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Abstract. A simulation of the rare�ed gas �ows is very important in many engineering �elds, e.g. microsystems,
electronic, aeronautics, etc. Nowadays, the development of MEMS(Micro-Electro-Mechanical Systems) atracts
many scientists and engineers because of its promising future. The size of a microsystem is already of the order
to the molecular mean free path and, under this condition the equations of Continuum Mechanics are not valid
and if one uses these equations his results will not agree with experimental data because the gas rarefaction is not
considered. The Knudsen number, de�ned as the ratio between the mean free path and a characteristic scale of
the gas �ow, characterizes the gas rarefaction. For moderately small Knudsen numbers the gas rarefaction can
be taken into account via the slip boundary conditions applied to the equations of the Continuum Mechanics. For
systems of gaseous mixtures there are three kinds of slip at the surface: viscous, thermal and di�usion slip. The slip
boundary condition are introduced via the slip coe�cients, which are calculated applying the methods of Rare�ed
Gas Dynamics on the basis of the Boltzmann equation. In the present work we determine the slip coe�cients
for three mixtures of the noble gases (Neon-Argon, Helium-Argon and Helium-Xenon) and study the in�uence
of the intermolecular interaction potential and the chemical composition of the mixture upon these coe�cients.
The knowledge of the slip coe�cients allow us to avoid a numerical solution of the kinetic Boltzmann equation
(which requires great computational e�orts) to solve some problems of engineering and to apply the equations of
Continuum Mechanics for moderately rare�ed gases.
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1. Introduction

The simulation of the rare�ed gas �ows is very important in many engineering �elds, e.g. electronic, aeronau-
tic, etc. Nowadays, the development of the Micro-Electro-Mechanical Systems (MEMS) atracts many scientists
and engineers because its promising future and it is one of the most revolutionary areas of technology.

The Knudsen number Kn, de�ned as the ratio between the molecular mean free path and a characteristic
scale of the gas �ow, characterizes the gas rarefaction. When Kn < 0.01 the Navier-Stokes equation with the
no-slip boundary condition for the gas velocity on a solid surface can be used to describe the gas �ow because
the gas rarefaction can be neglected.

However, when the Knudsen number is moderately small (0.01 ≤ Kn ≤ 0.1, slip regime) the gas rarefaction
must be taken into account and in this case the Navier-Stokes equation with the no-slip boundary condition
are not valid. One example of this situation ocurrs in a microsystem which nowadays already has the order to
the molecular mean free path. So, to describe the transport phenomena that appear in a gas �owing through
a microsystem we can apply the methods of the Rare�ed Gas Dynamics which are valid for any value of the
Knudsen number. The starting point of the rare�ed gas theory is the famous Boltzmann equation and the
solution of this equation is very di�cult and requires a great computational e�ort. To avoid a solution of the
Boltzmann equation in the range 0.01 ≤ Kn ≤ 0.1 and take into account a gas rarefaction we can solve the
Navier-Stokes equation with the slip boundary condition for the gas velocity on a solid surface. This boundary
condition is written as a function of the slip coe�cients and means that the gas velocity is not equal to zero on
a solid boundary but its tangential component depends on the velocity pro�le, temperature and concentration
(in the case of a gaseous mixture) near the surface. For a single gas there are two slip coe�cients, called viscous
and thermal slip coe�cients, and for a gaseous mixture there are three slip coe�cients which are called viscous,
thermal and di�usion slip coe�cients.

To use the Navier-Stokes equation with the slip boundary condition for the gas velocity on a solid surface
we need to know the numerical values of the slip coe�cients for the single gas or gaseous mixture considered in
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the problem. For a single gas an extensive list of the papers published up to 1998 about slip coe�cients with
a critical analysis and recommended data can be found in the review (Sharipov and Seleznev, 1998). Some
new results can be found in the Refs. (Barichello et al., 2001; Siewert, 2001; Siewert and Sharipov, 2002). In
practice one deals with mixtures more often than a single gas and there are very few works providing the slip
coe�cients for gaseous mixtures; see, for example, the Refs. (Ivchenko et al., 2002; Ivchenko et al., 1997; Lang
and Loyalka, 1970).

In the present work we determine numerically the viscous, thermal and di�usion slip coe�cients as a function
of the molar concentration for some mixtures of the noble gases using the methods of Rare�ed Gas Dynamics. A
study of the in�uence of the intermolecular interaction potential and chemical composition upon these coe�cients
is realized.

2. Statement of the problem

To calculate the slip coe�cients we consider a stationary �ow of binary gaseous mixture in the semi-in�nite
space x′ ≥ 0 over an in�nite solid surface �xed at x′ = 0. The pressure P of the mixture is assumed to be
constant over the whole space and equal to its equilibrium value P0. The temperature T and molar concentration
C of the mixture have longitudinal small gradients ξT and ξC, respectively. The slip boundary condition at the
surface (x′ = 0) is written as

u′y = σP
µv0

P0

∂u′y
∂x′

+ σT
µ

%

∂ ln T

∂y′
+ σC

µ

%

∂ ln C

∂y′
, v0 =

(
2kT0

m

)1/2

, % = %01 + %02, (1)

where u′y is the longitudinal component of the hydrodynamic velocity of the mixture, µ is the stress viscosity
of the mixture, k is the Boltzmann constant, %0α = n0αmα (α = 1, 2) is the mass density of species α, mα is
the molecular mass and n0α is the number density of species α. The dimensionless quantities σP, σT and σC are
the viscous, thermal and di�usion slip coe�cients, respectively.

The temperature and concentration of the mixture linearly depends on the y-coordinate

T (y) = T0(1 + yξT), ξT ¿ 1, (2)

C(y) = C0(1 + yξC), ξC ¿ 1, (3)
where y = y′/`0 is the dimensionless longitudinal coordinate and `0 is the molecular mean free path de�ned as

`0 =
µv0

P0
, (4)

and T0 and C0 are the temperature and concentration of the mixture in the equilibrium state. The molar
concentration C0 of the mixture is de�ned as

C0 =
n01

n01 + n02
. (5)

For further derivations we introduced the following dimensionless quantities:

x =
x′

`0
, cα =

(
mα

2kT0

)1/2

vα, uy =
u′y
v0

, (6)

where v0 is a characteristic velocity de�ned in Eq. (1), vα is the molecular velocity of species α.
We assume that the hydrodynamic velocity uy(x) linearly depends on the x-coordinate far from the surface,

i.e.

lim
x→∞

uy(x)
x

= ξu, (7)

where ξu is a constant velocity gradient assumed to be small (ξu ¿ 1). The Eq. (7) is valid out of the Knudsen
layer because x → ∞ means that the normal distance from the surface is larger than the molecular mean free
path `0. So, from the equations (1) and (7) we will have the following velocity pro�le far from the surface:

lim
x→∞

uy(x) = (σP + x)ξu + 2σTξT + 2σCξC. (8)

In this work we calculated the velocity pro�le uy(x) using the methods of the Rare�ed Gas Dynamics and
this pro�le gave us the slip coe�cients σP, σT and σC.
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3. Methodology

As we mencioned earlier, the starting point to solve problems in Rare�ed Gas Dynamics is the famous
Boltzmann equation. The �rst step to solve this equation is to linearize the distribution function. In the
present work we assumed the gradients of velocity ξu, temperature ξT and concentration ξC to be small, i.e. the
gas is weakly disturbed, and consequently the distribution function of each species can be linearized as

fα(r, c) = fM
α (y, c)[1 + hα(x, c)], hα ¿ 1, α = 1, 2, (9)

where

fM
α (y, c) = nα(y)

[
mα

2πkT (y)

]3/2

exp
{
−c2

αx + [cαy − (mα/m)1/2xξu]2 + c2
αz

T (y)/T0

}
, (10)

is the local Maxwellian corresponding to the state of the mixture far from the surface. The perturbation
functions hα obey the two coupled Boltmann equations (Ferziger and Kaper, 1972), which for the problem in
question read

cαx
∂hα

∂x
= `0

(
mα

2kT0

)1/2 2∑

β=1

L̂αβhα − cαy

[
2

(mα

m

)1/2

cαxξu +
(

c2
α −

5
2

)
ξT + ηαξC

]
, (11)

where

η1 = 1, η2 = − C0

(1− C0)
. (12)

L̂αβ is the linearized collision operator between species α and β, which in quite general form reads

L̂αβ =
∫

fM
0 w(vα,vβ ;v′α,v′β)[h′α + h′β − hα − hβ ]dvβdv′βdv′α, (13)

where w(vα,vβ ;v′α,v′β) is the probability density that two molecules of species α and β having the velocities
v′α and v′β will have sthe velocities vα and vβ , respectively, after a collision between them. The function
w(vα,vβ ;v′α,v′β) depends on the intermolecular interaction potential. The di�culty to solve the Boltzmann
equation is in the calculation of the collision operator and until today there are few works in which the exact
Boltzmann equation is solved. The model equations continue to be good tools for practical calculations because
they allow us to reduce essentially the computational e�orts. The idea of the model equation is to substitute
the exact expression of the collision operator by a simple expression satisfying the main properties of the former
(conservation of mass, momentum and energy and H-theorem). Many models were proposed for a gaseous
mixture; see, e.g. Refs. (Sirovich, 1962; Morse, 1964; Hamel, 1965; McCormack, 1973; Marin and Garzó, 1997).

In the present work we apply the McCormack model which provides the correct expressions of all transport
coe�cients (viscosity, thermal conductivity, di�usion and thermal di�usion) for a mixture. According to Ref.
(McCormack, 1973), the collision operator can be written as

L̂αβhα = −γαβhα + 2
(mα

m

)1/2
[
γαβuα − ν

(1)
αβ (uα − uβ)− 1

2
ν

(2)
αβ

(
qα − mα

mβ
qβ

)]
cαy

+4[(γαβ − ν
(3)
αβ )Πα + ν

(4)
αβ Πβ ]cαxcαy +

4
5

(mα

m

)1/2
[
(γαβ − ν

(5)
αβ )qα + ν

(6)
αβ

×
(

mβ

mα

)1/2

qβ − 5
4
ν

(2)
αβ (uα − uβ)

]
cαy

(
c2
α −

5
2

)
(14)

where

uα(x) =
1

π3/2

(
m

mα

)1/2 ∫
exp (−c2

α)hα(x, cα)cαydcα, (15)

is the longitudinal component of the hydrodynamic velocity of the specie α,

qα(x) =
1

π3/2

(
m

mα

)1/2 ∫
exp (−c2

α)hα(x, cα)cαy

(
c2
α −

5
2

)
dcα, (16)
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is the longitudinal component of the heat �ux vector of the specie α,

Πα(x) =
1

π3/2

∫
exp (−c2

α)hα(x, cα)cαxcαydcα, (17)

is the xy-component of the stress tensor of the specie α, and

ν
(1)
αβ =

16
3

mαβ

mα
nβΩ(11)

αβ , (18)

ν
(2)
αβ =

64
15

(
mαβ

mα

)2

nβ

(
Ω(12)

αβ − 5
2
Ω(11)

αβ

)
, (19)

ν
(3)
αβ =

16
5

m2
αβ

mαmβ
nβ

(
10
3

Ω(11)
αβ +

mβ

mα
Ω(22)

αβ

)
, (20)

ν
(4)
αβ =

16
5

m2
αβ

mαmβ
nβ

(
10
3

Ω(11)
αβ − Ω(22)

αβ

)
, (21)

ν
(5)
αβ =

64
15

(
mαβ

mα

)3

nβ

[
Ω(22)

αβ +
(

15
4

mα

mβ
+

25
8

mβ

mα

)
Ω(11)

αβ − 1
2

mβ

mα
(5Ω(12)

αβ − Ω(13)
αβ )

]
, (22)

ν
(6)
αβ =

64
15

(
mαβ

mα

)3 (
mα

mβ

)3/2

nβ

[
−Ω(22)

αβ +
55
8

Ω(11)
αβ − 5

2
Ω(12)

αβ +
1
2
Ω(13)

αβ )
]

. (23)

The quantity mαβ is the reduced mass and Ω(ij)
αβ are the Chapman-Cowling integrals given in Ref. (Ferziger

and Kaper, 1972) which depend on the intermolecular interaction potential. For the rigid-spheres model the
expressions for the Omega integrals are given in Ref. (Ferziger and Kaper, 1972) and for a realistic potential
see the Ref. (Kestin et al., 1984).

The parameter γαβ is proportional to the collision frequency between species α and β and it is presented in
Ref. (Sharipov and Kalempa, 2002).

The equation (11) is solved assuming the di�use scattering of gaseous molecules at the solid surface, i.e.

hα(x, cα) = 0 for cαx ≥ 0 at x = 0. (24)

Since the Eq. (11) is linear, its solution can be split into three independent parts as

hα = h(u)
α ξu + h(T)

α ξT + h(C)
α ξC. (25)

The bulk velocity of the mixture uy is related to the hydrodynamic velocities of the species as

uy =
[
1
%
(%1u1 + %2u2) + x

]
ξu, (26)

and, as consequence of the Eq. (25), the bulk velocity also can be split into three independent parts as

uy = [u(u)
y + x]ξu + u(T)

y ξT + u(C)
y ξC. (27)

When we use the Eq. (8) and (27) we obtain the slip coe�cients via the assymptotic behavior of the bulk
velocities u

(i)
y (i = u, T, C) far from the surface, i.e.

σP = lim
x→∞

u(u)
y (x), σT = 2 lim

x→∞
u(T)

y (x), σC = 2 lim
x→∞

u(C)
y (x). (28)

So, every coe�cient is calculated separately by solving the Eq. (11). These equations were solved by the
discret velocity method given in Ref. (Sharipov and Subbotin, 1993) with the relative numerical error less than
0.1%. The numerical accuracy was estimated by comparing the results for di�erent grid parameters.

4. Numerical results and discussion

The numerical results presented here are for the following mixtures of the noble gases: Neon-Argon, Helium-
Argon and Helium-Xenon. Such combinations represent mixtures of gases having quite di�erent mass ratios
and allow us to investigate the dependence of the slip coe�cients on this parameter.

To study the in�uence of the intermolecular interaction potencial upon the slip coe�cients we used the
rigid-spheres model and a realistic potential. In our numerical code we need the diameters of every specie and
in the case of the rigid-spheres they were calculated via the experimental data on the viscosities of the single
gases Helium, Neon, Argon and Xenon at temperature T = 300K given in Ref. (Kestin et al., 1984). For the
realistic potential the diameters of each specie are given in Ref. (Kestin et al., 1984).
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4.1. Viscous slip coe�cient

The Fig. (1) presents the viscous slip coe�cient σP as a function of the molar concentration C0.
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Figure 1: Viscous slip coe�cient σP vs molar concentration C0

From these data we may conclude:

(i) At the limits corresponding to a single gas (C0 = 0 and C0 = 1) the viscous slip coe�cient is exactly the
same as that obtained for a single gas in Refs. (Siewert and Sharipov, 2002,Sharipov, 2003).

(ii) We can say that the viscous slip coe�cient is not sensitive to the intermolecular interaction potential
because the di�erence between the results of σP for rigid-spheres and realistic potential is within 0.4% for
all mixtures considered in the present work.

(iii) If the mass ratio is large, a small concentration of the heavy species changes the viscous slip coe�cient
signi�cantly. For the mixture He-Xe with C0 = 0.99 (1% of Xe) the viscous slip coe�cient changes about
10% its relative value for a single gas.

(iv) The value of the viscous slip coe�cient increases by increasing the mass ratio. For the mixture He-Xe
(mass ratio equal to 32.804) the viscous slip coe�cient reaches the value 1.414. So, for the mixtures
considered here we can say that the viscous slip coe�cient varies in the interval from 1.018 to 1.414.

4.2. Thermal slip coe�cient

The numerical data on the thermal slip coe�cient σT obtained in the present work are given in Fig. (2).
From these data we may conclude the following:

(i) Like the viscous slip coe�cient, at the limits corresponding to a single gas (C0 = 0 and C0 = 1) the thermal
slip coe�cient is exactly the same as that obtained in Refs. (Sharipov, 2003;Siewert and Sharipov, 2002)
for a single gas.

(ii) In contrast to the viscous slip coe�cient, the thermal slip coe�cient is very sensitive to the intermolecular
interaction potential. The di�erence between the results for the rigid-spheres and that for the realistic
potential reaches 4%, 18% and 42% for the mixtures Ne-Ar, He-Ar and He-Xe, respectivaly, i.e., the
di�erence increases by increasing the mass ratio.

5



Proceedings of the ENCIT 2004, ABCM, Rio de Janeiro � RJ, Brazil � Paper CIT04-0059

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

σT

C0

Ne-Ar: Rigid spheres

rr r r r r r rr

r
Ne-Ar: Realistic potential

++ + + + + + ++

+
He-Ar: Rigid spheres

rr
r

r
r r

r
rr

r
He-Ar: Realistic potential

++ + + + + +
++

+
He-Xe: Rigid spheres

rr r r r r
r rr

r
He-Xe: Realistic potential

++
+

+

+

+
+

+

+

+

Figure 2: Thermal slip coe�cient σT vs molar concentration C0

(iii) For the rigid-spheres the thermal slip coe�cient at C0 = 0.5 is always smaller than that for a single gas,
while for a realistic potencial it is almost larger than that of a single gas. The strong dependence of this
coe�cient on the intermolecular interaction potential was noted previously in Ref. (Loyalka, 1990). So,
what results are more reliable? Since the diameters for the rigid-spheres were calculated from experimental
data on the viscosity of the single gases they cannot provide a good agreement with experimental data
on the other transport coe�cients. At the same time, the realistic potential provides experimental values
of all transport coe�cients. Naturally, the results based on the realistc potential are more reliable than
those based on the hard sphere model.

(iv) Considering that the values of the thermal slip coe�cient based on the realistic potential are more reliable
than those for the rigid sphere model we conclude that for a �xed value of the concentration C0 this
coe�cient increases by increasing the mass ratio. For the mixtures considered in the present work the
thermal slip coe�cient varies in the range from 1.171 to 1.592.

(v) For the mixture with large mass ratio (He-Xe) a small concentration of the heavy specie changes signi�cantly
the thermal slip coe�cient. In the mixture of He-Xe, 1% of Xe changes for 7% the thermal slip coe�cient
relatively its values for a single gas.

4.3. Di�usion slip coe�cient

The Fig. (3) presents the results obtained for the di�usion slip coe�cient vs molar concentration for the
mixtures considered in this work.

From these data we may conclude:

(i) The di�usion slip coe�cient is sensitive to the intermolecular interaction potential. The di�erence between
this coe�cient for the rigid-spheres and that for the realistic potential increases by increasing of the mass
ratio of the mixture. For the mixture with the largest mass ratio (He-Xe) this di�erence reaches 30%. This
sensibility to the intermolecular interaction potential was noted previously in the Ref. (Loyalka, 1975).

(ii) For all situations considered in this work the di�usion slip coe�cient is positive. This physically means
that the mixture �ows from the region with a lower concentration to the region of the higher concentration
of the light component.

(iii) The di�usion slip coe�cient is a monotonic function of the molar concentration and reaches its maximum
value for a given mixture at C0 = 1. Note, the value of σC at C0 = 1 must be considered as a limit

6



Proceedings of the ENCIT 2004, ABCM, Rio de Janeiro � RJ, Brazil � Paper CIT04-0059

value because the concentrationn (1 − C0) means that the �rst component of the mixture is single and
the di�usion slip phenomenon does not exist. So, the values that appear in the Fig. (3) correspond to the
concentration very close to unity but not equal to unity.
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Figure 3: Di�usion slip coe�cient σC vs molar concentration C0

5. Application of the slip coe�cients to a classical problem

In this section we presented an example of application of the viscous slip coe�cient to a classical problem.
Let us consider a �ow of gaseous mixture through a long tube caused by a longitudinal pressure gradient.
Assuming the slip boundary condition (1) the velocity pro�le is obtained from the Navier-Stokes equation as

u′y(r) = − 1
4µ

dP

dy′
(a2 − r2 + 2σPa`0), (29)

where a is the tube radius, r is the radial coordinate and the y′ coordinate is directed along the tube axis. If
we introduce the reduced �ow rate as

G = − 4P0

a3v0

(
dP

dy′

)−1 ∫ a

0

u′y(r)rdr, (30)

and then use the Eq. (29) into (30) we obtain

G =
δ

4
+ σP, δ =

a

`0
, (31)

where δ is the rarefaction parameter inversely proportional to the Knudsen number. In Ref. (Sharipov and
Kalempa, 2002) the �ow rate G of mixture through a tube was calculated numerically over the wide range of the
gas rarefaction δ on the basis of the kinetic equation. In terms of the kinetic coe�cients ΛPP e ΛPC tabulated
in Ref. (Sharipov and Kalempa, 2002), the quantity G reads

G = ΛPP − m2 −m1

m
(1− C0)ΛPC. (32)

In Table 1 the values of G for the mixture He-Ar at C0 = 0.5 calculated with σP = 1.151 by Eq. (31) are
compared with the numerical solution of the kinetic equation for the same mixture expressed by Eq. (32).

From this table one can see that the use of correct value for σP allow us to calculate the �ow rate G with
a good accuracy in the su�ciently large range of the gas rarefaction δ. So, one really extends the range of
applicability of the hydrodynamic equations if one uses the slip boundary condition with the correct value of
σP.
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Table 1: Reduced �ow rate G through a tube vs the rarefaction parameter δ, mixture of He-Ar at C0 = 0.5

δ (Sharipov and Kalempa, 2002) Eq. (31)
2 1.701 1.651
4 2.195 2.151
10 3.676 3.651
20 6.162 6.151
40 11.15 11.15

6. Conclusion

The viscous, thermal and di�usion slip coe�cients were calculated as a function of the concentration of
the mixtures Ne-Ar, He-Ar and He-Xe. For the mixture with a high ratio of the molecular mass, i.e. He-Xe,
the slip coe�cients di�ers signi�cantly from that for a single gas. The viscous slip coe�cient has a weakly
dependence on the intermolecular interaction potential while the thermal and di�usion slip coe�cients depend
on the interaction potential. The range of the slip coe�cients variation increases by increasing the mass ratio
of the species of the mixture. An example of application of the slip boundary condition to the Navier-Stokes
equation showed that the use the correctly calculated viscous slip coe�cient extends signi�cantly the range of
the gas rarefaction where the hydrodynamic equations can be applied.
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