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Abstract. This work discusses the statistical properties of a turbulent flow that is made to past
from a rough to a smooth surface. The interest is on assessing the behaviour of the error in origin
as well as of the roughness funetion. The work, in addition, discusses some relevant turbulent
scales of the flow, the energy spectra, the second- and third-order moments and the shape factor.
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1. Introduction

The structure of turbulence in flows over rough surfaces has been the subject of considerable research, in
particular, in the last twenty years. While most of the works prior to the nineties focused on investigations of
the mean properties of the flow, a shift to a deeper understanding of other statistical properties of the flow has
been recently observed (Ligrani and Moffat (1985), Perry et al. (1987), Bandyopadhyay (1987), Bandyopadhyay
and Watson (1988), Krogstad and Antonia (1994)).

In fact, Avelino and Silva Freire (2002) and Loureiro and Silva Freire (2004) have shown that much remains
to be understood about turbulent flows over rough surfaces even in what concerns some of their mean properties.
That certainly is the case for the error in origin, which has been thoroughly investigated in those two publications.

In this work, we will strive to disclose some of the statistical properties of a boundary layer subject to a
rough-to-smooth step change in surface condition. This flow is of particular interest due to the slow recovery
in properties following the change. In this situation, the rough-wall flow dominates the rate of diffusion of
the disturbances for a considerable length, dictating conditions that are far from self-preserving (Antonia and
Luxton (1971), Antonia and Luxton (1972), Antonia et al. (1977)).

The present work aims specifically at assessing the effects of the rough-to-smooth step change in surface on
the error in origin and on the roughness function. It is a fact that the recent development on computational
fluid dynamics has placed a strong emphasis on the accurate measurement of mean velocity components and
of Reynolds stresses. However, the fundamental statistical approach to turbulence analysis still plays a central
role in the understanding of complex flows. Thus, the present work will also discuss some relevant turbulent
scales of the flow, the energy spectra, the second- and third-order moments and the shape factor.

The chief measuring technique to be employed here will be the hot-wire anemometry. A hot-wire anemometer
is a low cost equipment with a very high frequency response, relative small size, low noise levels, high accuracy
and a continuous analog signal. For this reason, there is no surprise such equipments are judged ideal for
measurements in low and moderate turbulence intensity flows.

2. The one-dimensional spectrum

The three-dimensional energy spectrum is one of the key concepts in turbulence theory (Tennekes and Lumley
(1972)). However, in the laboratory, researchers find it much more convenient to measure the longitudinal
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spectrum. This, of course, sets the problem of relating the measured one-dimensional spectrum to the theoretical
three-dimensional spectrum.

If an one dimensional flow has its movement captured by a hot-wire anemometer, the velocity fluctuations
may be decomposed into their harmonic components with respect to the angular frequency, w. Then, by
analyzing and averaging the signal, the resulting frequency spectrum, E7;(w) must have the property

<u’12> = /000 Fq1(w)dw. (1)

To relate the frequency and wavenumber spectra, the common practice is to use the ’frozen convection’
hypothesis of Taylor that considers the changes in u; with time at a fixed point to be due to the passage of a
frozen pattern of turbulent motion.

This is equivalent to state

u(z,t) = u(z — ugt, 0), (2)
or else,
0 _ 0

The Taylor hypothesis is open to scrutiny even today, but it is at least a very good approximation and hence
will be used extensively here.
Defining

Eii(k) =wbn(w), ki=w/uy. (4)
Then, it follows that
e © Fyy(ky)dw e
/ Ell(w)dw = / % = / Ell(k’l)dk’l = <U/12> . (5)
0 0 Uy 0
An extension of the above equation to three dimensions is trivial, it suffices to integrate out the dependence

of F11(k1) on k2 and ks to obtain

. d[k= dﬁ;l(k)/dk]‘ (6)

3. Time domain analysis

The output signal of a hot-wire anemometer is random by its very nature (Bruun (1995)). Therefore, a
statistical description of its contents is in order. Next we will very briefly remind the reader some of the basic
concepts in random data analysis and introduce the paper notation.

The autocorrelation function for the flow velocity is denoted by R,,, the autocorrelation coefficient function
by py and the auto-spectral density function by S,.

Consider a time-history velocity record, uw. It can be split into a mean, u and a fluctuating component,

/
u’ through

u(t) =u—u (7)

where the mean value is the average of all values, defined by

1 T
U= limT_mo—/ u(t) dt. (8)
T Jo

In a digital data analysis, the continuous signal is replaced by a digital sample record. Taking T as the total
sample time and N the corresponding number of samples, the sampling rate is given by Sg = N/T = N F.
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Thus, the mean value of a finite sample record, u(j), j = 1,2,..., N can be given by

U= %Zu(n) (9)

j=1

The autocorrelation function shown the dependence of the data at one time in relation to the values at
another time. An estimate of the autocorrelation function with a time delay 7 = r/F can be written as

r

1

Ru(r/F) =

' [u(j) —alu(i+r)—a], r=0,1,2,---,m. (10)

ij=1
where r is the lag number and m is the maximum lag number.
The autocorrelation coefficient function is defined by

pulr/ ) = T (1)

The auto-spectral density function is defined in terms of a Fourier transform of the previously calculated
correlation function

Su(f) = /00 Ru(r)e_n”fT dr. (12)

— 00

The auto-spectral density function can also be evaluated from a finite Fourier transform of the data record.
Define

Suf k) = i Ty (£, T), (13)

where

uwi(f,T) :/0 g (e~ 2T dt. (14)

Quantity ug(f,T) represents a finite Fourier transform of ug(t) and * denotes the complex conjugate.

Then, Sy, (f) can be defined by

Su(f) = Jim E[S.(£,7,k)], (15)

where F [S,(f, T, k)] is the expected value by taking the ensemble average.

Here, the auto-spectrum was estimated by computing an ensemble of estimates from different sub-records.
This procedure drastically reduces the auto-spectrum random error.

The corresponding integral time-scale for the autocorrelation function is given by

Ti, = /000 pu(T)dT. (16)

The integral times scales give a measure of the time separation in which the two fluctuating parameters u'(¢)
and u'(t + 7) are correlated with themselves. So that two signals can be considered statistically uncorrelated
we must have a time interval between samples of the order of + = 27T%.

The second order moments, also called the variance, is given by

Nn
1 y

ol =u o = N1 Z [u(5)]* — Nny u? (17)
u j=1
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The turbulent intensity is given by

Tu=—, (18)

The third and forth order moments, also known as the skewness and the kurtosis, or flatness factor, are
given by

s 1 Nn,, 5 7Nnu ey 73
70 =) = > ) - 3u Z [u(j)]* +2 Nny @ (19)
and
1 Nny Nny Nny,
o0 = N | 2 WO —4a 3 ()P + 6 3 [u(i)) -3 Ny @t (20)

The uncertainties (P=99) associated with the measured statistical quantities are given by

W0) 0] = 2, 5T e (22)
w(0) w'(0) w(0) = u' o o +2,57 (u’ u’)3/2 NL (23)
Ny
2 96
w(0) w'(0) w(0) w'(0) = v u u o +2,57 (u’ u’) o (24)
Ny

4. Small scales

Although the large eddies contribute to most of the transport of momentum and scalars, we know viscous
dissipation of turbulence to be determined by the smallest of the eddies.

In this section, we will show how the smallest length scales in a turbulent flow can be found (Tennekes and
Lumley (1972)).

Consider that small-scale motions have small time scales, which are statistically independent of the large
scales. This argument leads to the conclusion that the rate of energy supply should equal the rate of dissipation.
This is basis of Kolmogorov’s universal equilibrium theory. This theory suggests that the microscales of length,
time and velocity are given by

n = <”—3>1/4, o= (5)1/2,6 v = (we)'*. (25)

9 9

The autocorrelation coefficient defines a further important microscale, A,, which is defined by the curvature
of p, at the origin:

d2pu (C) i (26)

R

U

The length scale A, is called the Taylor time microscale; it is directly associated with the dissipation rate
in a turbulent flow.
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Expanding p, ({) in a Taylor series around the origin, we can write for small values of ¢,

2
Pl 21— 5 (21)

To correlate the Taylor time microscale with the longitudinal spectrum, we make

du'\* '’
(E) i -
Then, applying Taylor hypothesis to the above equation,
du'\* 2 w'u! (29)
dr ) u? A2
The Taylor length microscale, x,,, is given by
dw\? W
(&) - o

and the following relation holds

Xu = EAU (31)

Finally, considering the turbulence isotropic, the dissipation rate, €, can be evaluated from

u u
2
U

e=15v (32)

5. Data reduction

As mentioned in the introduction, the present study resorted to the hot-wire anemometry to measure the
properties of the turbulent flow. To accounted for any temperature variation, a temperature-compensated
Dantec probe, model 55P76, was used. This probe consists of two sensor elements: a hot-wire and a resistance-
wire, usually called cold-wire, situated 2 mm below and 5 mm downstream of the former. Both sensors are
Pt-plated tungsten wires, 5 gm in diameter, overall length of 3mm and sensitive wire length of 1,25 mm. They
are copper and gold plated at the ends to approximately 30 um. They were connected respectively to a constant
temperature bridge, Dantec 556M10 and to a constant current bridge, Dantec 56C20.

Reference measurements for velocity were obtained from a Pitot tube connected to an inclined manometer;
temperature reference data was obtained from previously calibrated micro-thermocouples.

The temperature dependence of the thermal anemometer signal was accounted for by the linear correction
method, where the heat transfer from the probe is assumed to be proportional to a product of the temperature
difference T, — T, and a function of the velocity, where T,, is the temperature of the heated wire and T, is the
ambient temperature. The output voltage, E, of a constant temperature hot-wire anemometer can hence be
represented by:

E? = f(U)(Ty — Ty). (33)

Temperature measurements with resistance wires require both low drift, low noise constant current anemome-
ters and high quality amplifiers. If the resistance wire is heated by a current I = 0.15mA, then the “hot” resis-
tance Ry, will only deviate from R, by (Ry — R4)/Rq ~ 0.0004, and the corresponding temperature difference
(Tw — Ty) will be less than 0.1 °C.

Thus, a common practice is to consider R,, = R,, with

Ry = Ro[l + ao(T, — T,)]. (34)
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For practical applications, it is recommended that a temperature calibration of the resistance-wire is used
to determine the calibration constants in the relationship

R,= A+ BT,. (35)

To establish the velocity and temperature sensitivity of the hot-wire probe operating at a fixed hot resistance,
Ry, the anemometer output voltage, F,,, was red as a function of the velocity, U, and the fluid temperature,
T,. This type of calibration is often carried out by performing a velocity calibration at a number of different
fluid temperatures.

The functional form of the calibration data was then written as

FE = F(U, Ta - Tw)Tw:const- (36)

Equation 36 is a very good approximation to the velocity calibration data, obtained at a constant value of
T,, provided the calibration constants are determined by a least-squares curve fit. This procedure has been
applied by other authors to their velocity calibration data using the wire voltage relationship

E2
— W  — A4+ BU". 37
Ru(Rw—FRy) T (37)

This curve-fitting procedure gave the most accurate results. When a constant value of n(= 0.45) was
selected, A and B also became constants, and the increase in the uncertainty is insignificant for most hot-wire
anemometry applications.

The sampling rate was 2500 Hz, and the total measuring time for each point, 53 seconds.

6. Experimental facilities

The low-velocity, stratified-flow, wind tunnel used in this work was described in detail in Cataldi et al.(2001,
2002) and in Loureiro et al. (2001). The tunnel main objective is to simulate stratified atmospheric boundary
layers. Some improvements have been recently made in the tunnel to achieve a better representation of atmo-
spheric flows and similarity conditions. The test section has now an overall length of 10 m, with a cross section
area of 0.67 m x 0.67 m. The position of the roof is adjustable so as to produce different pressure gradients.
The potential velocity of the wind tunnel varies from zero to 3,5 m/s, and the free stream has a turbulence
intensity of about 2%.

The stratification section, consisting of 10 electrical resistances, is capable of heating the flow differentially
up to 100 °C’; each of the resistances can be controlled individually. Following the heating section, the floor
temperature can also be raised by 100 °C' over a 6m long surface, by a series of resistances with a controlled
variation of 5°C. The total heating capacity of each panel is about 7 kW /m?2.

The flow was subjected to a step change in roughness (from rough-to-smooth) after traveling the first six
meters over a rough wall. The rough surface consisted of roughness elements constructed from equally spaced
transversal rectangular slats. The dimensions of the roughness elements were K (= 4.7625 mm), where denotes
the height, S (= 15.875 mm) the length, W (= 15.875 mm) the gap, and A (= 31.756 mm) the pitch. In
constructing the surface, extreme care was taken to keep the first roughness element always depressed below
the smooth surface, its crest kept aligned with the smooth glass wall surface.

The glass surface was always kept at 25 °C' & 0.5 °C'. The next 6 meters, fitted with the rough surfaces, had
their temperature raised to 75 & 3 °C'. In fact, the variation in surface temperature for most of the plates was
very small, within £ 1 °C". However, the plates were manufactured in such a way that, at the junction (over a
length of 10 cm), conjugated effects resulted in a small decrease in temperature (— 3 °C'). The wall temperature
was controlled by 15 thermocouples, set at five stream-wise stations at three span-wise positions.

7. Results

The autocorrelation function, the Kolmogorov length scale and the energy spectra are shown in Figure 1.
The evidence is that for measurements taken with a time shift over 0.2 seconds the data were uncorrelated.

The Kolmogorov scales are shown to vary very little with the flow transition regime. Thus, they do not
present any significant longitudinal variation. The change in the energy spectra for the flow over a rough surface
is noticeable. In particular, in the low frequency region, the energy level is considerably higher for the rough
surface flow.
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Figure 1: Autocorrelation function, the Kolmogorov length scales and the energy spectra. Curves were drawn
for the following stations: x= -6,2, 0.5, 2.5, 5.5, 9.5 and 24.5 cm. The reference x=0 is the point of surface
change.
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The spectra show clearly an inverse-power-law region where the Kolomogorov scaling can be identified. The
-5/3 power law region could be well discriminated, showing the inertial subrange.

The major changes in flow conditions are illustrated by the mean velocity profiles, Figure 2, and by the
second-order moments. Note that the flow that leaves the rough wall region in a self-preserving state needs an
extra 245 mm of development to reach a new self-preserving state downstream of the transition point. Thus,
for all of this transition length, the flow retains part of the properties it had acquired over the rough surface.
In particular, so that the slope method of Clauser can be used to evaluate the skin-friction coefficient, the wall
turbulent velocity region has to be treated according to the procedure of Perry and Joubert (1963). This will
define a "virtual" error in origin for the smooth, flat surface that has to decrease from its largest upstream value
soon after the transition point to zero far downstream.
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Figure 2: Mean velocity profiles. J denotes the boundary layer thickness; w, denotes the external flow mean
velocity.

The error in origin and the roughness function were found here according to the method of Perry and
Joubert (1963). This procedure has been recently reviewed by Avelino and Silva Freire (2002) and thus will not
be discussed further here. However, we must note that the error in origin, ¢, and the roughness function, Awu,
are defined by the equation below where the notation is classical.

Au

Ur

+ _ lln [(yT +€) ur
K v

] + A - (38)

The asymptotic behaviour of the error in origin, of the roughness function and of the boundary layer shape
factor (= d1/d2) are illustrated in Figure 3. These graphs show that about 50 cm are necessary for the boundary
layer to adjust back to its undisturbed values.

The second-order moments shown in Figure 4 are particularly affected by the upstream wall condition. For
the whole x-wise distance, where the profiles were measured, a non-equilibrium condition was observed. The
high turbulence levels originated at the rough wall showed a reasonably slow decay rate.

The third-order moments (Figure 5) are negative in most of the outer region, and positive in the near-wall
region. Also, because they are much the same for flows over smooth or rough walls, they tend to collapse onto
a single line.
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The turbulent kinetic energy dissipation rate is also shown in Figure 5. Of course, € is observed to vary
significantly as it departs from the transition region. The dissipation of kinetic energy in the rough wall region
must be at its maximum, tending to a lower level in the self-preserving smooth region.
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Figure 3: The behaviour of the error in origin and of the roughness function for the rough to smooth transition
region.

8. Final Remarks

The data presented in this paper have shown that soon after a change in surface properties, from rough to
smooth, some of the statistical characteristics of the flow go through a slow recovery process. That is due to
the fact that the rough-wall flow dominates the rate of diffusion of the disturbances for a considerable length,
dictating conditions that are not self-preserving. The second-order moments are an example of this occurrence.

On the other hand, the fact that the spectra suffers very little, or even none, influence of the roughness
length scale is significant to illustrate that simple turbulence models will not be able to correctly simulate all
the flow characteristics. In other words, we have shown that to try to characterize a flow over a rough surface
by just modelling the effects that the protuberances have on the mean velocity or temperature profiles is simply
not enough, more sophisticated models are needed.

In any case, the present characterization of the transition region, from rough to smooth, is thought to be

detailed enough to provide the necessary data for a careful assessment of any proposed turbulent model that is
supposed to describe the problem.
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