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Abstract. The growth of Gaértler vortices in boundary layers over concave surfaces is responsible for a strong
distortion of the velocity profiles in the normal and spanwise directions. The resulting inflectional velocity profiles
are subject to secondary instability which may result in the development of horseshoe wvortices. This type of
secondary instability is known as the varicose mode. In the present study the varicose mode is investigated using
direct numerical simulation. The governing equations based on the vorticity-velocity formulation are solved using
compact finite differences in the normal and longitudinal directions. In the spanwise direction the flow is assumed
periodic. A Runge-Kutta time marching scheme was used to integrate in time. The differences between the present
results and the results for secondary stability from other authors are discussed.

keywords: Gortler Vortices, Secondary stability, Hydrodynamic instability, Laminar flow transition, horseshoe
vortices.

1. Introduction

The centrifugal instability mechanism for boundary layers over concave surfaces is responsible for the de-
velopment of counter-rotating vortices, aligned in the streamwise direction, known as Gortler vortices (Gortler,
1940). These vortices develop mushroom type structures resulting in strongly inflectional streamwise velocity
profiles both in the normal and spanwise directions. These velocity profiles are unstable to others disturbances
and secondary instability may set in either as a sinuose or a varicose mode as found experimentally by Swearingen
and Blackwelder, 1987.

Hall and Horseman, 1991 analyzed the secondary stability characteristics of Goértler vortices. They present
the eigenfunctions of the streamwise u and wall normal velocity component v of the most unstable modes.
In Fig. 1 their streamwise eigenfunction u for the varicose mode is shown. This eigenfunction was obtained
by the secondary stability analysis of a velocity profile corresponding to T = 100 cm of the Swearingen and
Blackwelder, 1987 experiment. They considered a spanwise wavelength A = 2,3 cm, which corresponds to the
wavelength of one particular vortex pair found by Swearingen and Blackwelder, 1987. Their eigenfunction for
the wall normal velocity component v is shown in Fig. 2. An amplitude peak was found for u at the top of the
mushroom structure centered with respect to the upwash region. Two smaller amplitude peaks were found on
each side of the mushroom.

Yu and Liu, 1991 and Yu and Liu, 1994 studied the linear stability of the distorted streamwise profile
caused by the Gortler flow. The experiment of Swearingen and Blackwelder, 1987 was again used as reference.
Their analysis corresponds to the streamwise position T = 90 cm of the experiment. They assumed that the
spanwise wavelength was A = 1,8 cm. This value corresponds to the mean spanwise wavelength observed in
the experiments. Both sinuose and varicose modes were analyzed. Yu and Liu, 1994 show the most unstable
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Figure 1: Autofunction u of the secondary insta- Figure 2: Autofunction v of the secondary insta-
bility of the varicose mode (Hall and Horseman, bility of the varicose mode (Hall and Horseman,
1991). 1991).
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Figure 3: Secondary instability Autofunction u Figure 4: Secondary instability Autofunction v
for the varicose mode (Yu and Liu, 1994). for the varicose mode (Yu and Liu, 1994).

eigenfunctions for the w, v and w component velocities. Those results for the varicose mode are shown in the
Figs. 3, 4 and 5. The results are in qualitative agreement with the results obtained by Hall and Horseman,
1991 regarding the location of the velocity peaks with respect to the mushroom structure.

Li and Malik, 1995 also used the experiment of Swearingen and Blackwelder, 1987 to analise the stability of
the Gortler flow. They performed an inviscid secondary stability analysis for the profile found at z* = 95 cm.
Their most unstable varicose mode eigenfunction v is shown in Fig. 6. The second most unstable varicose mode
eigenfunction u was also obtained and is shown in Fig. 7. The streamwise isovelocity lines are also shown. One
can observe that the position of the eigenfunction u is strongly related to the inflection point in the velocity
profile.

In the present work the secondary stability of the Gortler flow is analyzed by means of spatial direct
numerical simulation. High frequency disturbances were introduced in a flow that was destabilized first by
centrifugal stability, causing the birth of Gortler vortices. The flow parameters adopted for this investigation
are the same used in the experiment of Swearingen and Blackwelder, 1987. Only secondary instability of the
varicose type will be considered, allowing a reduction in the computational cost due to the symmetries present
in the resulting solution vectors with respect to the spanwise direction.

2. Formulation

In this study, the governing equations are the incompressible, unsteady Navier-Stokes equations with constant
density and viscosity. They consist of the momentum equations for the velocity components (u,v,w) in the
streamwise direction (z), wall normal direction (y) and spanwise direction (z):

ou ou ou ou  Op 9
EvLu%Jrva—waw&—faxwLV u, (1)
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Figure 5: Secondary instability Autofunction w for the varicose mode Yu and Liu, 1994.
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Figure 6: secondary instability Autofunction u

for the most unstable varicose mode Li and Malik, Figure 7: secondary instability A.utofuncuon u
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and the continuity equation:
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where p is the pressure and V? = 2 (66—;2 + g—; + 59—;) .

The variables used in the above equations are non-dimensional. They are related to the dimensional variables

by:
3
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where Re is the Reynolds number, the terms with an overline are dimensional terms, L is the reference length,
U is the free-stream velocity, 7 is the kinematic viscosity and R is the radius of curvature.

The Gértler number is given by Go = (k.v/Re)'/2. In these equations, the term (Go?u?)/(v/Reh) is the
leading order curvature term, where h = 1 — k.y and k. is the curvature of the wall.

The vorticity is defined as the negative curl of velocity vector. Taking the negative curl of the momentum
equations (1) to (3) and using the fact that both the velocity and the vorticity fields are solenoidal, one can
obtain the vorticity transport equation in each direction:
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where ¢ = vw,; — uwwy, b = ww, — ww, and ¢ = ww, — vw, are the nonlinear terms resulting from convection,
vortex stretching and vortex bending.
Taking the definition of the vorticity and the mass conservation equation, one can obtain a Poisson equation
for each velocity component:
%u  O%u ow, 0%

02t 92" " away (8)
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(10)

The flow is assumed to be periodic and symmetric with respect to z = 0 in the spanwise (z) direction.
Therefore, the flow field is expanded in real Fourier cosine and sine series with K spanwise Fourier modes:

K K

(u,v,w,,b,c) = Z(U’“ Vie, Qz,., Bi, Ck) cos(Brz), (W, wy,wy,a) = Z(Wk,sz,ka,Ak)sin(ﬁkz). (11)
k=0 k=1

where () is the spanwise wavenumber given by 5, = 27k/)., and A, is the spanwise wavelength of the funda-
mental spanwise Fourier mode.

Substituting the cosine and sine transforms (Eq. 11) in the vorticity transport equations (5 to 7) and in the
velocity Poisson equations (8 to 10) yields the governing equations in the Fourier space:

ank 8Ak G02 ﬂk(Ug) 2
— 6B, — —— =ViQa, 12
ot oy OB =T =V (12)
) A
L + BrCr — 04 = ViQy, (13)

ot ox



Proceedings of the ENCIT 2004, ABCM, Rio de Janeiro — RJ, Brazil — Paper CIT04-0077

x3
Figure 8: Integration domain.
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where Vi = 2 (% + 25 —ﬁ,%).

The governing equations are complemented by the specification of boundary conditions. At the wall no-slip
and no penetration conditions are imposed, except at the suction and blowing region where the wall-normal
velocity component is specified. At the inflow the velocity and vorticity components are specified based on the
Blasius boundary layer solution. At the upper boundary the vorticity disturbances decay exponentially to zero.
Finally, at the outflow boundary the second derivative of all dependent variables are set to zero.

3. Numerical Method

The Eqs.(12) to (17) are solved numerically inside the integration domain shown schematically in Fig. 8.
The calculation are done on an orthogonal uniform grid, parallel to the wall. The fluid enters the computational
domain at x = xg and exits at the outflow boundary = = x,,4,. Disturbances are introduced into the flow field
using a suction and blowing function at the wall in a disturbance strip. This region is located between z; and
Z2. In the region located between z3 and x4 a buffer domain technique was implemented in order to avoid wave
reflections at the outflow boundary. In these simulations a Blasius boundary layer is used as the base flow.

At the inflow boundary (x = ), all velocity and vorticity components are specified. At the outflow boundary
(z = Tmas), the second derivative of the velocity and vorticity components in the streamwise direction are set
to zero. At the upper boundary (y = ymas) the flow is assumed to be irrotational. This is satisfied by setting
all vorticity and their derivatives to zero. An exponential decay of the velocity is imposed using the condition:

((ia—‘;lwz,ymax,t = \/ﬂ%vk(z;ymazat)- (18)

At the wall (y = 0), no-slip conditions are imposed for the streamwise (Uj) and the spanwise (W}) velocity
components. For the wall-normal velocity component (Vj) the non-permeability and no-penetration conditions
are imposed in all points at the wall except between x; and x2, where the disturbances are introduced. In
addition, the condition 9V}, /0y = 0 is imposed to ensure conservation of mass. The equations used for evaluating
the vorticity components at the wall are:

0?Qy,. 9?Q,,
0x? 0xdy

0N,
a—zk = Bk Qs — ViVi. (19)
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The introduction of the disturbances at the wall is done via a slot in the region (i; < i < i), where 4; and
i are, respectively, the first and the last point of the disturbance strip, in the = direction. The function used
for the variation of the normal velocity V}, along the streamwise direction is:

Vi (4,0,t) = Asing(e) for i3 <i<iy and Vi(x,0,t)=0 for i<4iy and 4> o, (20)

where € = 7(i — i1)/(i2 — i1) and A is a real constant that can be chosen to adjust the amplitude of the
disturbance. The variable ¢ indicates the grid point location z; in the streamwise direction, and points ¢; and
io correspond to x; and zo respectively.

A damping zone near the outflow boundary is defined in which all the disturbances are gradually damped
down to zero. This technique is use to avoid reflections in the outflow boundary. Meitz and Fasel, 2000, adopted
a fifth order polynomial, and the same function is used in the present model. The basic idea is to multiply the
vorticity components by a ramp function f(z) after each step of the integration method. Using this technique,
the vorticity components are taken as:

Qk(zay) = fg(ﬂC)Qk(l‘,y,t), (21)

where Qi (z,y,t) is the disturbance vorticity component that comes out from the Runge-Kutta integration and
f2(x) is a ramp function that goes smoothly from 1 to 0. The implemented function was:

fa(z) = f(e) =1 — 6€® 4 15¢* — 1063, (22)

where € = (i — i3)/(i4 — i3) for i3 < i < i4. The points i3 and i4 correspond to the positions z3 and x4 in the
streamwise direction respectively. To ensure good numerical results a minimum distance between x3 and x4
and between x4 and the end of the domain - x,,4, should be specified. The zones in the simulations presented
here has 30 grid points in each region.

Another buffer domain, located near the inflow boundary is also implemented in the code. As pointed out
by Meitz, 1996, in simulations involving streamwise vortices, reflections due to the vortices at the inflow can
contaminate the numerical solution. The dumping function is similar to the one used for the outflow boundary:

f3(z) = f(e) = 6€® — 15€* + 1063, (23)

where € is e = (i — 1)/(i1 — 1) for the range 1 < ¢ < i;. All the vorticity components are multiplied by this
function in this region.

The time derivatives in the vorticity transport equations were discretized with a classical 4*" order Runge-
Kutta integration scheme (Ferziger and Peric, 1997). The spatial derivatives were calculated using a 6! order
compact finite difference scheme (Souza et al., 2002a; Souza et al., 2002b). The V-Poisson equation (16) was
solved using a Full Approximation Scheme (FAS) multigrid (Stiiben and Trottenberg, 1981). A v-cycle working
with 4 grids was implemented.

4. Numerical Results

In the current numerical study the parameters were identical to those used in the experiment of Swearingen
and Blackwelder, 1987. They considered the stability of a boundary layer over a concave plate with constant
radius R = 3,2 m and constant free stream velocity U, = 5 m/s. The Reynolds number based on the
characteristic length L = 10 cm was Re = 33124. The Gértler number at the inlet boundary was Go = 2, 389
and the dimensional wavelength was A = 1.8 c¢m, which corresponds to 3 = 34,9. Along the streamwise and
wall normal directions 441 and 321 grid points were used respectively. In the spanwise direction 11 Fourier
modes were used. In the experiment a non stationary disturbance of 130 Hz was observed, and a disturbance
with this frequency was introduced in the present numerical simulation.

Figures 9 to 11 present the root mean square (rms) of the non stationary disturbance velocity components in
the streamwise, normal and spanwise directions at the streamwise position x = 11.02. In this figures the mean
streamwise velocity profile due to the Gortler vortices is also shown by dashed contour lines, varying from 0.1
t0 0.9. In Fig. 9 the largest value of the wu,.,s of about 3.6% is located at the central region (z = 0). This s
peak is located above the wall where the mean flow streamwise velocity is 0.7U . This is the location of the
inflection point in the streamwise mean velocity component. This result are in qualitative agreement with the
results obtained by Hall and Horseman, 1991; Yu and Liu, 1994 and Li and Malik, 1995 for the first varicose
mode, with a single dominant peak at the head of the mushroom. The weaker peaks close to the wall as shown
in Fig. 9 are not captured by an inviscid analysis and are associated to viscous effects (Li and Malik, 1995).

The normal and spanwise disturbance velocity components have more complex structures with stronger v,
peaks located above and inside the mushroom. The w;,s has strong peaks on either sides of the mushroom.
Figure 10 presents the isolines of v;.,,s. The results are in qualitative agreement with Hall and Horseman, 1991
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Figure 12: Schematic representation of the for-
mation of horseshoe type vortices from Gortler

Figure 11: Contour: w,.,s. Dashed: GV. vortices (Floryan, 1991).

and Yu and Liu, 1994, with a velocity peak at the center. But in the present study the largest amplitudes of the
VUrms Occurred above the mushroom structure. This difference may be because Hall and Horseman, 1991 and
Yu and Liu, 1994 considered a parallel mean flow for the secondary stability analysis, discarding the normal
and spanwise velocity components of the mushroom.

The results for w,.,, shown in Fig. 11 are also in qualitative agreement with the analysis of Yu and Liu,
1994. In the present results the two peaks on either side of the mushroom head are farther apart from each
other when compared to the results from Yu and Liu, 1994. These peaks are located at the outer layer of the
mushroom, while in Yu and Liu, 1994 they are located inside the mushroom structure. Again, this discrepancy
with Yu and Liu, 1994 may be attributed to the parallel assumption used in that work.

Gortler vortices secondary instabilities have growth rates much stronger than the vortices itself, which
leads the flow to breakdown to a turbulent regime very fast. This fast growth justify the use of parallel flow
approximation. Nevertheless, for Gortler vortices, the spanwise plane is the one where the nonlinear effects are
stronger and the normal and spanwise velocity components may have a strong contribution to the development
of the secondary instability.

The development of the horseshoe type structure observed in the varicose mode was described by Floryan,
1991. In the upwash region, due to the resulting inflectional velocity profile, a Kelvin-Helmholtz inviscid
instability develops. Therefore, spanwise vorticity located at the head of the mushroom structure is generated.
This vorticity connect the counter-rotating longitudinal vortices and lift up, forming the head of the horseshoe.
A schematic representation of this process is shown in Fig. 12. The velocity field presented in Figs. 10 and 11
are well correlated to the structures associated with the mechanism described above.

The streamwise evolution of the secondary instability eigenfunction is presented in Fig. 13 to 15. Iso-contours
of the root mean square secondary instability streamwise velocity component for three different streamwise
positions (z = 9.46, 10 and 10, 48) are presented. The growth of the mushroom structure and the corresponding
growth of the secondary instability eigenfunction are shown. As the longitudinal vortices grow in intensity and
height, the strength of the secondary instability also grows. The u,..,s peak located at the center (z = 0) is
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Figure 13: Iso-velocity contours of wu,pys. = =
9,46.

Figure 16: Autofunction u amplitude variation
Figure 15: Iso-velocity contours u,m,s. = 10,48. in the streamwise direction. Unsteady Fourier
modes.

lifted by the mushroom and follows the position of the mean velocity profile inflectional point.

Figure 16 shows the streamwise amplitude variation of different Fourier modes. Only the time dependent
modes are shown. This modes are a consequence of the unsteady disturbance introduced at the suction and
blowing strip. Initially this unsteady modes are stable, but as the mushroom structure develops and promote
inflectional velocity profiles around x = 10, they grow as secondary instability to the new distorted mean flow.
This secondary instability evolves very rapidly in the streamwise direction leading the flow to a initial turbulent
state.

In Figs. 17 and 18 Q isosurfaces are shown for a given time ¢. The Q isosurfaces are obtained by the method
described in Dubief and Delvayre, 2000 and represent the vortical structure of the flow. The streamwise extent
covers a region from earlier nonlinear Gortler vortex up to the secondary instability region. These structures
agree with the structures observed experimentally (Swearingen and Blackwelder, 1987) and with the proposed
mechanism described by Floryan, 1991 and presented in Fig. 12.

5. Conclusions

In this work the secondary stability of Gortler vortices to non stationary disturbances were analyzed. The
results were in good agreement with results from previous investigations. The mushroom structures observed
in the experiment of Swearingen and Blackwelder, 1987 were recovered in the numerical simulation. The direct
numerical simulation model was able to take into account nonlinear, nonparallel and viscous effects which
result in small differences from previous investigations. By relaxing the symmetry hypothesis in the spanwise
direction, the sinuose mode of secondary instability will be investigated in a future work, along with the effect
of the Gortler vortices spanwise wavenumber.
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