] has shown that for
shear flow on a concave surface, in the direction of the main flow, if it ishkepatbulent viscosity concept, the model
must be of the form:

— (ou oV

where the value of the factaris around 10. Hoffmann at al. [1985] and Launder at al. [1977] analydmdent
flow on concave surfaces and realised great differences comparindgltmtios plane surfaces and even to the flow on
convex surfaces. On concave surfaces, the turbulence alydimeodified by the curvature of the streamlines and
indirectly by the appearance longitudinal vortices on the surface (Gattéres) (see Schlichting [1968]).

Despite these limitations flow models based on the turbuleobsity concept have been largely employed, with
some adaptations tailored for the specific application, even in chsemplex flows, with reasonable success.

13 Two equation k- turbulence model and its problems in describing hydrocyclonBow

This model is one of the most used in engineering applicationt asels two transport differential equations one
o k= % U U, N o
for the turbulent kinetic energy and another one for the rate of turbulent kinetic energy dissipation
The exact expression for the turbulent kinetic energy can be dbtaiaging from instantaneous momentum
equations written in terms of decomposed velocity (equation 1-1)natighlying each component of these equations

by its corresponding velocity fluctuatiory(). The equations obtained should be added and the resultanbequati
should be averaged to give the total kinetic energy expressiom this expression it should be subtracted the mean
flow kinetic energy. This final expression represents the kinetic enetbg tiirbulence fluctuations.
The turbulent kinetic energy equation can be written as follows:
ok
E"‘Ck:Dk +Pk +€ (1-8)

Where C, D and P stand for turbulent energy convection, diffusidprduction terms, respectively, and the
dissipation of the turbulent energy. The expressions for these tezisiscayn below:
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The terms on the left member of equation (1-8) represemb¢hévariation and the convection (by the mean flow)
of the turbulent energy. The first part of the diffusion téom the right member of equation (1-10)) represents the
diffusion of the turbulent energy due to the turbulent veloftitgtuations and the second part is the diffusion by
molecular transport, and it is important only in regions with tavbulence intensity. The production term (1-11)
represents the transference of energy from the mean flaletdurbulence. Finally the dissipation term (1-12)
represents the viscous dissipation of turbulent energy by the smalles.eddie

In order to close the system of equations for the calculus diithalent flow it is easy to realise that only the
terms on the left member of equation (1-8) do not need modelling. Trasiat, production and dissipation terms
need some kind of modelling, since in the form shown on equations (1-11) éhd (1-12) they would introduce
other unknowns into the system of equations.

Relating to the diffusion term, it is necessary to model onlyfitse part (turbulent diffusion). This is done
considering that the correlation of the turbulent quantities caadresented by the product of a diffusivity coefficient
and the gradient of turbulent energy:

. u,u. : :
The production term also presents a problem because of the tRplmolds stress tensot ! . This term is
modelled by the Kolmogorov equation (1-6), with turbulent viscosity coefficrmtelled by:

C, . . .
Where # is a empirically determined parameter
Considering the above models, the equation of transport of turbulent lénetigy takes the form:

- au, Tou.
ok, oK :i{(\,J,VT):_k}V{aU. . maui_s (1-13)
X

ot lox, ox J. ox, ox, | ox,

Modelling of dissipation terma requires somewhat arbitrary assumption of a turbulent leegth.s This suggests
that a more general approach for the model would be obtained if we canagdamew variable subject to the transport
phenomena of the flow.

The transport equation for the dissipatibiean be obtained through the following steps: subtracting tlzen me
momentum equation (1-5) from the total (or non-averaged) momentumioeq(kt3). The resultant equation is
differentiated with respect £ and multiplied byv(aui / axj)
detailed deduction see for instance Sloan at al. [1986]).

. The obtained equation is then time-averaged. (For
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The final expression for the dissipation equation takes the form:

% 4c =D, +P, +d, (1-14)
ot
Where:
oe
C.=U, — (1-15)
0x;
. du, ou
D, =- 0 vu. ou; oy, +2—VaIO L -V oe (1-16)
ox;| 'ox, ox, p ox ox;  0x,

_ - ou, u,ou; 92U, - du. ou,
Pk:—ZVaU' ou, J+6uk ou, _ oy iU 0°U, _2V6u, du, L qa7)
ox; | 0x,, 0X, 0% OX, 0X,, 0X;0X, ox; 0x, ox,

s N2
2
d, =2y 2 Un_ (1-18)
0x,0X,,

The convective term and the last term in the bracketseadiffusion term @ are the only ones which do not need
to be modelled. All the other terms, involving averages aktations of derivatives of fluctuating quantities, have to
be modelled in order to yield, (together with the mean velocitytemsaand the turbulent kinetic energy equation), a
closed system.

Taking into account the necessity of modelling the terms eabuentioned, the transport equation for the
dissipatiore takes the form:

2
§+Ui£:i V_T+V ﬁ +081£Pk_cg28_ (1-19)
ot ox; o0x;|\o, 0x, k k

where Pk is the production term for the kinetic energy given by equation (1-111)«3@&163{!11:1;0rui Ui is given again
by equation (1-6).

The first term on the right member of equation (1-19) is the usual modetlfifusion of a quantity, making use of
the gradient of the quantity being diffused and of a diffusioefficient. The other two terms, production and
dissipation terms, deserve some comments.

Let's take the production term. It seems reasonable to suppais@rtdduction of kinetic energy should be
balanced by the production of dissipation in order to avoid an unlimitad of the turbulent kinetic energy. Making
use a dimensional analysis it is easy to observe that the rate do productibulehtwenergy (per unit of mass of fluid)
has the units of L2T-3 whereas the rate of production of dissip@liem per unit of mass) has the units of L2T-4. The

natural time scale to relate both quantities is givenbe k/ &

P, DEPk

. So it follows:

The other term, which could be understood as the destruction gfadiesi must have a form that annihilates
dissipation, i. e. become infinitely large, when the energy of thellence approaches zero, in order to avoid negative
values of turbulent kinetic energy. Another desirable featurbeofarm of destruction of dissipation is that it must
increase as the dissipation itself increases. Dimensioabisesimilar to the one described in the previous paragraph
leads to:

d, 0t
k

The two-equation model for high values of the Reynolds number can be sumraarietows:
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k2
V; =C,— (1-22)
€

Thek-¢ model as above described has five empirical constants. The aetiéomif these constants, in the
standard model (Launder and Spalding [1974]), was based on experiments peréorsoakfkinds of flow

conditions, hindering the expected generality of the model.

The values of the empirical constants for the standard model are:

c, =009, ¢, =144, ¢, =192, 0, =1 and O, =13

This model can be successfully applied to regions of the flow with high values BEynolds number but it
cannot be applied, in its standard form, near walls, where viscous effeaisebdominant and some kind of law of

wall approach has to be used.

Despite its good performance for many engineering applicatierise model still has some limitations when
applied to hydrocyclone flow description, due to the accentuatectouevof the stream lines and the presence of
strong body forces (due to rotation).

Fluid particles’ path within a hydrocyclone shows a spiral favith a very small radius of curvature.
Furthermore, the fluid particles are subject to centrifugall@@ten which is a function of the azimuthal component of
the velocity. The azimuthal velocity has also a turbulerdtdlation which generates a fluctuation on the centrifugal
acceleration. This latter fluctuation affects the transport otitenb quantities.

Let’s discuss further about the limitations of tk& model aiming its utilisation in hydrocyclone’s flow
simulation.

Starting with a general approach, it should be emphasised thamtidel, as still based on the turbulent
viscosity concept (Boussinesq hypothesis) lacks capacityatonith the anisotropic flow conditions which takes place
within a hydrocyclone, as was already mentioned.

Bradshaw, in his comprehensive study on the effect of streamlin@ture on the turbulent flow [1973],
concluded that this curvature has a strong effect on the gzexdy which the Reynolds stresses are generated and
maintained and that empirically adjusted shear flow models are unlikedydio that effect.

This author even suggested that linear relations between ymolBe stress and the mean rate of strain, even
with an amplification factor for some direction of strain, agduation (1-7), are not reliable in the presence of large
curvatures of the streamlines. That suggestion is basea@ dactithat the curvature effects are attributed to clsainge
higher-order structure parameters of the flow and in conseqitestoeuld not be expected that the full effects on the
local Reynolds stresses appear as soon as the curvature is imposed.

Launder et al. [1977] proposed a modifled model with a correction on the equation based on a non-
dimensional parameter called Richardson number, which can berétéelmas the ratio between centrifugal force
(generated by streamline curvature) and inertia force. Foe aetrils see Launder, Priddin and Sharma [1977] and
Bradshaw [1969]. That correction gives better results in tbgepce of curvature, but for complex geometry of the
flow it is difficult to interpret suitably the Richardson number and the fdroowwection to be persued.

Let's examine closely the problem of a surface curvataeptoduces streamline curvatures. If we consider
the general Reynolds stress transport equation, the turbulesg ptoduction term (from mean flow deformation) can
be written as:
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P =- uu, —+uu, —
i 0X, 0X

Considering a bi-directional flow (shearing flow on a curved sejf@8radshaw [1973] concluded, as was
already mentioned, that even small curvatures in theylelds noticeable alterations on the turbulent stressesisin t
case, the production term above assumes the form:

p odvi 2V
w oy 0x

and

p_ O-2uv 2V

2

v 0Xx

Even if the surface curvature is very small, and generates a maiiodirg@dient of the normal component of
the velocity very small compared to the normal gradient of riteen component of the velocity, let's say:

0x oy , its influence on the turbulent stress production term might be strong.

ov

— _ i
Near the walll " is much greater tha¥ ? (see Schlichting [1968]) and it makes bigger the influenc@%f

on the production oMV . Furthermore, from the production term ‘(ng it is clear that for a positive value of the
ov

gradient ox , which occurs for a concave surface, there is an increase in the tusides’ .
oV

From the above considerations, it is verified that the influefc@X on UV is ten to fifteen times greater
ouU

than the influence 01ay . Of course, this different degree of influence cannot be gexdogtan expression like the
Boussinesq’s”:

14 Corrections aiming taking into account curvature of streamline ad rotation

Due to the complexity of turbulent flows, most of the technical literatnrirbulence focuses on simple shear
layers flows, i.e. flows with only one significant rate of strain. The preseihcurved streamlines originates extra rates
of strain that cannot be dealt with using the linear approach giw¢he Boussinesq relation — equation (1-6) —, as was
already above commented. It was mentioned, that even stralrates of strain, caused by mild streamline curvature,
cannot be treated by a theory based on a zero order tensor turbulent viscosity

Therefore, turbulence models based on turbulent viscosity congadph were developed aiming the study of
flows with only one significant rate of strain, are not opgigdi for the solution of flows with more complex strain
conditions.

It seems advantageous for engineering purposes, howevergtul eélke range of application of the simplest
turbulence differential models to include flow fields with cun&ceamlines. Therefore, many researchers have
worked on developing correction factors to be employed on models basadbalent viscosity concept. The
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performance of these adapted models in predicting the effestred#mline curvature and/or swirl on the turbulent
stresses vary from reasonably well to fairly poor; and the desiredaignef any of them has never been achieved.

Adaptation of the models based on the turbulent viscosity

Prandtl as far as in 1929 (see reference in Bradshaw [1978] [dr9%5]) has proposed a factor based on a
dimensionless curvature parameter for correcting the milength. Bradshaw [1969] has defined a curvature
Richardson number from a analogy with the buoyancy Richardson number which is noreatiaigresameter used by
some authors in a correction function on the dissipation rate equation i thedel, for some kinds of flows.

The deficiencies of the &-model are generally attributed to the lack of physical groundheofmodelled
dissipation €) equation, and in this equation the source terms are the ones which requires thasbaldetions.

The approach to correct theelnodel for the effects of curvature of the streamline or forffleets of swirl is
one of two main types:

correction of the source terms of theequation (most of proposals actuate specifically on the terhwhi

represents the destruction of dissipation) — usually modifying the deaﬁ%z in equation (1-21)

and corrections on the coeﬂ‘icie%t‘ for the calculus of turbulent viscosiK/T equation (1-22)

It is reasonable to expect that the correction factor direatthe eddy viscosity makes the effects of curvature
be instantaneously imposed on the flow, while the correction dppliethe equation for the rate of dissipation of
turbulent energy will impose the correction to all the effgresent in a transport equation and so they should be more
suitable for complex flows.

Correction for curvature of the streamlines

From the analogy between curvature and buoyancy (Bradshaw [18&9fefined the gradient Richardson
number for curvature (Bradshaw[1969]):

k22U, 9(R.U,)
g2 R?> O0R,

C

Ri; = (1-23)

where R. is the local radius of curvature of the streamline l<’51Jr‘~?dis the mean velocity along the streamline.

This parameter is used in a correction factor which multiples doefficientc81 in the destruction of

dissipation of the equation:
Thus, this term takes the form:

2
. &
“Destruction of dissipationZ C,, (1 —-C.Ri; )— (1-24)

WhereCC =02 (Launder, Priddin and Sharma[1977]).
Corrections for swirling flows

The proposal above described is recommended for flows with catresimlines without swirl. For the case
of strongly swirling flows with recirculation, however, correction agiglys more complex, as discussed below:

Stabilising effect of the swirl

An analogous to the curvature Richardson number proposed to repiteseswirl effect is proposed by
Launder at al. [1977] and takes the form:
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. KZW (oW W
ngS =1 (1-25)
€5 r \ or r
The correction is introduced again as a modification of the dissipatioroferequation, thus:
82
“Destruction of dissipation= C,, (1 —-Cc.Ri, )? (1-26)

c. =0.002
where ~s .

The above expression for the Richardson number (1-25) results gitisgowalue of this parameter in the case
of positive gradient of the angular momentum of the fluid par{jas is the case in solid body rotation) and, therefore,
according to (1-21) it results in a reduction of destructiomis$ipation, i.e., it results in a decrease in turbulent
viscosity.

To evaluate the numerical variation of coe1‘ficiecr'n2 due to the proposed correction let’s consider an inviscid
analytical model for hydrocyclone’s flow, whose velocity profiesthe axial plane (U for axial component and W for
azimuthal component) are given by the following equations (see articles byaBkbdémgham [1973-1983)):

U:EBr‘%(sa* —5—rj (1-27)
2 X

1 V(g’écr'%] y
W = where y(n,y)= |t"* exp(t)dt (1-28)

nondim = .
55 0

where r and x are the radial and axial coordinates respectively (cylindrardirtate system), and B, C antl
are parameters related to geometry and flow conditions of the hydrocyclone;

The expression for the gradient Richardson number for swirl, imith $cale based on the mean flow, is as
follows:

[l i

_ r \ or r (1-29)

Ri,. (%_Lrjj {r%{WTH

It should be noted that the denominator of above expression (1-29jirhassion of reciprocal of time

o

squared. In equation (1-30) this mean time scale was substituted bypthertutime scalelf/s).

Velocities profiles obtained from expression (1-27) and (1-28) for an aryitthdsen hydrocyclone geometry
and flow conditions are presented below. These velocitiesxpressed in meters/second in a profile distributed over
the non-dimensional radius (/Rc — where Rc is the nominal radius of the yoldn=):
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Figure 1-1 — Tangential Velocity
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Figure 1-2 — Axial Velocity

Figure 1-1 shows that the inlet swirl velocity is 3 m/s (riearwall — T :1) and it reaches a maximum of
about 3 times this value at about 25% of the radius from the Bsasn figure 1-2 it can be seen that the axial velocity
near the axis (reverse flow) tends to infinity. This flow condition can &eacterised as a strong swirl flow.

The distribution of the gradient Richardson number, given by ssijore (1-29), for these conditions is
represented by the curve below:

.388.15¢'00 ﬂ
320 / \
240

(Rigs(1)) /
160 / \

80 /
.0.000641452

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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;
Figure 1-3 — Gradient Richardson number distribuition
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It can be noted that Richardson number reaches very high valdbs,riegion of solid body rotation, i.e. for

0<sr=<025 These high values are due to the strong swirl of the flow. For even strontjéoews, the peek of the
curve tends to even higher values.

The variation in corrected coefficieﬁl62 (the term between parenthesis in equation 26 tl%‘ié$ is given by
the curve below (it should be noted tf%f? =192 for the original — with no correctionk-¢ model):

192 2 \ / ,
1.6
\ /
12—+
LPSc(r)y G2
08—
v
0.4
0.429473
0 01 02 03 04 05 06 07 08 09 1
0.0,

r 0.9,
Figure 1-4 — Distribution of correctedC,, coefficient

Figure 1-4 above shows that, for the hydrocyclone and flow conditmrsdered in the above example, the

< <
range of variation ofe2 coefficient is: 043¢, <192

, in the region of solid body rotation, it means that, in this
region, the destruction of dissipation is substantially reduodégs than ¥ of its normal value) due to the stabilisation

effect of the swirl on turbulence. In the rest of the flowaegincluding the approximate free vortex outer region, no
correction is obtained. This last result is due to the fatt in latter region, the numerator of equation (1-29) and
equation (1-30) become null.

Destabilising effect of the swirl

According to Sloan at al. [1986], Rodi claims that the behaviothreoflux Richardson number, instead of the
gradient Richardson number, is more consistent with the destabiiffisgfs of rotation in swirling jets and over
spinning surfaces.

An expression for the flux Richardson number in terms of mean quantities so@ementioned reference):

ZW(avv_Wj
r \or r

(1-30)
2 2
(c’?U] N ra[Wj
or orir

The correction proposed by Rodi (see reference in Sloan al246]) has the objective of increasing
turbulence (turbulent length scale or turbulent viscosity) withl.s In opposition to the previously seen correction
factor which acts on the destruction of dissipation term of pdiish equation, Rodi proposes the use of the flux

Richardson number in a correction factor applied on the productiorofatissipation equatioa. This corrected term
takes the form:

fs

, o €
Normal production of dissipation €., — P,
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. \€E
Corrected production of dissipationGz, (1+ O09Ri; )K P,

Where P, is the production of kinetic energy term (equations 1-11 and 1-6).

Analogously to what was done to the coefficiecrﬂ2 for stabilizing effect, let's also analyse the

consider the same conditions and velocity profiles used in theopeeanalysis — equations (1-27 and 1-28). We get
the following results:

-0.000470215 9 \
]

4 ]

J
L

numerical variation of corrected coefficiecnf1 due to the proposed correction for de-stabilizing effect. To do this let’s

14.5425
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
.0.03, r .0.9¢,
Figure 1-5 — Flux Richardson number distribution
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Figure 1-6 — Distribution of the correction onC,, coefficient

It can be observed from figure 1-5 that the flux Richardson numbemassnegative values all over the

domain of flow in the hydrocyclone. Figure 1-6 shows that the \mafllmeefficientcEl is very much affected by the
corrected form proposed by Rodi, particularly in the forced vaggion. In this region, this coefficient changes from
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the normal vaIueC‘E1 =144 (assumed by Launder and Spalding [1974]) to negative valuse oftotsg more than

ten times its recommended magnitude. It is difficult torprt the consequences of this abrupt and very large change
in the coefficient of the “production of dissipation” term in thissipation equation. Not only the magnitude but also
the sign inversion implies a strong locally non-equilibrium conditiorwden turbulent energy production and
dissipation in this region of the flow. Convergence of simulatadatienl by such a model can only be achieved if the
transport terms in both k ardequations were significant enough to compensate this local non-gquilibonposed by
the correction.

Another feature of the correction proposed by Rodi, contrarily to teeiqus one, is the extension of its

influence to the free vortex region. Figure 1-6 shows that fa-vioetex like profile { > 0-5), the corrected

coefficient is essentially constaﬁf1 B 0'144, i.e., about 10% of the normal value. This means a lower production of

dissipation and, in consequence, higher turbulence than resulted by the noedérenodel.
20 Proposal of a modified ke turbulence model for hydrocyclone flow simulation
2.1 Model description

Analyzing, from a physical stand point, which should be the influen¢beomean flow on turbulence in a
hydrocyclone it is easy to conclude that there is a preferetédtion for the vorticity that is the axial direction. We
can say that this feature poses a constraint to turbulence winichit “less chaotic”. It seems to be a reasonable
conclusion the consideration that turbulent eddies — at least thesbigges — tend to align in a preferential direction
turning turbulence in a hydrocyclone more ordered and so stronglyrapisptesulting in the appearance of what was
called by Lesieur [1997] as “coherent structures” and approathidignensional turbulence”, both statements usually
considered heretic in the context of a chaotic system.

The above described phenomenon implies that no isotropic turbulent nardeslitably describe
hydrocyclone flow.

Simulation of the flow in hydrocyclones using two-equation turbulence Isockn capture
reasonably well the shape of the axial and radial components of meatyvglofiles, but the azimuthal profile usually
tends to the rigid body rotation shape which means lower rotgseedsfor smaller distances from de axis instead of
the expected Rankine vortex shape profile which possesses the clsti@abtee-vortex shape in the out of core region.

We can analyze the reasons for this behavior of the above mentiodetsmCyclonic effect, i.e. the
increasing in the magnitude of azimuthal component of velooitwgrialler distances from the axis is a phenomenon
characteristic of fluids of low viscosity. This phenomenonsieatially determined by inertial forces as can be seem
when studying this flow considering an ideal (inviscid) approach wteshlts in a free-vortex behavior for the
azimuthal component and conducts to infinite rotational velocittheraxis. This non physical behavior is prevented
in the non ideal fluid due to the action of viscosity which attessutite velocity, imposing a rigid body pattern near the
axis in order to assure the boundary condition of zero azimuthal velocity on it.ngélepisame set of flow conditions
(boundary and initial conditions) but increasing molecular viscatsttyns more difficult to establish free-vortex like
profile. In fact the increasing of viscosity results in arréasing in the rigid body rotation region and even to the
suppression of free-vortex region, for some flow conditions.

From the above considerations we can conclude that the utilization of ameeboiedel based on the
concept of turbulent viscosity — which corresponds to an increake goéfficient of molecular viscosity — will mimic
the behavior of a much more viscous fluid than the actual oree(&irbulent viscosity is orders of magnitude greater
than molecular viscosity) and so preventing the formatiomeef-¥ortex pattern. In other words, these models are too
diffusive to correctly represent the physics of the actoal.f Although increased diffusivity is a general charactierist
of turbulent flows, for the present case of “less chaotic” terimé this feature is not be desirable. To avoid this
problem we can use a complete Reynolds Stress Model with the penaltyeatingrcomputational cost.

To keep the advantage of computational simplicity of thdwe-equation model and simultaneously
to avoid the behavior above described we propose to actuate on generation gegmsatibn taking into account some
physical features of hydrocyclone flow. Our proposal is to impasedpposite corrections actuating in different
regions of the flow domain. Of course this is a disturbing procesinee it will impose a sudden non equilibrium
condition in the turbulent variables but as far as we can do itl lsesthe physics of the present flow it may conduct to
better results than the ones obtained with the non modified model.

The correction proposed here is based on a proposal from Launder[£8738] using a non-
dimensional parameter called Richardson number for curvatureotattbm (Bradshaw [1969]), as discussed in the
previous section. This parameter can be regarded as expressing a retatem loentrifugal forces due to rotation and
inertia forces. The attempting of application of this kind of ctisador hydrocyclones has not been successful so far
since it is somewhat arbitrary to define what kind of comecis required. It is difficult, in such a complex flow, to
know if turbulence is to be amplified or attenuated. Our propdsalty shed some light on how to make these kinds
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of corrections based on the physics of the problem, consideritigutenty the equilibrium between radial pressure
gradient and centrifugal forces.

The shape of the azimuthal velocity profile in a hydrocyclsr@eéviously known from experimental
data and it corresponds, as abovementioned, to a core region obtdyt like profile and an outer region of “free
vortex” behavior. We also know that in the region with “rigid bodghavior when a fluid particle (turbulent “lump”
of fluid) is project radially outwards it finds a region of high@essure than the one that can be resisted by its
centrifugal force. This happens because in this outer reg@omavirage rotation velocity is higher and so it is the
centrifugal force which is in equilibrium with radial pressurlus, in the “rigid body” region, the mentioned fluid
particle will face a restoring force opposing its radial nme@et or we can say that turbulence is attenuated. For other
hand, in the region of “free vortex” behavior, same reasoning shovsmuthé non equilibrium between a projected
fluid particle velocity and its neighbors’ velocity will keep or even inadasbulence intensity.

The effects described above can be achieved through suital¥etions on source terms efequation in the
k-€ turbulence model, as was already mentioned. There it follows the proposdidatiodi

%+Uii:i V_T+V ﬁ +Pk —-€ (2_1)
ot ox; 0x;|\ 0, 0X; |
] 2

%-'-UiE:i V_T+V ﬁ +081£PK—C€2£_ (2_2)
ot ox; 0x;|\ o, 0X; | k k

k? ou, an U,

where Vi =Cc,— and P, =v, +

3 ox; 0x; || 0x,

with Cu = 009 and Car and Ce2 area parameters which are going to vary increasing or dewesource

terms so as to implement the desired corrections in following form:

If we call azimuthal velocity component (\)49 and r the axial coordinate (zero on the axis) we
propose:

oV,

520 then c,, =1.921-c Ri) (2-3)
.

If

and C, =144.

. . . _k?Vy [0V,  V,
Where Richardson’s number is given bRI = — | =t (2-4)
e”r{oar r
aVv .
If a—e <0 then ¢, =1.441+c,Ri) (2-5)
r
and c., =1.92.
Where Richardson’s number is given by:
. 2V V, V
Ri :k_z_e[a_e__ej (2-6)
e riar r

The first one of the above corrections acts only in theonsgivhere azimuthal velocity increases with radial
distance from the axis and it reduces the parameter whidsgemsible for the destruction of dissipation rate, thus
increasing dissipation and so reducing turbulence. This, as mentioned, is daaceawith the physics of the problem.
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The second correction has an opposite effect but actuatesinotifie regions where azimuthal velocity
component decreases for higher values of the distance for the axis. Thististeso in accordance with the physics
of the problem.

The values of the new parametecr% and®f can be optimized so as to give the model a good performance for
hydrocyclone flow. This optimization can be made using experimertabdain its absence, from data extracted from
results of simulation using higher order turbulence models. This secood wpis tested in the following section.

2.2 Implementation in CFD of the modified model and some competive results
To evaluate the performance of the modified ikodel comparing to the non-modified one we implemented

this model in a CFD code (it was choose the CFX-5.6) comparingatme results of both models and results obtained
from SSG Reynolds Stress Model available in this code.

Since CFX internally calculates velocity gradients usingaeigSian mesh we have to adapt the equations for

the correction above described, that are in cylindrical coordiriatédse variables used by CFX. That can be done in
the following form:

r='X2+Y2 and 6 =arctan(Y/X) (2-8a, b)
X =rcos@ and Y =rsin0d (2-9 a,b)
Azimuthal velocity can be expressed as:

V, =V cosB8-UsinB (2-10)

Where U and V are functions of X and Y, which are retangular cotedindt is also necessary to calculate an

expression forave /ar in function of retangular coordinates
This expression assumes the following form

\Y
i = 21 2 Xza_v_ 53\/2+XV_XY6_U+ X22YU2 +
or X°+Y 0X X +Y 0X X +Y
. o (2-11)
21 2 Ya_v+ ZUZ_YU_Yza_U_ XzY 2
Xe+Y adY X°+Y oY X°+Y

Considering the above expression the above described modified modeipiasented into CFX code so as

to let us adjust the parameté:r% and Cy to best fit the results obtained using SSG Reynolds Stress Model.
To make the simulations we choose a hydrocyclone with the gecaheharacteristics shown below and the
flow was considered single phase water flowing into the domain with an awedagiy on the entrance of 1.324 m/s.

Dimensional Characteriscs of the Hydrocyclone (mm)
Cylindrical head diameteD) 76,2
Feed pipe diameteD)) 21,2
Overflow diameterD,) 25,¢
Underflow diameterD,) 12,4
Cone angle8) 11,2

Vortex finder lengt (1) 30,5
Lenght of cylindrical heacH) 38,1
Total lenght of the hidrociclond.) 381

Table 2-1 — Dimension of the hydrocyclone
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Figure 2-1 — Half axial plane section of the hydrocyclone (dimeims in meters)

For all the simulations it was used a hexahedral mesh of 6000 nodal points which projection on
domain surface is shown in figures xxxx and xxxx below. To avoid inipogf unrealistic boundary conditions at
hydrocyclone exits we considered as part of flow domain for the pugbaseulation two regions which can provide
free development of flow conditions (“far field conditions”). Theseaegjiare shown on figure xxx.
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Figure 2-2 — General view of surface mesh on domain
Figure 2-3 — Close detail of surface mesh
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In order to have a completely defined modified model we have tondatethe values of the parametgr‘é

and ©t from equations 2.3 and 2.5. In the search of values of paraﬁfetwe started from a maximum value of 0.9
which is the one recommended by Rodi (see reference in Sloarjl&x84]) for simulation of flows with curvature of
stream line where there is an amplification of turbulence (jets on concaaees)rf But even considering values orders
of magnitude lower than this value we could not get solutions #ireceroblem turned unstable and an explosion of
numerical values of mean variables occurred. In other wardsreduction of rate of turbulent energy dissipation
conducts to an increase in turbulence energy that can produce, théecmupling of the equations, an “explosive”
behavior for the mean variables.

However, a conceptual analysis of the flow field in a hydrocycé@m®ens to indicate that a correction aiming
to increase turbulence, even in the “free-vortex” region, is not suitable terlyrdpscribe the flow. In this region flow
is essentially irrotational, that means that turbulencaatdve generated there, it can only be transported in this region
being generated in regions where rotational effects are prevalentégame and walls). Thus it seems that in turbulent
variable equations the terms of generation of turbulent energy faothenodified model (with its constants optimized
for other kinds of flow) are strong enough to increase turbulentigeififree-vortex” region without any need for a
complementary amplification.

Relating to the correction in the “rigid body” behavior region werted from a value 0.002 for the

paramete(r:C, which was proposed by Launder (see reference in Sloan et al.)[I@86@}tenuation of turbulence in
cases of stream line curvature and rotation, obtaining good reguiteven better agreement between the results with

the modified model and SSG Reynolds Stress model was obtained Whﬁliudﬂenfcc reached 0.004. For both

cases, the value of parame?ér was fixed 0.000 — which means no correction for “free-vortex” region.

As can be seen from figures xxx and xxx, modified tkrbulence model produces a better agreement with
SSG Reynolds Stress model than the conventioratukbulence model, since the latter resulted in a “rigid body”
profile on whole domain while the former resulted in a Rankires gifofile as was also obtained with the SSG model.
Furthermore, modified model overestimated the maximum valwiofuthal velocity in about 10% related to SSG
model while the non-modified model underestimated this value in about 15%.

Velocity v
(Flane zx)

‘ 2.105e+000

— 1.02%e+000
—-4.67%9e-002

—-1.123e+000

l -2.199e+4000

[m s~-1]
Z

L
X

e
Figura 2-4 — Azimuthal component distribution on the axial plane of te hydrocyclone
SSG Reynolds Stress Model
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Figura 2-5 — Azimuthal component distribution on the axial plane of tk hydrocyclone
Conventional k-€ model
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Figura 2-6 — Azimuthal component distribution on the axial plane of tk hydrocyclone
modified k-e model (¢, = 0.002)
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Figura 2-7 — Azimuthal component distribution on the axial plane of te hydrocyclone

modified k-e model (C, = 0.004)

Total CPU time for both k-models was about 80,000 seconds, to simulate 1,300 variable timésttgzly
state mode while for the Reynolds Stress model this total time was abdi@®@66¢onds. These figures were obtained
in a P-1V, 1.8 GHz, serial processing unit (one CPU).

It is presented below the radial distribution of azimuthabeig} profiles obtained from simulations using the
abovementioned models for three different distances (z) fnensmaller cross section of the cone (underflow). The
axial plane chosen to plot these profiles was the one noontla¢ tfeed entrance pipe, although it can be said that the
flow was pretty much axissimetric.
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Figure 2-8 — Radial profile of azimuthal velocity component for z = 0.291846 m
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Figure 2-9 — Radial profile of azimuthal velocity component for z = 0.3048 m
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Figure 2-10 — Radial profile of azimuthal velocity component for z = 0.342519 m
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