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Abstract. In this work a technique for the simulation of the filling stage of the injection molding process with a finite volume
method and unstructured meshes is presented. The modified-Cross model with Arrhenius temperature dependence is employed
to describe the viscosity of the melt. The temperature field is 3D and it is solved using a semi-Lagrangian scheme based on
the finite volume method. The employed unstructured meshes are generated by Delaunay triangulation and the implemented
numerical method uses the topological data structure SHE – Singular Handle Edge.
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1. Introduction

Fluid flows are governed by equations known as conservation equations: momentum conservation equation, mass
conservation equation, also known as continuity equation, and energy conservation equation (Anderson Jr., 1995; Panton,
1996).

Due to the governing equations complexity, obtaining analytical solutions is not trivial, and in many situations and
applications, the numerical simulation requires the use of high efficiency numerical techniques and high performance
computational resources. One of those applications is found in industries of manufacturing plastic products from injection
of molten polymers, in a process called Injection Molding.

The flow of a fluid characterized by high viscosity in a narrow gap is a problem typically found in processes of injec-
tion molding. In this case, the flow can be described by few suitable simplifications in the three dimensional conservation
equations, resulting in a formulation known as Hele-Shaw approach. This approach is also called 21/2D approach, refer-
ring to limitations of the mould geometry to narrow, weakly curved channels. Thus the ratio of the cavity thickness and
the characteristic length in the cavity mid-plane must be much less than unity.

In this work a technique for the simulation of the injection molding process of polymer is presented. This technique
considers important aspects to guarantee the quality of the part, such as heat transfer by the walls and the points of insertion
of the mold, and the influence of the temperature on the polymer fluidity. The implemented numerical method uses the
topological data structure SHE – Singular Handle Edge (Nonato et al., 2002), which is capable to deal with boundary
conditions and singularities, aspects commonly found in numerical simulations of fluid flow.
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The governing equations are resolved using an unstructured mesh, generated by Delaunay triangulation (Shewchuk,
1999; Niceno, 2001) and the discretization method is based on the finite volume formulation (Baliga and Patankar, 1981;
Maliska, 1995), using control volumes generated by the median method (Maliska, 1995).

2. The Governing Equations

The three-dimensional conservation equations, governing of the fluid motion, can be written as follow:
Continuity Equation

∂ρ

∂t
+ (∇ · ρ~v) = 0 (1)

Momentum Equation

∂

∂t
(ρ~v) = ρ~g + [∇ · σ]− [∇ · ρ~v~v] (2)

Energy equation

ρcp

(
∂T

∂t
+ ~v · ∇T

)
= βT

(
∂p

∂t
+ ~v · ∇p

)
+ p∇ · ~v + (σ : {∇~v}) +∇ · (k∇T ) (3)

These equations are quite general and hold for all common fluids. With current computers, solving them in com-
plicated domains, as required to simulate injection molding with cavities, is still a very difficult task. In the last two
decades, several researchers have been trying to analyze the injection molding process using different simplifications and
approaches limited by the available computational resources (Vasconcellos, 1999; Chang and Yang, 2001). Thus, to ob-
tain solutions in real time some suppositions using data for most commonly employed materials are employed with the
aim of promoting simplifications in the governing equations.

Such simplifications can be done on Eq. (1), (2) and (3), using the following assumptions:

i. During the filling phase, the fluid is considered incompressible;

ii. The fluid is considered a Generalized Newtonian Fluid;

iii. The thermal conductivity of the material is assumed constant;

iv. Dimensional analysis is employed to eliminate low magnitude terms in each equation;

Using the above assumptions about material behavior and dimensional analysis, equations (1) to (3) are reduced to the
following:

Continuity Equation

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0 (4)

Momentum Equations

∂p

∂x
=

∂

∂z

(
η
∂vx

∂z

)
,

∂p

∂y
=

∂

∂z

(
η
∂vy

∂z

)
,

∂p

∂z
= 0 (5)

Energy Equation

ρcp

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y

)
= ηγ̇2 + k

∂2T

∂z2
(6)

Further simplification is possible by integrating the momentum and continuity equations, realizing that the pressure
field is two-dimensional, as shown by Eq. (5).

v. Simplification by mathematical analysis.

In order to obtain an expression for the pressure, which is a function ofx andy only, it is convenient to integrate
the momentum and continuity equations across the thickness. The resulting equation is called Hele-Shaw equation:

∂

∂x

(
S2

∂p

∂x

)
+

∂

∂y

(
S2

∂p

∂y

)
= 0 (7)

whereS2 is called fluidity.

For symmetrical moldsS2 is defined by:

S2 =
∫ h

0

z′2

η
dz′ (8)
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3. Resulting Equations

After those assumptions, the governing equations for the average quantities of the fluid flow, during mold filling, can
be written as:

∂

∂x

(
S2

∂p

∂x

)
+

∂

∂y

(
S2

∂p

∂y

)
= 0 (9)

ρcp

(
∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y

)
= ηγ̇2 + k

∂2T

∂z2
(10)

In this work the fluid flow field is considered symmetric, therefore the equations for componentsvx andvy of the
velocity must be computed only for half of mold and are given for:

vx = −∂p

∂x

(∫ z

0

z′

η
dz′ −

∫ h

0

z′

η
dz′

)
and vy = −∂p

∂y

(∫ z

0

z′

η
dz′ −

∫ h

0

z′

η
dz′

)
(11)

The equations (9) and (10) are solved using the finite volume method on an unstructured mesh, generated by the
EasyMesh, a two-dimensional mesh generator based on Delaunay triangulation (Niceno, 2001). All the calculations are
elaborated using the topological data structure SHE –Singular Handle Edge(Nonato et al., 2002).

3.1. Boundary Conditions

For the injection molding problem, boundary conditions connect the solution of the pressure and thermal distributions
in the cavity. Actually, the equation of the pressure (9) is coupled to the equation of the energy (10) since the viscosity of
the material, which affects the pressure, is determined by both temperature and shear rate.

The equations (9) and (10) should be solved subject to the following boundary conditions:

1. Assuming the molds are vented, the pressure is zero at the free surface;

2. The pressure or the flow rate is defined in the inlet regions;

3. The pressure gradient in the normal direction is zero in any impermeable boundary;

4. The temperature in the cavity wall or in some interior point to the wall is defined;

5. The temperature gradient in thez-direction is zero in the center plane of the cavity;

6. The melt temperature is defined in the inlet regions.

3.2. Viscosity Model

The viscosity model chosen in this work is the modified-Cross Model with Arrhenius temperature dependence (Chang
and Yang, 2001):

η(T, γ̇) =
η0(T )

1 +
(

η0
γ̇

τ∗

)1−n with η0(T ) = B exp
(

Tb

T

)
(12)

wheren is the power law index,η0 is the zero shear viscosity,τ∗ is the parameter that describes the transition region
between zero shear rate and the power law region of the viscosity curve. For polystyrene, the model constants are given
by n = 0, 2838, B = 2, 591 × 10−7 Pa s andτ∗ = 1, 791 × 104 Pa, Tb = 11680K. The density, the specific heat and
the thermal conductivity are, respectively, given forρ = 940 Kg/m3, cp = 2100 J/Kg K andk = 0, 18 W/m K (Chen
et al., 1998).

4. The Solution Process

The numerical solution of the governing equation for the filling phase is done in three main stages: calculation of the
pressure field, calculation of the temperature field and, finally, advancement of the free surface (Kennedy, 1995).

Since the fluidity depends on the viscosity, which in turn depends on both temperature and shear rate, the equations
(9) and (10) must be solved simultaneously. However, for the numerical solution, the equations can be decoupled using
small time increments (steps). At a particular time, the temperature is assumed constant and the pressure field is calculated
assuming a value for the viscosity at that temperature. Making sure that the time steps are sufficiently small, this procedure
guarantees satisfactory results.

The sequence of the solution process is as follows:
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1. Solution of pressure equation

(a) Calculation ofS2;
(b) Calculation of the pressure field;
(c) Determination of the velocity field;
(d) Determination of the shear rate;
(e) Calculation of the viscosity;

The steps of (a) to (e) are repeated until the variation of the pressure, in two successive iterations, is smaller than a
defined tolerance.

2. Solution of the temperature equation

(a) Calculation of the convective and the viscous heating terms;
(b) Calculation of conduction term;

3. Moving the free surface

(a) Since the flow rate is known in each control volume, it is possible to choose the time increment such that only
one control volume will fill in the next time-step. Therefore, the free surface is advanced appropriately.

The pressure equation is solved using a Finite Volume Method. The prediction of the free surface position is obtained
by a Volume Tracking Method, and the temperature equation is solved using a Finite Volume Method for the calculation
of the convective and viscous heating terms and a Finite Difference Method for the calculation of the conduction term and
for the time progress.

5. Solution of Pressure Equation

Defining the flux~J by ~J = −S2∇p, the pressure equation (9) can be written as:

∇ · ~J = 0 (13)

Similarly to other methods for obtaining approximated equations from balance equations, the procedure of the finite
volume method consists on the integration of the differential equation in the conservative form in the control volume. An
example of control volume created by the median method and utilized in this work is shown in the Fig. 1, where it can be
seen that it is composed by contributions of several elements of the type123.

Figure 1: Control volume for the median method (Maliska, 1995).

Integrating Eq. (13) in the control volume and applying the Gauss Divergence Theorem, it results:∫
S

~J · ~n dS = 0 (14)

whereS is the closed boundary ofV and~n is an unit outward normal toS.
The surface integral, calculated in the control volume of the vertex1, as illustrated in the Fig. 1, results in:∫ 0

a

~J · ~n dS +
∫ c

0

~J · ~n dS + [contributions from other elements associated to node 1]= 0 (15)

Since the flux~J depends on the partial derivatives ofp, the integration given by the equation (15) requires the value of
those derivatives along the linesa0 and0c. However, the values ofp, are stored in the vertices of the triangular elements.
It is necessary, therefore, to establish an interpolation function forp. The chosen interpolation function forp is:

p = Ax + By + C (16)
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With the values ofp1, p2 andp3 and the values of the coordinates(x, y) in the points 1, 2 and 3, it is possible to find
out the values of constantA, B andC, which are given by:

A =
[(y2 − y3)p1 + (y3 − y1)p2 + (y1 − y2)p3]

D
(17)

B =
[(x3 − x2)p1 + (x1 − x3)p2 + (x2 − x1)p3]

D
(18)

C =
[(x2y3 − x3y2)p1 + (x3y1 − x1y3)p2 + (x1y2 − x2y1)p3]

D
(19)

where:

D = (x1y2 + x2y3 + x3y1 − y1x2 − y2x3 − y3x1) (20)

Recalling that the flux vector is given by:

~J = (Jx, Jy) =
(
−S2

∂p

∂x
,−S2

∂p

∂y

)
(21)

and that it is possible to obtain the partial derivatives ofp with respect tox andy using the interpolation function (16), the
componentJx andJy result in:

Jx = −AS2, Jy = −BS2 (22)

Substituting the expressions of Eq. (22) in Eq. (15), it is possible to calculate the integrals alonga0 and0c:∫
S

~J · ~n dS =
∫ 0

a

~J · ~n dS +
∫ c

0

~J · ~n dS = AS2(ya − yc) + (BS2)(xc − xa) (23)

Substituting the expressions forA andB in Eq. (23), the integration along the surfaceS of the element123 relative
to the control volume associated to the vertex1 results in:∫ 0

a

~J · ~n dS +
∫ c

0

~J · ~n dS = C11p1 + C12p2 + C13p3 (24)

where the coefficients are given by:

C11 =
S2

D
[(ya − yc)(y2 − y3) + (xa − xc)(x2 − x3)] (25)

C12 =
S2

D
[(ya − yc)(y3 − y1) + (xa − xc)(x3 − x1)] (26)

C13 =
S2

D
[(ya − yc)(y1 − y2) + (xa − xc)(x1 − x2)] (27)

The contribution for the control volumes of the vertices 2 and 3 can be computed analogously. Calling

pe = [p1 p2 p3]
t (28)

the vector of the pressures in the element123, the contribution for the control volumes of the element123, associated to
the vertices1, 2 and3 of the elemente,

ue = [u1 u2 u3]
t (29)

can be calculated byue = Ce pe whereCe is a3 × 3 matrix constituted by the coefficientsCij , with 1 ≤ i, j ≤ 3 of the
vertices1, 2 and3.

The calculation of matrixCe, and consequently, of the contributionue, is made for each mesh element. Therefore, it
is necessary to add all the contributions due to all then mesh elements. As the elements and the vertices of the mesh are
enumerated, a procedure to add these contributions consists of calculating the matrixCe of the elements and to assemble a
sparse matrixK, of dimensionn×n. The contributions for the vectorue, in the case of prescribed pressure, are mounted
in vectorF , resulting in the linear system:

K p = F (30)

This linear system is symmetric and it is solved by the Conjugate Gradient Method. After obtaining the solution, the
values ofp are determined in all the vertices of the triangular grid, that is, at the center of the control volumes where the
conservation balance of the pressurep were computed.

There are two convergence criteria applied on pressure calculation. The first one is employed in the Conjugate Gradient
Method inner iteration, and it was established asε1 = 10−7. The second one is employed in the outer iteration, described
on Section 4, item 1, where thel2 norm of the difference between the pressure at two consecutive iterations must be lower
thanε2 = 10−7.
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6. Moving the Free Surface

For the identification and the advancement of the fluid free surface, the Volume of Fluid (VOF) technique (Ransau,
2002) is used. This strategy consists in the application of the mass conservation equation, in the integral form,∫

V

(
∂φ

∂t
+∇ · (~vφ)

)
dV = 0 (31)

whereφ is the filling factor, to the control volume which involves a vertex and in the discretization of the equation in the
usual way employing finite volumes.

This filling factor ranges to 0 to 1: ifφ of a vertex is equal to 1, means that the associated control volume is completely
full of fluid and if φ of the vertex is equal to 0, then the associated control volume associated is completely empty.
Intermediate values ofφ indicate that the control volume is partially full and represent the free surface position.

After calculation of the time derivative of theφ factor,(
∂φ

∂t
), for all mesh vertices, it is possible to calculate the time

step,dt, that is necessary to accurately fill one control volume associated with a vertex whose0 ≤ φ ≤ 1. At each time
step, the time interval is chosen such that only one control volume is filled. The flux on Eq. (31) are computed only for
full control volumes. This strategy does not demand specific treatment for any control volumes and results in a scheme
with low numerical diffusion.

7. Solution of Temperature Equation

The chosen strategy to calculate the contributions of the temperature field is a semi-Lagrangian method (Phillips and
Williams, 2001). The basic idea is to follow a particle during its trajectory over the mesh.

Consider the energy equation (10) written in terms of the material derivative, as follow:

DT

Dt
= f where f =

1
ρcp

(
ηγ̇2 + k

∂2T

∂z2

)
(32)

which can be evaluated as
T (pa, t + dt)− T (pa, t)

dt
= f (33)

wherepa is an arbitrary particle. Choosing a particle that occupies the position of a vertex at timet + dt and writing this
expression in terms of coordinates~x = (x, y), we have:

T (~x, t + dt) = T (~x− d~x, t) + dt f (34)

whered~x = ~v dt. Notice that~x is the position occupied in the timet + dt by a fluid particle that occupied the position
~x− d~x in the timet. Considering a linear approximation forT in the triangle that contains~x, thenT (~x− d~x, t) can be
approximated using a truncated Taylor expansion:

T (~x− d~x, t) = T (~x, t)− d~x · ∇T (35)

Substituting the expression (35) in (34), it is obtained:

T (~x, t + dt) = T (~x, t)− dt~v · ∇T + dt f (36)

where∇T is computed at the element that contains the particlepa at timet, that is,∇T = ∇T (~x − d~x, t), and~v is the
velocity at the vertex.

7.1. Calculating the Convection Term

The term of the temperature equation which represents the convection in the fluid flow is given by the product~v · ∇T .
The calculation of the gradient ofT is analogously made to the of the pressure gradient, using a linear interpolation. The
choice of the value of the velocity and temperature gradient to compute the product~v · ∇T , for each vertex, is made as
follow:

1. For each triangle

(a)
∂T

∂x
and

∂T

∂y
are calculated according to the interpolation function forT ;

2. For each triangle vertex, it is verified if a particlepa at the vertex at the timet + dt, is originated from this triangle
(element) at the timet performing the following steps:

(a) the vector product is calculated between the velocity vector in the cell and the vectors that compose the
incident edges to that vertex;

(b) If those two products have different signs, then the particlepa belongs to that triangle and therefore, the
product~v · ∇T can be done with the value of the velocity at that vertex. The result is stored in the vertex
corresponding to the coordinate~x.
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7.2. Calculating the Viscous Heating Term

The term of the temperature equation that represents the viscous dissipation in the fluid flow is given byηγ̇2, with

shear ratėγ given byγ̇ =

√(
∂vx

∂z

)2

+
(

∂vy

∂z

)2

.

The derivatives
∂vx

∂z
and

∂vy

∂z
can be obtained using the equations of componentsvx andvy of the velocity that, for

a symmetrical flow, are given by the equation (11). When those expressions are substituted in the expression of the shear
rate, we have:

γ̇ =
z

η
|∇p| (37)

Substituting the expression of the viscosity (12) in the equation (37), the shear rate can be written as:

γ̇ = |∇p| z

η0

[
1 +

(
η0

γ̇

τ∗

)1−n
]

(38)

Defining a functionG = G(γ̇) as:

G(γ̇) = γ̇ − |∇p| z

η0

[
1 +

(
η0

γ̇

τ∗

)1−n
]

(39)

it is possible to use Newton’s method and to find the root of that equation, using the following iteration function:

γ̇k+1 = γ̇k − G(γ̇k)
G′(γ̇k)

(40)

whereG′(γ̇k) the derivative ofG(γ̇k) with respect to thėγk.
By knowing, then, the value of the shear rate for a certain value ofz, the value of the viscosity in this thickness is

determined using the equation (12), and, finally, the product of that variable for the square of the shear will result in the
value of the viscous dissipation in that point.

7.3. Calculating the Conduction Term

The conduction, represented by the termk
∂2T

∂z2
, is approached by a centered finite difference scheme, respecting the

boundary conditions for the temperature:

k
∂2T

∂z2
= k

Ti,k+1 − 2Ti,k + Ti,k−1

dz2
(41)

where the indexi varies with the coordinates(x, y) of the mesh and the indexk, with the coordinatez. The finite

difference mesh in the space directionz is defined as a mesh ofNz layers and with a spacingdz =
h

Nz
.

7.4. Solution of Temperature Equation

After having established the strategies for the solution of the energy equation in the space directionsx, y andz, it is
necessary to establish the strategies for the transient solution. The evaluation of the temperature at the timen + 1, is done
in the following way: the convective and viscous heating terms are evaluated in the timen, and the conduction term will
define the employed finite difference scheme, which could be evaluated in the timen, resulting in an explicit scheme, in
the timen + 1, resulting in an implicit scheme, or in both times, by making an average between them, resulting in an
Crank-Nicolson scheme.

8. Results

The solution of the pressure distribution has been validated considering constant fluidity against analytical solutions
(the melt is considered as a Newtonian fluid and the fluid flow is considered isothermal). The energy equation solution
has been validated against an one-dimensional analytical solution of the transport of a sharp temperature discontinuity by
a constant velocity field (Estacio, 2004; Estacio and Mangiavacchi, 2004). In this section we present two representative
results of solving equations (9) and (10) for general situations, using prescribed inlet velocity. The simulation data are:
inlet temperatureT = 513K, the wall temperatureTw = 313K, the prescribed velocityv0 = 10−2 m/s, the reference
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a)

2 cm

     10 cm

 10 cm

b) 50 cm

30 cm

20 cm

20 cm

 5 cm

Figure 2: Molds used in the simulations: 2(a) rectangular mold and 2(b) complex l-shaped mold with two circular inser-
tions.

inlet prescribed pressurep0 = 105 N/m2, mold thicknessh = 10−2 m and number of layers for the solution of the
three-dimensional energy equationNz = 5. The material properties are the same as the ones described in Section 3.2.

The first simulation was conducted using a rectangular mold, whose dimensions are shown in Fig. 2(a). The unstruc-
tured triangular mesh built on the rectangular mold has 313 elements. This relatively coarse grid was chosen for this test
because it produces better visualization of results. For the temperature field, only the elements completely full of fluid
are shown with the purpose of illustrating the advancing of the free surface. The time steps employed in this simulation
rage from 0,0066 to 1,6466 seconds with an average value of 0,2795 seconds. The figures 3, 4 and 5 show the pressure,
the velocity vector and the three-dimensional temperature fields at the center plane of the cavity, respectively. They show
four stages of the mold filling, ordered as follow: right after the flow had started, att = 5.09 s; at two intermediate times,
t = 17.23 s andt = 31.75 s; and near the end of the injection, whent = 46.37 s.
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Figure 3: Four stages of pressure solution for a rectangular mold. The values are scaled byp0.
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Figure 4: Velocity vectors obtained after the calculations for the pressure distribution.

 0
 0.025

 0.05
 0.075

x

 0.025
 0.05

 0.075
 0.1

y

 512
 512.5

 513
T

 0
 0.025

 0.05
 0.075

x

 0.025
 0.05

 0.075
 0.1

y

 512
 512.5

 513
T

 0
 0.025

 0.05
 0.075

x

 0.025
 0.05

 0.075
 0.1

y

 512
 512.5

 513
T

 0
 0.025

 0.05
 0.075

x

 0.025
 0.05

 0.075
 0.1

y

 512
 512.5

 513
T

Figure 5: Four stages of the temperature distribution at the cavity center plane, i.e.,z = 0, during the mold filling with
prescribed velocity.

According to mass conservation, the exact time for the mold filling is 50 seconds and, according to the simulation, the
necessary time of injection for the total mold filling was 49.41 seconds, which corresponds to an 1.18 % error. Simulating
the fluid flow in the conditions described previously, but using a mesh with 1003 elements, the predicted time of injection
becomest = 49.82 s, resulting in an 0.36 % error.

The profiles of the temperature distribution along the mold, that is, the evolution of the temperature distribution with
respect to both mold length and the layer, are presented in the Fig. 6. This simulation was done also considering 13 and 21
layers for the discretization inz-direction. Therefore, the approaches for the profiles of the three-dimensional temperature
in the common layers of the mold can be compared. In this case, the common layers happen whenz = 0, z = 0, 0025,
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Figure 6: Profiles of the three-dimensional temperature distribution of along the mold, for the point(x, y) such that
y = 0, 05 and0 ≤ x ≤ 0, 1 plotted for the layersz = 0, z = 0, 0025, z = 0, 005 andz = 0, 0075 m, respectively, at the
end of the injection. The temperature of the last layer (z = 0, 01) is prescribed and given byTw = 313 K.

z = 0, 005 andz = 0, 0075 meters, and the comparison among them is illustrated in the Fig. 7. For a better visualization
of the considered results, some layers of the discretization in thez-direction were omitted.
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Figure 7: Profiles of the distribution of the three-dimensional temperature along the mold, for the point(x, y) such that
y = 0.05 and0 ≤ x ≤ 0.1, using 5, 13 and 21 layers, respectively. The temperature of the last layer (z = 0, 01) is
prescribed and given byTw = 313K.

A l-shaped mold with two circular insertions, whose dimensions are shown in Fig. 2(b) was used in the second
simulation. The unstructured triangular mesh built on the mold has 563 elements and the time steps employed in this
simulation rage from 0,0008 to 1,4856 seconds with an average value of 0,1783 seconds.
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Figure 8: For stages of the pressure solution for a l-shaped mold with two circular insertions using prescribed velocity.
The values are scaled byp0.
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Figure 9: Velocity vectors obtained after the calculations for the pressure distribution.

The figures 8, 9 and 10 show the pressure, the velocity vector and the temperature fields at the center plane of the
cavity, respectively, during the numerical simulation of the l-shaped mold filling. They show four stages of the filling of
the mold: right after the flow had started, att = 15.38 s; at two intermediate times,t = 37.21 s andt = 46.41 s; and near
the end of the injection, whent = 56.53 s. In this second simulation, it is possible to observe the capability of the present
model to deal with splitting and remerging of the free-surface/melt front during the filling process. The prediction and
localization of this effect are essential to guarantee the final quality of the part since the remerging regions are one of the
most fragile areas of the molded part.

The predicted injection time is57.48 s, and the exact time, based on mass conservation is52.5 s, resulting in an
8.41% error which is quite large. However, using a finer mesh with 5546 elements, the predicted injection time is given
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Figure 10: Four stages of the temperature distribution at the cavity center plane, i.e.,z = 0.

by 52.61 s, resulting in an0.20% error.

9. Conclusion

This work presented a finite volume method over an unstructured mesh for solving the governing equations of fluid
flow during the filling phase of injection molding. This methodology allows to simulate complex geometries without
excessive computational efforts, producing temperature and shear stress distributions and real injection times. Thus, the
proposed method may be considered an useful tool for the design, analysis and troubleshooting of injection molding
process. This fast and simple prediction tool provides a 3-dimensional temperature distribution, including heat transfer
and viscous dissipation effects, which is sufficiently accurate for most applications.

The meshes used in the simulations can be considered coarse, but the choice was based on a better visualization of
the obtained data. However, using finer meshes in those problems, it is noticed a decrease in the numerical error in all the
cases, what means that the implemented method is convergent.
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