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Abstract. The study of free surface flows represents one of the most interesting and challenging problems in fluid mechanics. Indeed 
it has attracted the attention of researchers for centuries, motivated by natural observations and several applications. For high 
Reynolds number flows, wave phenomena on water surfaces appear as the most cited natural example. In this context singularities 
have been employed as a common tool to model underlying currents. In this paper a review of analytical and numerical works that 
have been developed aiming to model free surface flows induced by vortices, sinks, sources and dipoles is presented. The effects of 
nonlinearity at the free surface of a body of water when it interacts with an underlying flow are discussed. A fully nonlinear, 
unsteady, boundary-integral method is employed to two free surface flow problems. The first is related to the interaction between 
water waves and currents, which has been the subject of discussion of many theoretical and experimental works. The second 
concerns the disturbances generated at a free surface by a horizontal cylinder in a uniform stream flow. 
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1. Singularities in mathematical models of free surface flows 
 

The use of singularities in the modeling of fluid flows, especially when studying their effects at a free surface, has 
been a common tool for researchers for many years, aiming to understand the basics and complexities of several natural 
phenomena. Several text books have shown the value of singularities when modeling fluid flows and thus helped to 
disseminate this concept. Singularities become widely employed in fluid mechanics, whether in the investigation of 
nonlinear effects at the free surface due to an underlying flow, whether in the understanding of free surface disturbances 
induced by, for instance, vortex flows. 
 
1.1. Free surface flows due to a dipole in a uniform current 

 
Perhaps one of the most cited and successful attempts to model a free surface flow with an underneath singularity 

under the light of linear theory was that due to Lamb (1913). Kelvin was the first to suggest that problem in 1905, 
followed by Lamb who analysed it formally in the light of linear water wave theory in 1913 (for a more accessible 
version of this paper see Lamb 1932, §247). Lamb's method consisted in replacing the cylinder by the equivalent dipole 
at its centre and then finding the fluid motion due to this doublet. Supposing a steady irrotational potential flow with a 
linearised free surface boundary condition, he found the appearance of a local disturbance immediately above the 
obstacle followed by a train of stationary sinusoidal waves on the downstream side (see figure 1). This solution is 
applicable when the cylinder is of small radius a compared with the depth of submergence d; then the disturbance to the 
free stream U due to the presence of the cylinder causes small amplitude waves that can be approximated by linear 
theory. 

 

 
Figure 1. Stationary waves due to a cylinder on a uniform stream flow. a/d=1/4, U=1. 
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Havelock (1926) proceeded to further approximations by the method of successive images, applying it to horizontal 
and vertical doublets. The contribution of each part of the image system to the surface disturbance was indicated and the 
corresponding surface elevations were determined numerically. In these higher-order approximations, only the flow in 
the vicinity of the body has been corrected, while the free surface condition has been kept in its first-order version. 

Later Tuck (1965) investigated the limitations of the linear solution and the importance of the nonlinear term in the 
free surface boundary condition. Using Lamb's formulation, he replaced the submerged cylinder by a doublet in a 
uniform stream flow; numerical values for the potential and stream function were then obtained via a modified 
Wehausen scheme. By plotting the streamlines and the first-order surface elevation for a cylinder close to the free 
surface, he found that some of the streamlines break up at wave crests into something resembling splashes. He 
suggested that in these cases the exact nonlinear solution would involve highly non-sinusoidal or even breaking waves 
and that a simple linearisation would be inadequate for cases in which the cylinder is close to the free surface, whereas 
it does not satisfy the assumption a/d<<1. Tuck showed that second-order nonlinear effects become important when the 
cylinder is not too far from the free surface. Moreover, he found that the second-order correction associated with the 
nonlinearity of the free surface condition is more important than the one related to the body condition. 

Following Tuck's work, Dagan (1971) investigated the flow past a circular cylinder close to a free surface at high 
Froude number by the method of matched asymptotic expansions. The inner flow model is that of a non-separated, 
nonlinear, gravity free surface flow past a doublet, while the linear outer solution is that of a singularity at the free 
surface. A good agreement with linear theory was found for deep submerged bodies. At moderate immersion depths the 
linearised solution is still valid, provided that the depth is replaced by an effective depth, larger than the actual one. For 
a body close to the free surface, Dagan found that the nonlinear calculations differed significantly from the linearised 
solution, suggesting that in this case the free surface would break or create a detached jet. 

As it is discussed later, these results are restricted to a region where the amplitude of the disturbances are linear, 
thus satisfying the inequality a/d<<1. As the ratio a/d increases, the roughness of the free surface is augmented and 
waves become “steeper”, with nonlinear effects taking over. The implications of the nonlinear results for experimental 
observations are not completely clear. In section 3.2 the effects of nonlinearity at the free surface when a steady stream 
flow interacts with a submerged cylinder are discussed. A version of the fully nonlinear boundary-integral method 
developed by Dold & Peregrine (1986) is adapted to this situation. For details of the boundary value problem and the 
numerical scheme see Moreira (2003b). 
 
1.2. Free surface-vortex flow interactions 
 

At an initially undisturbed free surface, considerable disturbances due to vortex interactions have been reported by 
several authors, based on linearised approaches and numerical simulations for various Froude numbers. Experiments 
were also carried out showing this evidence (Willmarth et al. 1989). In the theoretical models here reviewed the fluid 
flow is assumed to be in deep water and irrotational, except at the location of the discrete vortices. To characterise the 
fluid motion two different Froude numbers are defined based on different length scales, 

3/ gdkFr = and 3/ glkFrs = , where k is the strength of the vortices, g is the acceleration due to gravity, d is the 
initial depth of the point vortices below the free surface and l is the initial separation between two vortices; Frs is called 
the spacing Froude number. For clarity, in the present work a vortex pair (or eddy pair) is assumed to be two vortices 
with the same sign, while a vortex dipole (or eddy couple) has opposite signs. 

Telste (1989) observed two different free surface features when a pair of counter-rotating point vortices approaches 
a free surface. For a weak circulation (Fr=0.04, Frs=0.5) no wave breaking occurs and a small depression on the free 
surface is formed. If the reference frame is considered moving with one of the point vortices then this solution 
approaches the linear steady state profile predicted by Novikov (1981). For larger circulations (Fr=0.2 and 0.6, Frs=2.2 
and 7.1) a central hump is formed followed by free surface breaking. To solve the unsteady nonlinear two-dimensional 
free surface potential flow problem Telste used a boundary-integral method. Marcus & Berger (1989) solved the same 
unsteady nonlinear problem via a finite-difference method. In their work strong vortices (Fr=0.5, Frs=2.8) also displace 
a mound of fluid before the free surface breaks. For weaker vortices (Fr=0.06, Frs=0.3) disturbances are gentler, with a 
shallower scar. Nevertheless their numerical method suffered from instabilities which excluded longer simulations. 

The effect of a single vortex near a free surface was investigated by Tyvand (1991), who observed that all 
supercritical vortices ( 3.6≥Fr ) lead to surface breaking while subcritical vortices (Fr<6.3) tend to accumulate a surface 
mound until surface breaking eventually occurs. Tong (1991) introduced a point vortex into the boundary-integral 
method developed by Dold & Peregrine (1986), showing that small waves could be generated by a single weak vortex 
(Fr<0.2), with the steepness of the waves depending on the direction of the vortex circulation, while a stronger vortex 
( 2.0≥Fr ) leads to free surface breaking. 

Barnes et al. (1996) used Tong's algorithm as an approach to model the region of strong vorticity generated by a 
plunging breaker. In their model vorticity is represented by two-dimensional discrete vortices interacting with a 
nonlinear free surface initially at rest. Each point vortex moves under the influence of the free surface, the other vortices 
and its images, while the free surface moves due to the vortices and gravity. Figure (2) shows the free surface 
displacement due to a single vortex (continuous lines) and an equivalent system of 10 vortices distributed initially 
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around the same point (dashed lines). The two cases have Fr=0.5 and the results are remarkably similar, showing that 
the point approximation can model patches of vorticity quite well under certain conditions. 

 
Figure 2. Stacked free surface displacement due to a single vortex (solid lines) and 10 vortices (dashed lines) and 

the corresponding vortex paths. Fr=0.5. (Barnes et al. 1996) 
 

1.3. Free surface flows due to sinks and sources 
 
The problem of a free surface flow of an ideal fluid induced by a submerged source or sink with gravity as the 

restoring force has been the subject of many papers. Solutions with a stagnation point immediately above the source or 
sink have been given by Havelock (1926) and Vanden-Broeck et al. (1978). Peregrine (1972) suggested that a limiting 
flow would eventually be achieved for sufficiently high withdrawal rate at which the interface would form a secondary 
stagnation point enclosing a 1200 corner. For a sink at the vertex of a sloping bottom, Craya (1949) found an exact 
solution when the bottom sloped downward at an angle 3/π  from the vertical, and Hocking (1985) obtained numerical 
solutions for a sequence of angles ranging from 0 to 2/π . For a sink in fluid at infinite depth, a numerical solution for 
the problem was found by Tuck & Vanden-Broeck (1984). They appear to have been the first to encounter numerically 
the formation of a cusp at the free surface directly above the sink when Fr=1.776. (Note that in this case the Froude 
number is defined as in §1.2 but with k defined as the volume flux per length unit of the sink.) 

Cusped flows due to a sink within a fluid of finite depth, with gravity acting, have been considered by Vanden-
Broeck & Keller (1987), who confirmed numerically the solutions of Craya, Hocking and Tuck & Vanden-Broeck and 
showed that cusped flows exist for Froude numbers larger than some particular value. Collings (1986) considered the 
flow due to a line source or sink within a fluid of finite depth and above a horizontal bottom, but with no restoring 
force, and found cusped solutions when the source/sink was on the flat bottom and when the source depth was 0.56742 
of the far fluid depth. King & Bloor (1988) used a conformal transformation and integral equation technique to 
construct solutions to the steady flow induced by a submerged source beneath a cusped free surface and above a flat 
horizontal bottom when there is no restoring force. They found explicit closed-form results for the equation of the free 
surface and the cusp height, confirming the numerical and asymptotic results of Collings and Hocking. In a following 
paper, King & Bloor (1989) investigated the free surface flow of a uniform stream of ideal fluid around a Rankine body 
formed by a source and a sink at finite depth. Linear and nonlinear numerical solutions are presented in their work for a 
variety of body shapes, for both supercritical and subcritical flows. 

Solutions having a stagnation point on the free surface directly above the sink also were found in finite-depth flows 
in two dimensions. Results for supercritical (where the depth-based Froude number is greater than 1) and subcritical 
flows (Fr<1) were computed, respectively, by Mekias & Vanden-Broeck (1989), via a numerical scheme based on a 
series expansion, and Hocking & Forbes (1992), who used an integral equation approach. Both works confirm the 
formation of a stagnation point on the free surface directly above the sink plus a uniform stream flow at infinity. In an 
independent study, Mekias & Vanden-Broeck (1991) also solved the subcritical flow problem in finite depth, but unlike 
Hocking & Forbes who concluded that waves far from the line sink would not occur, these authors obtained a regular 
wave train downstream. 

All the works mentioned in the last three paragraphs assume that the free surface flow is steady. Recently several 
other authors have obtained numerical solutions for the unsteady motion of a free surface flow due to a line source and 
a point sink. They include Tyvand (1992), Miloh & Tyvand (1993), Xue & Yue (1998) and Stokes et al. (2002). 
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2. Mathematical models of singularity distributions 
 

As reviewed in the last section the inclusion of a distribution of singularities has been a common tool for 
researchers aiming to model underlying flows. In this section the mathematical modelling of three of these flows is 
presented. In the first two models a pair of vortices and a distribution of sinks and sources are selected aiming to 
represent “rapidly” and “slowly” varying surface currents in a periodic domain. In order to apply Cauchy's integral 
theorem to the periodic problem, a conformal mapping of the form ),(),( tiZet ξξς −=  is applied to the singular potential 
velocity Sφ  (for more details see Moreira 2003a). Finally, in the last model, a single doublet is used to replace a 
submerged cylinder in a uniform stream flow (Moreira 2003b). This model is in fact an approximation of the flow about 
a horizontal circular cylinder and it was first employed by Lamb (1913). In this case the fluid domain is assumed to be 
unbounded and then no conformal mapping is required. 
 
2.1. Vortex model 

 
Figure 3. (a) A sketch of the z-plane with two singularities and their images reflected onto the free surface. (b) The 

corresponding ς -plane obtained via conformal mapping ),(),( tiZet ξξς −= . 
 

Assuming that the singular points S1 and S2 shown in figure (3a) are a vortex couple with strength k, occupying 
respectively the positions z1 (=x1+i y1) and z2 (=x2+i y2), then the complex potential induced by those vortices in the 
transformed ς -plane is given by (Batchelor 1967, p.410), 
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figure 3b). From the circle theorem (Milne-Thomson 1962, p. 154) the complex potential of the flow induced by the 
pair of point vortices and their reflected images in the ς -plane is given by,   
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where 1ς  and 2ς  are the complex conjugate of 1ς  and 2ς . Note once again that the reflection of the vortices onto the 
free surface represents a convenient choice for deep water only. They are placed outside the body of the fluid and used 
to approximate the complex potential within the fluid. For an unbounded domain with a bed, a vertically periodic set of 
vortices reflected onto the bed is more convenient. Then the velocity potential Sφ  of a pair of counter-rotating vortices 
and its corresponding image can be expressed in the transformed plane by, 
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The first term inside the logarithm represents the contribution of the two vortices to the system, while the second term 
refers to their reflected images. In our examples the point vortices are prescribed to be at fixed positions in time. The 
free surface moves under the influence of the eddy couple and gravity since our first aim is to analyse the contribution 
of not advected vortices beneath a free surface. The total circulation Γ  (positive and equal to kπ2 , in the case of a 
single counter-clockwise point vortex) vanishes around the pair of counter-rotating vortices. The contribution of the 
eddy couple to the “total” velocity u is then given by Sφ∇ . The stream function Sψ  induced by the singularities is 

obtained by simply taking the imaginary part of the complex potential Sω . Figure (4a) shows the streamlines plotted in 
the z-plane for a periodic line of counter-rotating vortices in deep water. Two counter-rotating vortices per period, 
equally spaced in the fluid domain, are showed in this case. 

 

        (a)           (b) 
 

Figure 4. Streamlines obtained for a periodic distribution of singularities in deep water. (a) Counter-rotating vortices. 
(b) Sources and sinks. In both cases Fr=1.0x10-2, Frs=1.8x10-3. Depressions at the free surface cannot be seen due to its 

small slope. 
 
2.2. Sink-source model 
 

If the singularities shown in figure (3a) are chosen as a single pair of source and sink, located at 1ς  and 2ς  
respectively, then their complex potential turns to (Batchelor 1967, p.410), 
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Here k is defined as the volume flux per length unit of each of the sinks and sources. From the circle theorem, the 
complex potential of the flow induced by the source and sink and their reflected images in the ς -plane can be similarly 
determined and, taking its real part, a new velocity potential Sφ  can be defined, 
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Figure (4b) shows the corresponding streamlines. Depressions at the free surface cannot be seen due to its small slope. 
 
2.3. Dipole model 
 

The complex potential for an irrotational flow due to a circular cylinder of radius a held in a stream with uniform 
velocity U far from the cylinder is given by (Batchelor 1967, p.424), 
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where z=x+iy. To apply Cauchy's integral theorem to the non-periodic free surface flow problem in deep water, the 
complex potential ω  includes for convenience the reflection of the cylinder in the free surface, 
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where z0 (=x0+iy0) is the position of the centre of the cylinder and 0z  its complex conjugate. The velocity potential 

Sφ  is then given by the real part of (7), 
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The corresponding streamlines and linear steady free surface are shown in figure (5). The contour of the cylinder 
approaches a perfect circle in this case and corresponds to a closed streamline in which =Sψ constant. Thus the stream 
advances towards the cylinder axis (y=-2) until the first stagnation point A is reached, then divides and proceeds in 
opposite directions round the cylinder, joins up again at the second stagnation point B and moves off along y=-2. The 
disturbances generated at the free surface, though steady, may deform the closed circular streamline and therefore a 
perfect circle is no longer obtained. However, for the purpose of our study, we assume that this is sufficiently close to a 
circle. Note also that surface waves cannot be seen in figure (5) due to their small wave steepness. 
 

 
Figure 5. Streamlines obtained for a horizontal doublet in a uniform stream flow in deep water. Fr=8.2x10-2. 

 
3. Free surface flows due to singularities: case studies 
 

To study the effects of nonlinearity at the free surface, the singularity models presented in the last section are 
introduced in the fully nonlinear boundary-integral solver developed by Dold & Peregrine (1986). Our main interest is 
to study the effects on a free surface of a stationary underlying flow, particularly when a train of linear water waves 
interacts with an underlying current, or when a submerged cylinder meets a uniform stream flow. To model the required 
underlying flow, a combination of vortices, sinks, sources and dipoles is employed. Depending on whether the domain 
is periodic or unbounded, a conformal mapping may or not be needed. Details of the boundary value problem and its 
numerical solution can be found in Dold (1992) and Moreira (2003a,b).  
 
3.1. Nonlinear interactions between water waves, sinks and sources 
 

A sink/source distribution is employed to generate a near-linear surface current. 16 sinks and 16 sources are 
distributed symmetrically in the period domain at the same depth d=0.25. For a scheme of the fluid domain see figure 
(6). The effect of the singularity distribution on the waves then depends on the strength k of the sinks and sources. The 
desired maximum and minimum velocities are then obtained choosing suitable values for k. The steady sinks and 
sources are “turned on” at time t=0 and impose a volume flux perpendicular to the plane of motion. Figure (6) shows 
the evolution of short surface waves (A0 K0=0.04) interacting with a near-linear surface current (Umin=-0.25 c0). The 
nonlinear results are vertically exaggerated 40 times. It is clear the wave transformation that occurs due to the 
underlying current. Roughly speaking, a steep and a smooth region can be identified, respectively, downstream and 
upstream of the Umin region after a certain period of time. A strong increase in wave steepness is observed close to the 
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Umin region, leading to wave breaking, while wave amplitudes decrease beyond this region. Some of the waves are steep 
enough to be noticeably affected by nonlinearity. Partial wave blocking is predicted by linear ray theory and thus 
confirmed by the nonlinear computations. 
 

Figure 6. Stacked free surface and surface current profile due to a distribution of sources (x) and sinks (o). Fr=0.232, 
Umin=-0.25 c0, A0 K0=0.04. tbreaking=25.4. Vertical exaggeration 40:1. 

 
3.2. Nonlinear interactions between water waves and vortices 
 

For “sharper” current gradients a vortex couple is positioned underneath the free surface. For a scheme of the fluid 
domain see figure (7). The maximum and minimum velocities are defined by choosing suitable values for the depth of 
submergence d. Figure (7) shows the  stacked  free  surface  deformation  of  a  wave  train due to a stationary vortex 
dipole flow, with Umin=-0.250 c0. This “rapidly” varying surface current is switched on at time t=0 and starts to interact 
with the wave train. The short waves have initial steepness of A0K0=0.04. The fully nonlinear results show that surface 
currents induced by vortices are sufficient enough to cause wave steepening and breaking. The wave transformation due 
to the underlying current is visible in figure (7). The incident waves are clearly deformed near the maximum and 
minimum velocity regions Umax and Umin, while their group velocity remains unchanged near the regions where U=0. 
The positive current accelerates the surface waves nearby the Umax region, increasing locally their kinetic energy and 
group velocity, while in the Umin neighbourhood waves start to be partially blocked. Since a strong surface current 
gradient is applied over one wavelength nearby the Umin region, ray theory assumptions are not fully satisfied there, 
with nonlinear effects taking over. Furthermore, since we are ignoring dissipation, in the light of the linear 
approximation wave action is conserved in the system as a whole. This implies that wave energy increases for rays 
moving into regions of greater frequencies and is lost when frequencies decrease. 

 
3.3. Nonlinear interactions between a free surface flow and a dipole 
 

Figure (8) compares the linear stationary free surface profiles with quasi-steady nonlinear results for two different 
values of a/d. For clarity the cylinder is also represented in scale based on the values attributed for a and d. As expected 
a good agreement between linear and nonlinear results is found in figure (8a). In this case the cylinder is sufficiently far 
from the free surface for no nonlinear interactions to take place. On the other hand discrepancies between the profiles 
can be clearly noticed in case (b). In this case the cylinder becomes closer to the free surface as a increases for a fixed d. 
In particular figure (8b) shows that the nonlinear result becomes “steeper” than the linear one, with sharper crests and 
shorter wavelengths. For larger values of a/d e.g. a/d=1/3, disturbances induced by the underlying flow are unsteady 
and strong enough to cause wave breaking. For these cases the nonlinear computations do not reach a stationary profile 
after a certain time. Breaking occurs isolated downstream the cylinder, in a region very close to it. This result confirms 
the investigations of Tuck (1965) and Dagan (1971) who suggested that wave breaking occurs when the inequality 
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a/d<<1 is not satisfied. In this case linear theory fails and Lamb's classical solution of a sinusoidal wave train 
downstream the cylinder does not apply. 
 

 
Figure 7. Stacked free surface and surface current profile induced by a pair of counter-rotating vortices. Fr=0.08, 

Umin=-0.250 c0, A0 K0=0.04. tbreaking=14.8. Vertical exaggeration 40:1. 
 

 
           (a)                                                   (b) 

  
Figure 8. Comparison between nonlinear (------) and linear steady results (-- -- --). 

(a) a/d=1/10; (b) a/d=1/5. For all cases U=-0.6 and Fr=0.44. 
 
4. Summary 
 

This work was motivated by previous natural observations and experiments which reported interesting features at 
the surface waves when meeting an underlying flow. In this paper a summary of the analytical and numerical works that 
have been developed aiming to model free surface flows induced by vortices, sinks, sources and dipoles is presented. 
The mathematical modelling of three singularity distributions is presented and used to model stationary surface flows, 
which is shown to affect significantly the behaviour of the free surface motion. The effects of nonlinearity at the free 
surface of a body of water when it interacts with these singularities are investigated through a fully nonlinear, unsteady, 
boundary-integral method. The nonlinear results show the importance of singularities in the modelling of free surface 
flow problems. 
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