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Abstract. The objective of this work is the numerical simulation of the vortex-shock interactions that appears in the transonic regime 
for the laminar flow in a two-dimensional base. The compressible Navier-Stokes equations are numerically solved using a finite 
volume discretization in combination with the skew-symmetric form of Ducros’ fourth-order numerical scheme. Results are obtained 
for Mach numbers ranging from 0.80 to 1.05 for a Reynolds number of 1,000. For subsonic Mach numbers, the visualization shows 
the acoustics waves generated by the boundary layers along the side walls and their progressive accumulation until their 
coalescence into a shock at supersonic Mach numbers. Also, the analysis of the visualizations shows a strong variation in the type of 
the vortex-shock interactions over the transonic range. For a Mach number of 1.05, the buffet phenomenon disappears, giving place 
to a steady recirculation region and trailing wake in contact with a steady expansion-compression wave system. 
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1. Introduction 
 

This work is aimed at the numerical simulation of the strong vortex-shock interaction that arises in the transonic 
flow over a two-dimensional base in laminar regime. This kind of interaction is the cornerstone of the transonic-buffet 
phenomenon, of high interest in the aerospace sciences.  Due to the complex nature of the vortex-shock interaction, not 
every numerical method is able to tackle this type of problems. Only shock-capturing schemes can obtain meaningful 
results. One drawback of this type of methods is the tendency to over dissipate in regions that are not shock waves, such 
as high shear-stress regions, resulting in the dumping of the phenomenon. In this work, a new type of sensor, proposed 
by Ducros et al. (1999) is used for appropriately trigging the artificial dissipation in order to minimize this problem. 

The numerical simulation of vortex-shock interactions has been the focus of many recent works. Yee et al. (1999) 
proposed a family of low-dissipative and high-orders shock-capturing methods using characteristic-based filters to 
minimize the numerical dissipation of the overall scheme. This methodology was successfully applied to the simulation 
of the vortex pairing in a time-developing laminar mixing layer, the shock-wave impingement on a spatially evolving 
laminar mixing layer and a compressible turbulent channel flow. The former two problems were also solved by Yee et 
al. (2000) using an entropy-splitting approach. This approach was also used by Sandham et al. (2002) in the numerical 
simulation of the compressible channel flow. The idea of a skew-symmetric splitting was presented by Yee and 
Sjogreen (2001) and used to simulate the complex two-dimensional shock/boundary-layer interaction in the laminar 
problem proposed by Daru and Tenaud (2001). All the above works used a finite-difference discretization. Ducros et al. 
(2000) proposed a family of high-order fluxes for conservative skew-symmetric-like schemes using structured meshes 
that can be used by a finite-difference or a finite-volume discretization. In this work, Ducros’ fourth-order skew-
symmetric scheme for a finite-volume discretization in conjunction with a third-order Runge-Kutta time-marching 
method is used. The resulting numerical scheme is fourth-order accurate in space and third-order accurate in time. 
 
2. Mathematical Model 
 

The nondimensional form of the compressible Navier-Stokes equations can be written as: 
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All the variables are in nondimensional form and have their usual meaning, i.e., ix is the i-direction spatial 
coordinate, t  is the temporal coordinate, ρ is the density, iu is the  i-direction component of the velocity vector, p is 
the thermodynamic pressure, T  is the temperature, e is the internal specific energy, µ  is the viscosity, vc  is the 
specific heat at constant volume, ijτ  is the viscous stress tensor, Te  is the total specific energy and 

ixq is i-direction of 

the heat-flow density vector. The nondimensional form for all the variables is defined using the following procedure: 
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where *

∞U  is the velocity magnitude of the undisturbed flow, *L  is the characteristic length of the problem, the 
superscript * represents dimensional variables and the subscript ∞ stands for undisturbed-flow properties.  

The viscous-stress tensor is given by 
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where ijS  is the nondimensional rate-of-strain tensor, ijδ is the Kronecker delta and the Reynolds number is defined as 
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The total energy is given by the sum of the internal and kinetic specific energy as 
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and the heat-flux density is 
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where γ  is the specific-heat ratio and the Mach and Prandtl numbers are respectively defined as 
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In this work, the Prandtl number is considered a constant with the value 72.0Pr = . For a thermally and calorically 

perfect gas, the nondimensional equation of state can be written as 
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The nondimensional molecular viscosity is obtained using Sutherland’s formula 
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where *
1C  and *

2C  are dimensional constants. 
The boundary conditions at the wall of the two-dimensional base are a no-slip condition for the velocity field, an 

adiabatic wall for the temperature field and a null gradient in the normal direction at the wall for the pressure field. 
 
3. Numerical Method 
 

Since the geometry of interest is a two-dimensional base and the flow around it is laminar, the two-dimensional 
form of the Navier-Stokes is used. In order to numerically solve this equations using a finite volume approach, Eqs. (1), 
(2) and (3) are written in the following vector form (Anderson et al., 1983): 
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where the conservative-variables vector U, and the flux vectors E and F are given by 
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 Defining the flux tensor Π  as 
 

jFiE ⊗+⊗=Π , (15) 

 
where i  and j  are the unit vectors in the x and y-direction, Eq. (13) can be rewritten as 
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Integrating the above equation over the control volume V, and applying the divergence theorem to the right-hand 

side results 
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where S is the control surface that defines the control volume. Defining the volumetric mean of the vector U in the 
control volume V as 
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Eq. (17) is written as 
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where n  is the unit vector normal to the surface S. 
 For the volume ),( ji , the first-order approximation of the temporal derivative is given by 
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and the temporal approximation of Eq. (19) for a quadrilateral and two-dimensional control volume is 
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where 21+iS  is the common surface between volume ),( ji  and volume ),1( ji + . Defining the function of the flux of 
tensor Π  over the control surface S as 
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the spatial approximation of Eq. (21) is 
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where ( ) ji,UD  is an artificial dissipation. It is important to note that Eq. (23) is a spatial approximation of Eq. (21) 
because tensor Π  is considered constant over each of the four control surfaces that define the control volume. 

 In order to calculate ( ) ji ,UF , the flux of tensor Π  trough the control surfaces must be calculated. For the surface 

2/1+iS , this flux is given by 
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where the volumetric flux ( ) 2/1+iSq  is defined by 
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where u  is the velocity vector. 
 It is important to note that the first terms in the right-hand side of Eq. (24) are the fluxes of mass, momentum and 
total energy through surface 2/1+iS  and the other terms represents the fonts of variation of momentum and total energy. 
In order to evaluate all this terms, in this work is used the fourth-order skew-symmetric scheme proposed by Ducros et 
al. (2000) given by  
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since all calculated properties in the right-hand side of Eqs. (26) and (27) are volumetric means centered at the volume. 
The over bar indicates the volumetric mean defined by Eq. (19) and the under bar refers to the Favre mean, defined as  
 

ρ
ρu
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The scheme proposed by Eqs. (27) and (28) is a centered one, and therefore, an explicit artificial viscosity must be 

included in Eq. (24). In order to enhance the numerical method with shock-capturing capabilities and the ability to cope 
with steep gradient regions, this artificial dissipation uses the basic idea proposed by Jameson et al. (1981) given by  
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The first and second terms of Eq. (30) are a second-order and a fourth-order dissipation, respectively. The first term acts 
in the shock and the second term acts over steep gradient regions, like the viscous regions. The coefficients of Eq. (30) 
are given by 
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where the sensors iΨ  and iΦ  are 
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The sensor iΨ  is pressure-based and it is intended to detect the shock waves. The sensor iΦ  was proposed by 

Ducros et al. (1999), and its function is to inhibit sensor iΨ  in regions were the divergent is low, but the rotational of 
the velocity field is high, like a pure vortex wake. In regions were the divergent and the rotational are high, like the 
vortex-shock interaction, the inhibiting capacity of sensor iΦ  decreases. 

In order to advance Eq. (24) in time, a third-order Runge-Kutta is used as proposed by Shu (Yee, 1997). This yield 
to 
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As proposed in this work, the resulting numerical method is fourth-order accurate in space and third-order accurate 

in time. 
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4. Results 
 

For all the cases studied in this work the Reynolds number is 1,000, and the characteristic length *L  is the base 
thickness. The Mach number ranges from 0.80 to 1.05. The base thickness is discretized by 30 control volumes. The 
regular region of the computational grid after the expansion is *35L  in height and *17L  in length. Before the expansion, 
the regular region of the computational grid is *17L  in height and *4L  in length, both in the upper and lower side of the 
two-dimensional base. In conjunction with the stretched regions of the grid, the total number of control volumes is 
803,700 resulting in a problem with 3,214,800 degrees of freedom. 

Figure 1 shows only the regular region of the computational domain in conjunction with a zoom showing the regular 
resolution of the computational grid. It is important to recall that the fourth-order accuracy in space of the numerical 
scheme applies only to the regular region of the grid (Ref. 3). The variable plotted is the nondimensional magnitude of 
the temperature gradient. White corresponds to 0.0 and black corresponds to 1.5. The Mach number is 0.9. A very 
strong vortex-shock interaction is observed. 

 

 
 

Figure 1. Region of regular resolution of the computational grid and zoom of grid resolution. 
 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 – Paper CIT04-0630 
 
4.1. M=0.80 
 

From the visualization presented in Fig. 2 it can be seen that the unsteady Vón Kármán vortex street is well defined 
and a coalescence of vortices is visible at the end of the left side of the figure. This coalescence is also associated with a 
very strong acoustic wave that is positioned in middle of the vortex wake and moving upstream. In the zoom, it is also 
possible to clearly see the formation of a lambda shock associated with the separation of the boundary layer in the 
upper-right corner of the base. This lambda shock separates from the detached vortex and travels as a strong acoustic 
wave in a direction that is basically normal to the incoming flow. In the zoom it is also possible to note that a 
connecting shock appears between the detached vortices. The intensity of this shock decreases rapidly as the vortices 
move in the downstream direction. The variable plotted is the nondimensional magnitude of the temperature gradient. 
White corresponds to 0.0 in both parts and black corresponds to 1.0 (left part) and to 2.0 (right part). The Mach number 
is 0.80. 
 

 
 

Figure 2. Visualization of the flow over the regular grid (left) with a zoom (right). 
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4.2. M=0.90 
 
 Figure 3 shows that the unsteady Vón Kármán vortex street is well defined and a gradual coalescence of vortices is 
visible from the beginning of the vortex wake. In the zoom, it is also possible to clearly see the formation of quasi-
normal lambda shocks associated with the separation vortices of the upper and lower corners of the base. These quasi-
normal lambda shocks bifurcate as strong acoustic waves and travel in a direction that is basically normal to the 
incoming flow, as the previous case, but with more intensity. In the zoom it is also possible to note that a connecting 
shock appears between the detached vortices as the previous case, but with more intensity, also. The intensity of this 
shock decreases rapidly as the vortices move in the downstream direction. The variable plotted is the nondimensional 
magnitude of the temperature gradient. White corresponds to 0.0 in both parts and black corresponds to 1.0 (left part) 
and to 2.0 (right part). The Mach number is 0.90. 
 

 
 

Figure 3. Visualization of the flow over the regular grid (left) with a zoom (right). 
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4.3. M=1.00 
 

From the visualization presented in Fig. 4 it can be seen that the unsteady Vón Kármán vortex street is well defined 
and, differently from the two previous cases, the coalescence of vortices is not visible. The vortex wake simply looses 
intensity due to viscous dissipation. In the zoom, it is also possible to clearly see the formation of oblique lambda 
shocks associated with the mixture layer generated by the boundary layer separation at the upper and lower corners of 
the base. These oblique lambda shocks continue as strong oblique shocks, produced by the coalescence of the acoustics 
waves. These waves also travel along the oblique shock. In the zoom it is also possible to note that the connecting 
shocks, that were evident in the two previous cases, are not present. The variable plotted is the nondimensional 
magnitude of the temperature gradient. White corresponds to 0.0 in both parts and black corresponds to 1.0 (left part) 
and to 2.0 (right part). The Mach number is 1.00. 
 

 
 

Figure 4. Visualization of the flow over the regular grid (left) with a zoom (right). 
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4.4. M=1.05 
 

From the visualization presented in Fig. 5, it is evident that the buffet phenomenon is over. There is no evidence of a 
Vón Kármán vortex street. The boundary layer separates at the upper and lower corners and reattaches after a steady 
separation bubble. A compression fan is formed after separation that leads to a strong oblique shock. Since the 
undisturbed flow is supersonic, a weak shock (that leads to a Mach wave) is formed in the beginning of the boundary 
layer at the upper and lower surfaces of the base. The variable plotted is the nondimensional magnitude of the 
temperature gradient. White corresponds to 0.0 in both parts and black corresponds to 1.0 (left part) and to 2.0 (right 
part). The Mach number is 1.05. 
 

 
 

Figure 5. Visualization of the flow over the regular grid (left) with a zoom (right). 
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5. Conclusions 
 

A numerical methodology, based in a finite-volume discretization, that is fourth-order accurate in space and third-
order accurate in time, is proposed in order to simulate the complex vortex-shock interactions that arise in the transonic 
flow over a two-dimensional laminar base. The numerical results shows that a variety of very complex interactions, 
such as connecting shocks, oblique and quasi-normal lambda shocks and emission of strong acoustic waves can be 
tackled with this methodology. The results also show that the nature of these interactions is highly dependant on the 
Mach number. As the Mach number decreases from supersonic to subsonic, the complexity of the viscous–shock 
interaction increases. For subsonic Mach numbers, Fig. (2) and Fig. (3) show the emission of strong acoustic waves, in 
a manner similar as illustrated by Dyment (Hirsch, 1988) for the turbulent flow over a two-dimensional base.  For a 
Mach number grater than 1.05, these interactions disappear and the transonic-buffet phenomenon for this laminar flow 
is over. 
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