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Abstract. This work presents a thermodynamical model which consitently incorporates internal surface tension phenomenon in 
homogeneous two-component two-phase flows, without appealing to additional kinematical variables to describe its microstructure. 
The liquid and gaseous phases are regarded as a pseudo fluid whose constitutive behavior is obtained from two thermodynamic 
potentials – the Helmholtz free energy and a pseudo-potential of dissipation. The structure of the flow is assumed to be described 
solely by the void fraction, which is treated as an internal variable. The constraint assoicated with it is regarded as a material 
property, being an effective part of the constitutive equations. Surface tension is taken by the model  into account by adding a 
suitabe extra term, with dependence on the vopid fraction, in the Helmholtz free energy. The capability of the model in describing 
pertinent physical phenomenon is demonstrated by comparing the analytical predictions of sound speeds in the medium with 
available experimental data. 
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1. Introduction  
  

Homogeneous two-phase flows have been extensively investigated from the theoretical and experimental points of 
view in the past decades due to its significant importance in industrial applications.  Fluid flows in heat exchangers with 
condensation and boiling and pipelines carrying liquid -gas mixtures, in steady and unsteady states, are some of a vast 
universe of practical engineering problems. An example of practical significance, which in fact has motivated this work, 
is the case of bubbly liquids flowing in pipelines.  Very small gas concentrations by volume are known to alter 
drastically the sonic velocity. If it is not properly accounted for, the identification of pipeline sections susceptible to 
mechanical failure may be severely compromised, when structural integrity transient analyses (Freitas Rachid et al, 
1994 and 1998) are carried out.   

Several distinct two-component two-phase models have been proposed in the literature to describe the dynamics of 
the fluid flow with different levels of sophistication. Simplifying assumptions currently used in these models 
encompass homogeneous and isothermal mixtures as well as non viscous flows. On the other hand, sophisticated and 
relevant features are in general marked by the inclusion in the modeling - through different approaches - of heat 
transfer, micro-inertia and surface tension effects (Ishii, 1975; Drumheller et al., 1982; Drew and Passman, 1999; 
Gavrilyuk and Saurel, 2002).   

When at least one of the last two features are taken into consideration, the state of the local structure of the flow is 
in an indirect or direct fashion accounted for, so that additional variables - along with balance or/and constitutive 
equations - are in general required. For instance, if the mean radius of the bubbles is  taken as an additional kinematical 
variable in bubbly flows, then the traditional Laplace model is usually employed in the Rayleigh-Plesset equation in 
order to describe surface tension effects (Drumheller et al., 1982 and Drew and Passman, 1999). However, if, by one 
hand, the use of an additional variable allows the adoption of a well-known constitutive relation, it has, by the other 
hand, the disadvantage of increasing the number of variables to deal with as well as the computational effort when 
numerical solutions are envisaged. Since such a cost-benefit relationship can not be rated unless alternative models be 
available for comparisons, this argument motivates by itself the search for new ones. 

Within this context, instead of using additional variables, surface tension effects are incorporated in the modeling of 
homogeneous liquid-gas flows proposed herein by considering the void fraction only. The idea of using the void 
fraction as a unique variable at the macroscopic level to report changes in the mic rostructure of multi-component flows, 
describing complex physical phenomena, is not a new proposal. The works of Capriz and Cohen (1983) and Frémond 
and Nicolas (1987) are good examples of this approach to model micro-inertia effects in the dynamical behavior of 
bubbly liquids and the sorption-desorption phenomena in saturated porous media, respectively. 

This paper presents a macroscopic thermodynamically consistent model which incorporates surface tension effects 
in homogeneous and isothermal liquid -gas flows without appealing directly to its microstructure. In the model proposed 
herein the local structure of the flow is only characterized by the void fraction. This parameter is considered as an 
internal variable so that it and its constraint are treated as material properties, being part of the constitutive equations. 
Surface tension is taken into account by adding an extra term, with dependence on the void fraction, in the Helmholtz 
free energy of the mixture. Physical and mathematical features, such as hyperbolicity of the model equations, are then 
exploited to consistently derive restrictions on the choice of this extra term. The capability of the model in appropriately 
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reproducing some practical features is illustrated by presenting a particular form for that extra term and computing the 
wave speeds small disturbances propagate in the medium with and without surface tension effects.  Sound speeds in air-
water mixtures predicted by a classical and the proposed models are compared with experimental data available in the 
literature. It is shown that the proposed model present a better agreement with experimental data than the classical one 
for mixtures with very small contents of gas at low frequencies.  
  
2. Balance equations 
 

Homogeneous flows form a subclass of two-phase flows for which there exists no significant relative motion or slip 
between the constituents, what is equivalent to consider that the liquid and gas have the same velocities in the entire 
domain. In addition, when both the liquid and the gas constituents have always the same temperature θ  and the flow is 
isothermal ( 0=θ& and 0=θgrad ), it can be thermo -mechanically described by employing the linear momentum 

principle along with the first and second laws of the thermodynamics for the mixture as a whole, instead of doing it for 
each phase separately (Graham, 1969 and Ishii, 1975). As a consequence, the liquid-gas mixture can be regarded as a 
pseudo fluid sharing thermo -mechanical average properties of the two phases. At a macroscopic level, these 
constituents are assumed to coexist at every material point and time.  

In the model presented here, it is further considered that there is no vapor along with the gas. Moreover, we admit 
as a basic premise that the gas can not be dissolved in the liquid and vice-versa in the course of the motion.  To take 
these features into account the gas volume fraction α  is considered as an internal variable. The gas volume fraction, or 
simp ly void fraction as it is usually referred to, is defined as being the ratio between the volume of gas and the total 
volume of the mixture. In view of the aforementioned assumptions it is subjected to the constraint, )1,0(∈α . As we 
shall see later, this restriction is considered in the present model as a constitutive behavior and is properly accounted for 
by the constitutive equations. With the aid of the void fraction the mass density of the mixture can be expressed as: 
 

gl αρραρ +−= )1(                (1) 

 
in which 

lρ  and gρ  stand for the mass densities of the liquid and the gas, respectively, both of them are assume to be 

compressible fluids. 
Under suitable regularity assumptions, the following classical forms of the balance equations along with a local 

version of the Second Law of the Thermodynamics (SLT) suffice to fully describe the thermo -mechanical problem 
(Germain and Muller, 1995): 
 

0div)1()1( =−+−− vlll ρααρρα &&             (2) 

0div =++ vggg αραρρα &&              (3) 

gSv ρρ ++−= divgrad p&              (4) 

0:div)( ≥Ψ−+Ψ+−= &DSvpd             (5) 
 
The above equations, in Eulerian coordinates, represent the  balance of mass for each of the constituents, the balance of 
linear momentum and the Clausius-Duhen inequality for the pseudo fluid as a whole, respectively. As usual, the 
superimposed dot stands for the material time derivative, v  is the spatial velocity field, p  is the thermodynamic 

pressure, TSS = is the extra stress tensor due to motion, g  is the external body force per unit mass, 

[ ]T
2

1 )grad(grad vvD +=  is the rate of deformation tensor and Ψ  is the Helmholtz free energy of the pseudo fluid per 
unit volume. Equation (5) is a local version of the SLT which defines the rate of the energy dissipation d and makes a 
distinction between possible ( 0≥d ) and impossible ( 0<d ) processes.  Processes that do not violate the SLT are 
classed as reversible ( 0=d ) and irreversible ( 0>d ). 

To complete the problem description, we must add the constitutive relationships for the mixture to adequately 
describe the  physical phenomena we are interested in modeling (internal surface tension effects in our case), in such a 
way that inequality (5) be satisfied no matter the external actions, the initial and the boundary conditions. 
 
3. Constitutive Theory 
 

The constitutive relations describing the macroscopic mechanical behavior of the mixture are derived in the 
framework of the Thermodynamics of Irreversible Processes. In this theory, once the local state of the material has been 
characterized by means of an appropriate choice of the set of state variables, two thermodynamical potentials - the 
Helmholtz free energy and a pseudo-potential of dissipation - are sufficient to derive a complete set of constitutive 
equations. For this particular problem, we choose as state variables the local mass densities of the liquid 

lρ  and the gas 
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gρ , the void fraction α  and the absolute temperature θ . As we shall see, the restriction associated to α  is treated in 

this work as a physical property in the constitutive equations. This approach has already been used by Frémond and 
Nicolas (1987 and 1990) in the modeling of the sorption-desorption problem in saturated porous media and more 
recently by Freitas Rachid (2003) in the modeling of cavitation in flows of compressible fluids.  

At this point, emphasis should be placed in the fact that contrary to the common practice in the modeling of 
homogeneous two-phase flows, in which explicit microstructural content is used to incorporate internal surface tension 
effects, the proposed model attempts to emulate such a feature by employing the gas volume fraction only. The 
constraint associated with α , )1,0(∈α , will be treated as a material property, being an effective part of  the constitutive 
equations. For the sake of convenience, this constraint is decomposed in two complementary parcels: ]1,0[∈α  and 

}1,0{∉α . 
 
3.1. Helmholtz free energy 
 

Following the classic assumption of the Thermodynamics of Irreversible Processes, the free energy per total unit 
volume Ψ  is supposed to be a function of the state variables 

lρ , gρ , α  and θ . Since the pseudo fluid is regarded as a 

mixture of two constituents, its behavior is supposed to comprise a combination of the liquid and gas thermo -
mechanical properties, taking α  as a weighting factor. Thus, we choose  
 

)(),,,(),,,( αθαρρθαρρ Iglgl +Ψ′=Ψ=Ψ           (6a) 

 
in which 
 


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              (6b,c) 

 
In the above expression, Ψ′  is a smooth function which describes the thermo -mechanical properties of the pseudo fluid 
whereas )(αI  represents the indicator function of the convex set [0,1] (Moreau, 1966). The term )(αI  is the non-
smooth parcel of the free energy and is included to take the part of the internal constraint ]1,0[∈α  into account as a 
constitutive assumption. In other words, it prevents α  from getting out of its admissible interval since it would be 
required a infinite amount of energy to do this. The other parcel of the internal constraint }1,0{∉α  will be treated later. 

The terms 
lΨ  and gΨ  represent the free energies per unit mass of the liquid and the gas constituents, respectively. 

As suggested by its functional dependence, these free energies are supposed to represent the thermo -mechanical 
behavior of the liquid and the gas as if they were single constituents. The interaction term between both constituents is 
represented by the parcel 

sΨ  in the free energy of the pseudo fluid and is included to account for internal surface 

tension effects. For the present moment, we consider that 
sΨ  is smooth with regard to α , for at least )1,0(∈α .  

It should be pointed out that we have tacitly assumed that the internal structure of the pseudo fluid is completely 
characterized by the gas volume fraction. Of course, it is a very strong assumption whose implications impact directly 
on limitations of the theory. Nevertheless, as we shall see later, the model presented herein is capable to quite well 
continuously describe the effect of surface tension on the wave speed at low frequencies in homogeneous liquid-gas 
systems, ranging from bubbly to droplet flows. 

The state laws for the pseudo fluid, relating the reversible components of the thermodynamic forces to the state 
variables, are obtained from the free energy potential and defined as follows:  
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In the above equations, 

lp  and gp  stand for the liquid and gas pressures, respectively. The term h  in (7c) is an element 

of the subdifferential set )(αα I∂  (also called generalized derivative) with respect to α  of the convex function )(αI . 

The subdifferential of the indicator function )(αI  at α  is given by the set (Ekeland and Teman, 1976 and Moreau and 
Panagiotopoulos, 1988); 
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A straightforward calculation shows that, −ℜ==∂ )0(αα I , }0{)10( =<<∂ αα I , +ℜ==∂ )1(αα I  and ∅=∂ )(αα I  

if ]1,0[∉α . It is important to remark that the restriction ]1,0[∈α  is effectively taken into account through the 

constitutive law (7c), since this relation implies that the subdifferential )(αα I∂  is not empty.  

Once a form for Ψ  is chosen in Eq. (6), we are able to compute its material time derivative Ψ&  which appears in 
(5). Keeping in mind that time derivatives must be left derivatives in order to cope with the principle of determinism, it 
comes out that, for 0>∆t : 
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In computing Ψ&  care should be taken since Ψ  is not a smooth function. By using the definition of the subdifferential it 
can be shown that: 
 

))((,
))(())((

lim
0

tIhh
t

ttItI
t

αα
αα

α∂∈∀≤
∆

∆−−
→∆

&         (10) 

 
When the above result is used along with the state laws (7), Eq. (9) can be written as: 

 

αρρ αρρ &&&& BBB gl
gl ++≤Ψ            (11) 

 

Finally, inequality (11) can be used to find a lower bound d̂  for the dissipation d  in Eq. (5) such as: 
 

αρρ αρρ &&& BBBpdd gl
gl −−−+Ψ+−=≥ DSv :div)(ˆ         (12) 

 
To obtain a complete set of constitutive equations, it suffices to specify a pseudo-potential of dissipation from 

which comp lementary laws are derived in such a way that the local version of the second law (5) or (12) is always 
verified, regardless the initial and boundary conditions. 
 
3.2. Pseudo-potential of dissipation 
 

To introduce the irreversible behavior of the pseudo fluid, and also to ensure that the SLT is always satisfied, we 
assume that there exists a pseudo-potential of dissipation Φ , which is an objective, convex and differentiable function 
of );,( αα&DΦ=Φ , with the following properties: 
 

);,(,0);,(and0);,( αααααα &&& DDD ∀=Φ≥Φ         (13) 
 
The additional information associated to the dissipative behavior of the mixture is obtained from Φ  through the 
following complementary laws: 
 
 

α
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In addition, if the rate of energy dissipation d̂  is supposed to have the form, 
 

vDS div)(::ˆ ααα IBd −+= &&            (15) 

 
then we get from the convexity property of Φ  that, for any actual evolution: 
 

);0,();,(::ˆ ααααα 0DDS Φ−Φ≥+= &&&Bd          (16) 
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In view of (13), it is easy to see that 0ˆ ≥d  for any actual evolution of the pseudo fluid and so the SLT (5) is always 
satisfied. 

From the mechanical viewpoint, equation (15) establishes that the rate of energy dissipation is in fact the sum of 
two parcels.  The first parcel in the right-hand side of (15) is due to viscous effects and the second one is due to internal 
changes in mixture. The third term do not express any dissipation for actual evolutions since 0)( =αI  for ]1,0[∈α . It 
is incorporated into the dissipation to give coherence to the model. It means that to force α  to get out of the interval 
[0,1] either a an infinite energy dissipation would be required or the SLT would be violated according to the sign of the 
divergence of the spatial velocity field.  
 
The constitutive assumptions made so far are sufficient to completely characterize the mechanical behavior of the 
pseudo fluid. In fact, since the mass balance equations (2) and (3) define subspaces of the linear space spanned by v , 

lρ& , gρ&  and α& , then in order that (12) be equal to (16) for any actual evolution one must have: 
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    (17) 

 
in which η and ξ  are Lagrange multipliers. Since Eq. (17) holds for any independent evolution of v , 

lρ& , gρ&  and α& , it 

comes out that: 
 

0)()1( =+−−−Ψ−− αξαρραη Ip gl  

0)1( =−−− ηαρ lB             (18) 
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Since )1,0(∈α  by hypothesis, η  and ξ  can be eliminated from the above equations to render the following 
relationships among the thermodynamical forces, 
 

α
αα α

∂
Ψ∂

−−=Ψ−−−= s
lgsgl ppBppp &;)1(                  (19a ,b) 

 
Special mention is due to the last terms in the right-hand side of (19a) and (19b), which appear as a consequence of the 
inclusion of the internal surface tension effects in the model. Equation (19a) shows that the pressure in the mixture is a 
mean value between the liquid and gas pressures plus an additional term 

sΨ . The presence of this term is unusual and 

will be discussed later. 
 
3.3. Constitutive laws  
 

The expressions (7),(14) and (19) form a complete set of constitutive laws provide the functions ),( θρllΨ , 

),( θρ ggΨ , ),( θαsΨ  and );,( αα&DΦ  are specified. 

Without losing generality, if we assume that both constituents behave as Newtonian fluids an appropriate choice for 
Φ  is: 
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2
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where ε  is a positive material constant and )(αλλ = , )(αµµ =  are average properties between, respectively, 

lλ  and 

gλ  and between 
lµ  and gµ  having α  as weighting factor. These material parameters are such that 0≥µ  and 

03
2 ≥+ µλ . For this specific choice, the state and the complementary laws become: 

 
αεµλ α && =+= B;D2D)IS (tr                    (21a ,b) 

 
Equation (21a) is classic and express the behavior of a Newtonian fluid, which in this case is supposed to mix the liquid 
and gas properties. Expression (21b) characterizes the volume fraction evolution.  By combining (21b) with (19b) it 
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becomes apparent the effect of the internal surface tension on the volume fraction evolution.  Before going a step 
further towards the specific form of the function sΨ , it is worth noting some peculiar behaviors this function must 

attend in order to properly describe the surface tension phenomenon.  
Equations (1-4), (7), (19) and (21) completed by suitable boundary and initial conditions are sufficient to describe 

the isothermal and homogeneous flow of liquid-gas mixtures of Newtonian fluids that automatically satisfies (5). Since 
the constitutive relation for a Newtonian fluid is well-known we shall from now on focus attention on the internal 
surface tension effect. 
 
4. Restrictions on the choice of sΨ  

 
Although the main structure of the model has been presented, it is not complete yet since the extra term sΨ  of the 

Helmholtz free energy has not been specified. As will be shown next, the term sΨ  must not only account for the 

constraint }1,0{∉α  but also attend some requisites in order to assign the model physical and mathematical consistency. 

The parcel of the constraint }1,0{∉α  and the physical consistency will be approached setting up conditions on sΨ , and 

on its first derivative with respect to α , at the limits of the admissible interval. On the other hand, mathematical 
consistency of the model will be explored by requiring hyperbolicity of the dynamic fluid flow governing equations. 
 
4.1. Physical features – conditions on the limits 
 

Since 0 =α and 1 =α  are not admissible values as it has been pointed out earlier (i.e., 1 0 << α ), such an 
information must be taken by the model into account. In our case it is considered through relation (7c). Since we have 
assumed that sΨ  is smooth, two alternatives are possible. By letting sΨ  be either infinite as +→ 0 α  and as -1 →α  or 

not differentiable with respect to α  at 0 =α  and at 1 =α . Since sΨ  must be finite not only as +→ 0 α  and  as 
-1 →α  but also for )1,0(∈α  by virtue of (19a), then sΨ  can not be differentiable at 0 =α  and at 1 =α . The presence 

of sΨ  in (19a) is non classic is due to the approach proposed herein. If we admit from the knowledge of volume 

averaging theories (Drew and Passman, 1993) that the term sΨ  does not exist in fact in (19a) for any actual evolution, 

then sΨ  should be small when compared to gl pp αα +− )1(  for all )1,0(∈α .  In addition, since we are going to take 

second order derivatives of sΨ  with respect to α , in choosing sΨ  the following restrictions must be satisfied in order 

that the model be physically coherent:  
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If expression (7c) obeys condition (22b) the internal constraint )1,0(∈α  is automatically satisfied, which in physical 
grounds means that the gas can not be dissolved into the liquid and vice-versa.  

Conditions (22) are necessary but not sufficient to ensure physical consistency. To establish additional conditions 
on sΨ , we note from (19b) and (21b) that under equilibrium conditions ( 0 =α& ) the partial derivative of sΨ  with 

respect to α  equals the pressure difference between the gas and liquid constituents. If we realize that as +→ 0 α  the 
pseudo fluid can be identified as being composed of small bubbles of gas in a liquid medium, then one must have 

lg pp > . On the other hand, if we realize that as -1 →α  one has droplets of liquid in a gas medium one must have 

lg pp < . As a result, the following conditions should be expected: 
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Another restriction on the choice of the function sΨ  and its derivative can be established by considering that, at 

finite volume fraction evolution rates or at equilibrium conditions ( 0 =α& ), one must have 
lpp →  as +→ 0 α  and 
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gpp →  as -1 →α . To better characterize these implications, we manipulate relations (19) and (21b) in order to 

rewrite the pressure of the pseudo fluid as a function of either the liquid pressure or the gas pressure and other quantities 
as follows, respectively: 
 

s
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Now, by applying the conditions set before on the last paragraph we obtain the desired properties: 
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4.1. Mathematical aspect – hyperbolicity 
 

The physical features explored in the past section have given rise to some particular behaviors the extra term in the 

Helmholtz free energy sΨ  and its first derivative with respect to α  should attend in order that the model be coherent.  

However, a model that is not properly formulated mathematically cannot describe physical phenomena correctly. To 
ensure mathematical consistency, we shall explore the hyperbolicity of the governing equations, which, as we shall see, 
will impose restrictions on the second order derivative of sΨ  with respect to α .  

For the sake of simplicity, the governing equations we are referring to are those associated with the isothermal 
dynamical non viscous fluid flow of a homogeneous gas -liquid mixture described solely by the balance equations 
(2),(3) and (4) along with the constitutive relations (7),(19) and (21b). Since no particular form of the Helmholtz free 
energy potential has been given, including the extra term sΨ , some general definitions are required before going a step 

further. 
The wave speed small disturbances propagate isolated in the liquid and in the gas constituents are defined as: 
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If χ  is taken as being the entropy, then we have the isentropic wave propagation velocities. However, if it is 

assumed that χ  is the temperature, then wave speeds are associated with a isothermal process. For liquids, the 
difference between the isentropic and isothermal wave speeds is not significant. Nevertheless, it is not the case when the 
constituent is a gas. Because of transient heat-transfer effects which occur during the passage of a wave, it is not 
obvious which path it should be used to compute the wave speeds. It is generally accepted that for rapid compression 
and expansion (high frequencies) the gas behaves almost isentropically. On the other hand, slow changes (low 
frequencies) seem to be best represented by a isothermal transformation (Temkin, 1992).  Since isothermal processes 
have been assumed when the balance equations were presented, the forthcoming analysis will be carried out assuming 
that θχ = . 

To proceed with the analysis of the hyperbolicity, we shall assume, for the sake of simplicity, one dimensional 
flows in, for instance, the x  direction. Within this context, a set of partial differential equations having as independent 
variables the spatial coordinate x  and the time t  can be written in the following canonical form,  
 

0F
U

B
U

A =+
∂
∂

+
∂
∂
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           (27) 

 
in which ntx ℜ∈= ),(U:U  is the n -dimensional vector of dependent variables, A(U):A =  and B(U):B =  are n  by 

n matrices and F(U):F =  is the n -dimensional vector associated with the sink/source terms. A system like (27) is said 

to be merely hyperbolic if, providing that -1A  exists, the eigenvalues given by, 
 

0I-BA -1 =)det( λ            (28) 
 
are all real (but not necessarily distinct) and the eigenvectors associated with the eigenvalues λ  form a set of n  linearly 

independent vectors spanning the space nℜ  (Jeffrey, 1976).  
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When the dissipation associated with the void fraction evolution is taken into account ( 0≠ε  in (21b)), it can easily 

be shown that the governing equations (2),(3),(4) and (21b) are hyperbolic, whatsoever the nature of the extra term sΨ  

is. However, if such a mechanism of dissipation is negligible, then additional restrictions about the function sΨ  appear 

as a consequence of the hyperbolicity of the governing equations. Since this mechanism of dissipation may in fact be 
non significant, we shall assume hereto after that 0=ε  so that there is no dissipation of energy associated to α&  and 
consequently 0=α&B  in (21b). In such a case, neglecting convective terms, (2-4),(19) and (26) can be manipulated and 
combined in such a way that (2),(3),(4)  and (19b) assume the form (27), with T

lg vpp ),( α,,U = , 0F = , and: 
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In this case, the eigenvalues computed according to (28) give rise to two non propagating wave speeds 

( 0)2()1( == λλ ) and other two propagating wave speeds ( c−=)3(λ and c+=)4(λ ), in which: 
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2 2 2 2
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1 1

1 1
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c c c c
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c c

ρ ρ α α ρ α ρ α
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ρ ρ α ρ α α α
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 ∂ Ψ + − − +
∂ =   ∂ Ψ

+ − + −  ∂   

       (30) 

 
Due to the presence of the second order derivative of sΨ  with respect to α  in the numerator and denominator of 

(30), it can be seen that surface tension affects the speed with which disturbances propagate in the pseudo fluid, as 
would be expected. Such a result is  known and has already been reported by Marchal (1962). Moreover, it can 
promptly be shown in expression (30) that l cc →  and g cc →  as -1 →α  and +→ 0 α , respectively, whatsoever the 

function sΨ  is. In addition, if 0≡Ψs  (what is equivalent to disregard surface tension effects), then (30) reduces to the 

classical expression of wave speed 
oc  (Graham, 1969); 
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          (31) 

 
which has been derived in one of the pioneering works (Wood, 1930). 

To ensure hyperbolicity of (27) along with (29) it is first of all necessary that (30) be a real number, what implies 
the following conditions: 
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a     (32a) 

 
Once (32a) and (32b) are satisfied, it is easy to prove that the eigenvectors associated with )( iλ , for 4,,1…=i  are 
linearly independent rendering the system (27) along with (29) merely hyperbolic. 
 

5. Model’s prediction for a particular choice of sΨ  

 
Although the restrictions established in the past section for the material function sΨ  must be satisfied in order to 

qualify the model for applications, they are not sufficient to ensure success in reproducing experimental results.  In this 
section it is proposed a particular form for sΨ  which, as we shall see, is capable to satisfy both requisites.  
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Whatever the choice of sΨ  is, expressions (22), (23), (25) and (32) should be satisfied in order that the model be 

coherent. Of course, these relations do not ensure a unique form for sΨ . One possible choice for sΨ  is the following 

two-parameter material function : 
 

( )[ ])1(ln)1(:),( ακαααγθα −−−=Ψs
          (33) 

 
in which )(θγγ =  and )(θκκ =  are positive material functions, which depend on the temperature.  Easy 
calculations reveal that (33) promptly satisfies the conditions (22a), (22b), (23) and (25), whatever are the values 
assigned to γ  and κ . 

For the particular choice expressed by (33) in which it has been assumed that 0>γ , it can be shown that the 
conditions (32), which are related to the hyperbolicity of the governing equations, can be used to establish an upper 
bound to the material parameter γ : 
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Since 22 /ˆ)1( ααα ∂Ψ∂− s

 tends to -1 as +→0 α  and -1 →α  for any 0>κ , an upper bound for γ  according to (34) 

will always exist and the conditions associated to hyperbolicity of the governing equations will automatically be 
verified. 

The requirements established in the past section concerning the material function 
sΨ  are necessary but not 

sufficient conditions to ensure that the model appropriately describes the physical phenomena related to the surface 
tension. Although several features may be involved in and so must be evaluated before a model be qualified as a good 
one, the speed acoustic waves propagate in the mixture is one for which consolidate results are known and available. 
For instance, Marchal (1962) has shown, by using an analytical model with microstructure appeal, that the net effect of 
the surface tension in a homogeneous bubbly mixture with a low concentration by volume of gas (small gas bubbles) is 
to increase the wave speed disturbances propagate in the medium when compared to the wave speed predicted by oc  

(Eq. (31)) (in which such phenomenon is not taking into account).  When the bubbles are small their compressibility is 

reduced by the effects of surface tension, assigning to the mixture a larger wave speed than predicted by oc .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Comparison of the behaviors of the wave speeds against the void fraction α  predicted by the classical oc  

(Eq. (31)) and the proposed )(κc  (Eq. (30)) models with experimental data of Kobori et al. (1995). The wave speed 

)(κc  is plotted when 
sΨ  is given by Eq. (33) with γ  =130 kPa and κ  =25. Air-water mixture is at 324 kPa and at 

room temperature. 
 

To corroborate the statement of the past paragraph, it is depicted in Figure 1 a comparison among the theoretical 
wave speed )(κc , given by Eq. (30) along with expression (33), the classical wave speed oc  given by Eq. (31) and 

the experimental data reported by Kobori et al. (1955).  Although many experimental data about sonic velocities in 
homogeneous two-phase flow systems are available in the literature (Kobori et al. 1955; Karplus, 1961; Semenov and 
Kosterin, 1964; England et al., 1966 and Henry et al. 1971), only the data of Kobori et al.  cover the very small range of 
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gas volume fractions ( ]100.5 3−×<α ) where internal surface tension effects become relevant. Kobori's data were 
obtained for air bubbles in a pipeline containing water at 324 kPa at room temperature. Although the pipe-wall elasticity 
do affect the wave speed in the mixture, it becomes insignificant for small gas volume fractions such as that of the 
experimental data, allowing the comparison of Eqs. (30) and (31) with Kobori's data.  The wave speed response 
predicted by the proposed model was plotted for κ  =25 and γ  =130 kPa, being the upper bound for γ  given by 
restriction (34) equal to 290.3 kPa.  As expected, small air contents in volume produces a wave speed less than the 
speed of sound in the air. Such an effect is not only observed in the experimental data but also in both theoretical 
models. However, it can be clearly seen that the proposed model presents a better agreement with experimental data 
than the classical one over the whole range of the void fraction observed. Thus, surface tension acts in a mixture with 
small amounts of gas by attenuating the wave speed reduction predicted by the classical theory (given by Eq. 30). For 
the range of void fraction shown in Figure 6, it can be shown that δ/sΨ  does not exceed 0.45 %, showing that the 

perturbation term sΨ  in (19a) is indeed negligible. 
 
5. Concluding remarks 
 

A coherent thermodynamic model which consistently incorporates internal surface tension effects in homogeneous 
and isothermal two-component two-phase flows has been presented, without appealing to additional kinematical 
variables to describe the microstructure of the flow. The model is capable to continuously emulate the internal surface 
tension effects in liquid-gas flows over the whole range of the void fraction, )1,0(∈α , without loosing the hyperbolicity 
of the governing equations. For air-water mixtures at atmospheric pressure and room temperature, it is shown that 
internal surface tension affects the speed of sound in a bubbly flow but does not affect it  in a droplet one. When the 
theoretical predictions of speed of sound based on the classical and proposed models are compared with experimental 
data for air-water systems, it is shown that the proposed model presents a better agreement than the classical one. The 
difference observed in the theoretical behaviors may be attributed to the surface tension which tends to reduce the 
compressibility of the gas at very small concentrations of air by volume. 
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