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Abstract. Numerical simulations of PTT fluids in axisymmetric sudden contractions were carried out to investigate the effect of 
contraction ratio on the flow patterns under conditions of negligible inertia. The PTT model selected has a linear stress coefficient, 
and contraction ratios (CR) in the range 4:1 to 100:1 were investigated. The simulations are based on a finite volume methodology 
using very fine meshes and a purposely developed high-resolution scheme for the discretization of advective terms in the viscoelastic 
constitutive equation. In contrast to Newtonian fluids, where the contraction ratio has no significant influence for CR  larger than 4, 
for these shear-thinning viscoelastic fluids the corner vortex increases with flow elasticity and, of more interest, a lip vortex is 
formed at large contractions ratios. This lip vortex also grows with elasticity, then  merges and later engulfs the corner vortex, 
much like the situation for plane contraction flows. In this work, maps are presented outlining regions of different vortex behaviour. 
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1. Introduction 
 

Benchmark flow problems in computational rheology are still very important, because they can provide very 
accurate results for code validation, while still highlighting new features in flows which have been simulated only over 
a limited range of relevant conditions.  

The flow of viscoelastic fluids in a sudden contraction was suggested as a benchmark problem in 1987, during the 
5th International Workshop on Numerical Methods in Non-Newtonian Flows (Hassager, 1988), for the specific 
contraction ratio of 4:1 (ratio between the radius of upstream and downstream tubes – see Fig. (1) for flow configuration 
and main notation). Since 1988 there has been considerable interest on the numerical simulation of this benchmark 
flow, and most of the works were based on the specified 4:1 planar contraction (e.g., Yoo and Na, 1991; Sato and 
Richardson, 1994; Matallah et al, 1998; Oliveira and Pinho, 1999; Phillips and Williams, 1999; Alves et al, 2000; Al 
Moatassime et al, 2001; Aboubacar et al, 2002; Meng et al, 2002; Alves et al, 2003b), or the 4:1 circular contraction 
case (e.g. Coates et al, 1992; Sasmal, 1995; Baaijens, 1998; Wachs and Clermont, 2000; Phillips and Williams, 2002; 
Alves et al, 2003c). In terms of experimental studies there is also a large number of works for both planar and circular 
contractions, and the effect of the contraction ratio was analyzed in some of them (e.g. Evans and Walters, 1986; 
Rothstein and McKinley 2001; Nigen and Walters, 2002). For a detailed review of the main experimental and numerical 
studies on planar and axisymmetric contractions the interested reader is referred to the recent book of Owens and 
Phillips (2002). 

Despite this large body of works it has been recognized later (Nigen and Walters, 2002) that this specific 4:1 ratio 
was not probably the best choice, as many interesting features of an actual contraction flow are not emphasized. These 
authors suggested that flows in contractions having ratios other than the standard 4:1 value should be explored in more 
detail. A survey of the literature reveals only a few studies, mainly experimental, where the variation of contraction 
ratio is considered. Hence, while the existing numerical data for the 4:1 contraction may remain as a valid benchmark 
data set for assessment of newly developed simulation codes, there is also a need for a systematic investigation of the 
role of contraction ratio on viscoelastic flow through contractions. We have recently undertaken this task for planar 
contractions (Alves et al, 2004), and now we aim to explore the same effect in circular contractions. 
 
2. Governing equations 
 

The flow of an incompressible viscoelastic fluid is described by the continuity and momentum equations, 

0⋅ =u∇          (1)  
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ρ η∂ + ⋅ = − + ⋅ + ⋅ ∂ 

u uu u + u τ∇ ∇ ∇ ∇ ∇ ∇          (2)  

coupled with an appropriate constitutive equation for the extra stress tensor, τ . In this work the simplified version of 
the Phan-Thien—Tanner model (PTT) was selected, which is expressed as (Phan-Thien and Tanner, 1977) 

T T( ) ( ) ( ) ( )pf
t

λ η λ∂ + ⋅ + = + + ⋅ + ⋅ ∂ 
u u u u uτ τ τ τ τ τ∇ ∇ ∇ ∇ ∇ ,         (3)  

where the stress coefficient function, ( )f τ , depends on the trace of the extra stress tensor. Following Phan-Thien and 
Tanner (1977), the linear version of ( )f τ  was selected,  

( ) 1 Tr( )
p

f λε
η

= +τ τ ,         (4)  

where λ  represents the relaxation time of the fluid, ε  is an extensional-related parameter of the model and pη  is a 
polymer-related viscosity coefficient, as opposed to the solvent viscosity sη  in Eq. (2). The sum of the two viscosities 
is 0 p sη η η= + , and represents the zero-shear-rate viscosity of the fluid in a simple shear flow. In the PTT model the 
polymer viscosity is shear thinning, and the parameter pη  represents its zero-shear-rate value. A solvent viscosity ratio 

0/sβ η η=  is used to prescribe the amount of sη  in comparison to pη .  
 
3. Numerical method 
 

The equations presented on the previous section are initially transformed into a general non-orthogonal co-ordinate 
system, for easy application of the finite-volume method (FVM) in a collocated mesh arrangement. Then, the equations 
are integrated over the set of control volumes (cells) and discretised. The dependent variables to solve for are the 
Cartesian components of the velocity vector and the polymer stress tensor, and pressure, all stored at the centre of the 
cells. Although in this work we are only interested in steady-state solutions, the time-dependent terms presented in Eqs. 
(2) and (3) are retained in the discretization, so that the steady-state solution is approached by a successive time-
advancement of the solution. At each time step fully-implicit sets of algebraic equations need to be solved for each 
dependent variable, and preconditioned conjugate gradient methods are used for that purpose. 

The first equations to be solved are those for the extra stress tensor components (Eq. 3), which are solved 
sequentially for each component, by assuming the velocity field from the previous time step. Then, the momentum 
equations (Eq. 2) are solved sequentially for each Cartesian velocity component, with the previous pressure field and 
the newly calculated stress fields. Finally, the discretised form the equation of mass conservation (Eq. 1) that was re-
arranged into a Poisson pressure-correction equation, is solved implicitly for the pressure correction, p′ . This 
correction is then added to the pressure field calculated in the previous time step, and is also used to calculate the 
velocity corrections in order to provide a new divergence-free velocity field. These steps are repeated until the norm of 
the residuals of all equations becomes smaller than a prescribed convergence tolerance. Typically, a normalized sum of 
residuals of order of 10-4 is used; it has been checked from numerical experiments that this tolerance, in terms of 
normalized variables, provides an adequately converged solution. A detailed description of the numerical method can 
be found in Oliveira et al (1998) and on the subsequent works: Oliveira and Pinho (1999), Oliveira (2001) and Alves et 
al (2000; 2003a). 

The diffusive terms of the momentum equations are discretised with second-order central differences (CDS). The 
convective term in the momentum equation, although presented in Eq. (2), was neglected in this work, since we are 
concerned with creeping flow conditions (Re=0). On the other hand, the discretization of the convective term in the 
constitutive equation is very important due to its hyperbolic nature. In previous works we have implemented classical 
high-resolution schemes, such as MINMOD and SMART (Alves et al, 2000; 2001). Although bounded, we found that 
these classical high-resolution schemes could lead to a significant slowdown in the convergence rate and, in certain 
problems, even to an impossibility of attaining adequate fully iterative convergence. To circumvent this limitation of 
classical high-resolution schemes, in Alves et al (2003a) a new scheme was proposed, named CUBISTA. There, it was 
demonstrated that CUBISTA possesses enhanced iterative convergence properties, especially suitable for viscoelastic 
calculations (Alves et al 2003a,b), and consequently in this work the discretization of the advective term in the 
constitutive equation is done with this scheme, which is formally third-order accurate. 

 
4. Problem definition and computational meshes 
 

The flow geometry is illustrated in Fig. (1), where some of the relevant variables and features are also shown. The 
effect of contraction ratio (CR) will be studied in detail, which is here defined as, 
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R
=          (5)  

where 1R  represents the radius of the larger, incoming tube and 2R  the radius of the smaller, outflow tube. Other 
dimensionless groups characterizing this flow are the solvent viscosity ratio defined in Section 2, 0/ 1/ 9sβ η η= = , the 
extensional parameter of the PTT model, here taken as 0.25ε = , and the Deborah number defined in terms of 
downstream quantities, 

2

2

U
De

R
λ

=          (6)  

where U2 represents the average velocity in the outflow tube. Inertia could be measured by a Reynolds number but, for 
the creeping flow conditions considered here, this parameter plays no role and was set to zero, i.e. the advective term in 
Eq. 2, ρ⋅ uu∇ , was dropped. 
 

 
Figure 1. Schematic of the flow configuration. 

 
The basic information about the computational meshes is presented in Table 1, which includes the lengths of the 

upstream and downstream tubes ( 1L  and 2L ), the total number of cells (NC), the number of degrees of freedom (DOF), 
and the size of the smallest cell near the re-entrant corner (∆xmin, ∆ymin, both normalized with R2). The meshes used in 
the simulations are non-uniform with a larger concentration of cells in the vicinity of the problematic re-entrant corner 
and along the tube walls, where the velocity and stress gradients are expected to be large. It is quite clear that the 
channel lengths 1L  and 2L  need to be varied according to the contraction ratio (and also De) so that adequate 
dimensions are provided for flow development and redevelopment upstream and downstream of the contraction plane. 
Increasing the De number leads to larger upstream and downstream tubes, in order to fully development of velocity and 
stress profiles. This point was demonstrated quantitatively in Alves et al (2003b), where appropriate correlations for L2 
were presented. To avoid the use of meshes with different lengths for varying De values, for a given contraction ratio, 
we chose the use of very large computational meshes, one for each CR value, as shown in Tab. (1). 

An illustrative example of the computational meshes used is given in Fig. (2) for CR=100. Only a zoomed region 
near the contraction plane is shown to illustrate the high degree of refinement near the re-entrant corner and the walls. 
An important aspect is that the mesh dimensions near the re-entrant corner are the same for all meshes (with a minimum 
cell spacing of 0.02R2) so that the local variations of the resulting solution fields are not influenced by the contraction 
ratio. 

 
Table 1 – Main characteristics of the computational meshes 

CR L1/R2 L2/R2 NC DOF ∆xmin=∆ymin 
4 2 500 2 500 8 980 53 880 0.020 

10 2 500 2 500 10 420 62 520 0.020 
20 2 500 2 500 11 956 71 736 0.020 
40 2 500 2 500 15 796 94 776 0.020 
100 5 000 5 000 23 920 143 520 0.020 
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5. Results and discussion 
 

Firstly, in Section 5.1, streamline plots for different contraction ratios are presented as a function of the Deborah 
number. Based on these plots vortex maps are presented, which identify different types of vortices as a function of CR 
and De (or De/CR, as appropriate). Finally, in Section 5.2, scaling laws are presented and discussed for both vortex 
length and intensity. 
 
5.1. Flow patterns 
 

Even for creeping flow conditions, it is well known that different types of vortices can arise for viscoelastic flows 
in contractions, either planar or circular. For planar contractions, Alves et al (2004) demonstrated that the contraction 
ratio can have a marked influence on the vortex types for a PTT model; using the same parameters for the constitutive 
equation, we now aim to investigate the effect of the contraction ratio on the flow patterns in circular contractions.  

Streamline contour plots are presented in Figs. (3) and (4) for CR =  4 and 100, respectively. Different vortex 
behaviours can be identified for increasing values of the Deborah number: whereas for the 4:1 circular contraction an 
intense vortex enhancement is observed, for the 100:1 contraction a more complex flow pattern is predicted, with the 
appearance of a small lip vortex at De values around 0.1-0.2, followed by an intense enhancement of this lip vortex, 
which engulfs the corner vortex at around De = 10-20, creating a large lip vortex that continues to grow with increasing 
elasticity of the flow.  

 

ZOOM 

Figure 2. Zoomed view of the computational mesh used for CR=100. 
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Figure 4. Streamline patterns for the 100:1 circular contraction. 
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Figure 3. Streamline patterns for the 4:1 circular contraction. 
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With a view to classifying the structure of flows through circular contractions, we have carried out an extensive 
simulation program, for various contraction ratios and increasing Deborah numbers. The resulting flow patterns were 
classified as corner vortex, lip vortex, or as a combination of lip plus corner vortex structures. In Fig. (5) the outcome of 
this classification is plotted as a map of vortex type versus contraction ratio and Deborah number, or De/CR, in the 
same way as we did for planar contractions (Alves et al, 2004). The resulting vortex map is similar to the previous one 
obtained with planar contractions, and demonstrates once again that lip vortex formation is controlled by De (see the 
vertical dividing line in Fig. (5a)), while the onset of a single merged vortex is controlled by De/CR (vertical line on the 
right side of Fig. (5b)). The intense “vortex enhancement” correlates well with the final stages of the co-existence of 
corner and lip vortices, when the latter starts to dominante, and it is seen from Fig. (5b) to occur at around 

/ 0.1 0.2De CR ≈ −  . On the other hand, the formation of a lip vortex appears to occur at a fixed Deborah number for all 
contraction ratios above 20, and for the present constitutive model Fig. (5a) suggests a value of about 0.1 0.2De ≈ − . 
For the lower contraction ratios, CR = 4 and 10, Fig. (5) shows no sign of appearance of a lip vortex, in agreement with 
the predictions for the planar contractions. Additional work is required to better fill the vortex maps of Fig. (5) for the 
PTT fluid, and especially to account for the effect of the model parameters β  and ε , but the main features are well 
captured by the present results. 

The main difference between the present results for circular contractions and the previous work for the planar case 
(Alves et al, 2004) is simply the reduction, by an order of magnitude, of the two critical numbers: the minimum De 
value for which the lip vortex first appears (around 0.1-0.2 in the present case, in contrast to 1 2De ≈ −  for the planar 
case), and the value of De/CR when the complete merging of the vortices occur (around 0.1-0.2 in the present case, in 
contrast to / 1 2De CR ≈ −  for the planar case). 
 
5.2. Scaling laws for vortex size and intensity 

 
Figure (6a) presents the results obtained for the corner vortex length as a function of the Deborah number and the 

contraction ratio, illustrating the strong influence of CR on the computed vortex length. However, if instead we plot 
1/Rx R  (and not 2/Rx R ) as a function of /De CR , see Fig. (6b), a good matching of the results is obtained for 
20CR ≥ .  

 
Figure (7) shows the variation of the salient corner vortex intensity ( RΨ , a measure of the fluid entrapped in the 

secondary cell, defined by the recirculating flow rate in the corner vortex divided by the inlet flow rate into the 
contraction domain) with the modified Deborah number scaling, i.e. De/CR, for the various contraction ratios; in part 
(a) all data are plotted while in part (b) only data for 20CR ≥  are shown. Again, a reasonable correlation is achieved 
when RΨ  is plotted versus De/CR, as occurred above with the vortex size. From the results in Fig. (7) one may 
conclude that De/CR is the proper scaling parameter for the corner vortex intensity, in the same way observed for planar 
contractions (cf. Alves et al, 2004).  

For the intensity of the lip vortex, lipΨ , a different conclusion is reached, as shown in Fig. (8) where lipΨ  is plotted 
as a function of De, for 20CR ≥ . It should be pointed out that the lip vortex intensity is here taken as representing 
situations when a lip and a corner vortex coexist, or when the lip vortex merges with the corner vortex creating a large 
lip vortex. It is clear that the lip vortex, once formed, quickly grows with De to dominate the corner vortex and 
eventually completely engulfs that vortex to become the single remaining vortex structure (cf. Fig 4).  
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The fact that the lip vortex intensity scales with De is also apparent from the experimental data of McKinley et al 
(1991) for vortex size (cf. their Fig. 4), although it is not straightforward to reconcile those findings with our results 
because the data presented in McKinley et al (1991) refers to a Boger fluid flow in axisymmetric contractions at 
relatively low CR values. 
 

 

 
 
Based on a large number of experimental results for Boger fluids in axisymmetric contractions, Rothstein and 

McKinley (2002) suggested a criterion to predict the transition from lip to corner vortex. These authors defined a 
dimensionless normal stress ratio as, 

 
1 0

0

/ ( )
( ) / ( )zz rr

N Sr
Tr

η γ γ
τ τ η ε ε

= =
−

& &

&
N          (7)  

 
where Tr represents the Trouton ratio evaluated at the total Hencky strain accumulated along the centerline and ( )Sr γ&  
represents the stress ratio. Rothstein and McKinley (2002) suggested that the characteristic shear-rate to consider in Eq. 
(7) should be taken as 2 2/U Rγ ε≈ ≈& & . Curiously, it turned out that the normal stress ratio was able to predict the onset 
of lip vortex for large CR values, as illustrated in Fig. (9) for different PTT parameter values (note that for 0ε =  the 
Oldroyd-B model is recovered, while for 0sε η= =  the Upper-Convected Maxwell model, UCM, is obtained). The 
hollow symbols in Fig. (9) represent flow conditions where a lip vortex is absent, while the filled symbols represent the 
cases where a lip and corner vortex coexist, or a large lip vortex dominates.   

Figure 7. Variation of corner vortex intensity with the modified Deborah number, De/CR: (a) All CR values;  
(b) 20CR ≥ . 
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Figure 6. Variation of corner vortex size with Deborah number for different contraction ratios: (a) Standard scaling 
(all CR); (b) Modified scaling ( 20CR ≥ ). 
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6. Conclusions 
 

Numerical simulations were carried out for creeping flow of a viscoelastic fluid through circular contractions of 
various contraction ratios. The results obtained complement our previous study with planar contractions (Alves et al, 
2004), providing accurate numerical data for circular contractions with CR = 4, 10, 20, 40 and 100. The Phan-
Thien/Tanner constitutive equation with a linear stress function was selected, with the parameters 0.25ε =  and 

1/ 9β = . The results were rationalized in a vortex map, representing vortex types as a function of CR and De (or CR 
and De/CR), and a universal correlation of the data was obtained for 20CR ≥ : the corner vortex intensity and the size, 

1/Rx R , both correlate with De/CR, while the lip vortex intensity correlates with De. It was also found that for 20CR ≥  
a lip vortex is formed at 0.1 0.2De ≈ − , which grows with elasticity and then engulfs the corner vortex at 

/ 0.1 0.2De CR ≈ − . For 20CR <  it was found that increasing elasticity leads to a significant enhancement of the 
corner vortex size and intensity, without the appearance of any lip vortex. 

The inception of a lip vortex for 20CR ≥  was found to occur at a constant value of a dimensionless normal stress 
ratio, proposed by Rothstein and McKinley (2001), 0.055≈N .  

 

Figure 9. Influence of the normal stress ratio (defined in Eq. 7) on the vortex types. 
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