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���,QWURGXFWLRQ
The adequate knowledge of the forces acting on three-dimensional wings in oscillatory motion is very important for

the study of flutter and other aeroelastic responses of an aircraft, because the aeroelastic problem is frequently critical in
the transonic regime. A nonlinear partial differential equation with nonlinear boundary conditions governs the physical
problem. The basic small perturbation equation governing the velocity potential for transonic flow over a thin wing is
well known (Landahl, 1961). For low amplitude and high-frequency oscillation, where the unsteady part is considered
to be a small disturbance to the steady part, the steady mean flow can be completely uncoupled from the unsteady
counterpart of the equation, leading to a linearized unsteady transonic flow governing equation.

In this work we develop an approximate method to take into account effects due to finite wing thickness.  The
transonic oscillatory aerodynamic parameters are predicted in a range of frequencies where linearization can be
considered valid. The present study is limited to non-viscous and  shock-free flow around trapezoidal wings.

Ruo HW�DO� (1974) mentioned in their work that  almost all unsteady transonic flow theoretical work lies within the
framework of linearized theory where the thickness effect of the wing is neglected. An important consequence of these
linearization is the suppression of deviations in local Mach number from freestream value. These deviations have
appreciable effect on the propagation of pressure disturbances over the lifting surface, then significant improvement in
the theory may be accomplished by “recoupling” the steady and unsteady flow parameters so that solutions may
approximately consider variations in mean local Mach number caused by finite wing thickness. In the present work, this
is achieved by considering all of the steady-flow parameters over the wing to be invariant within a small finite region.
This latter assumption, equivalent to the concept of local linearization (Spreiter and Alksne, 1958; Rubbert and
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Landahl, 1967), permits the nonlinear differential equation for the potential to be reduced to a linear equation with
variable coefficients containing the local Mach number. By means of an appropriate coordinate transformation, the
equation becomes identical to the linearized transonic unsteady-flow equation with constant coefficients. Numerical
results are then obtained through the new sonic-box method presented in (Soviero and Pinto, 2000; Cesar and Soviero,
2001).

The type of wing treated has a swept trailing edge, without control surfaces. Because of the transformation method
used, the mean steady flow everywhere over the wing must not be very different from that of the undisturbed stream.
Comparisons are made to the new sonic-box method, for cases with and without thickness effects, as well as to results
from an Euler finite difference solution.

����3UREOHP�)RUPXODWLRQ
Consider a small thickness wing, immersed in an inviscid compressible fluid that translates with the undisturbed

flow velocity 8 close to the speed D �  , the sound speed of the undisturbed flow, performing a small amplitude
oscillation around its zero angle of attack position. The wing is assumed to be smooth and thin enough so that the small-
perturbation velocity potential equation for transonic flow can be applied. The physical coordinates and a sample wing
geometry are shown in Fig. (1).

Figure 1. Coordinate system on the physical plane of the wing, F is the wing root chord and b is the wing span.

The chosen coordinate system has the ;-axis in the direction of the flow. The undisturbed position of the wing is in
the ;< plane, with the ;-axis formed by the straight line passing through the leading edge half span point and the
trailing edge half span point, the origin is at the intersection point of the wing semi-span with the wing extended root
chord (c*).

�����6RQLF�$HURG\QDPLF�PRGHO
The physical problem is governed by nonlinear partial differential equations and nonlinear boundary conditions.

The complex velocity perturbation potential F due to the harmonic small-amplitude motion of a thick wing is described
by the nonlinear differencial equation given below:

0
2

1 22

2

2

22

2

2

2

2

2 =ßà
ÞÏÐ

Î ÜÜÝ
ÛÌÌÍ

Ë¶¼+�
�+�

F�-�
F�+�

F�+�
F� 99W

9
WD=<;

rr

(1)

where D is the local speed of sound, 9 the local flow velocity lies in the positive ;.
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Equation (1) is linearized assuming that:
(a) The local velocity vector differs only slightly in direction and magnitude from the free-stream velocity

vector. This is the basic assumption of the small disturbance theory, that is equivalent to assume that the
local Mach number 0 is close to the value of the free stream Mach number 0 � �

(b) All steady-flow parameters are considered to be invariant within small finite regions of the wing surface,
equivalent to the local linearization, Rubbert and Landahl (1967).

The linearized partial differential equation corresponding to the velocity potential for a small perturbation unsteady
transonic flow over a small thickness wing is
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where f  is made nondimensional relative to 8  and a reference length /.
Assuming that the wing describes a harmonic motion then the small perturbation potential can be written as

]exp[),,(),,,(ˆ WL=<;W=<; wff -= (3)

where w�is the angular frequency of the motion.
The complex velocity perturbation potential f̂  due to the harmonic small-amplitude motion of a thick wing is

described in the frequency domain by a linear differential equation, Eq. (4), similar to the one given by Landahl (1961)
for a thin wing shown below
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Defining a new complex potential as

)]2/()(exp[ˆ D0;Lwff -= , (5)

now, using the transformation :

LZMz     ,LYMy     , Lx === ; , (6)

the governing differential equation of the problem, L�H., Eq. (4), can be rewritten as the classical diffusion uation (Morse
and Feshbach 1953). This equation is analogous to the subsonic (Soviero and Bortolus, 1992), to the supersonic
(Soviero and Resende, 1997) and the sonic (Soviero and Pinto, 2000; Cesar and Soviero, 2001) formulations, which
reads:
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where N� �w/�8�is the reduced frequency and the mean steady local Mach number 0 is assumed to be known.
Equation (7) is a parabolic differential equation and possesses source and doublet elementary solutions. The present

procedure here is similar to the one by Ruo HW�DO. (1974), it is assumed that the physical state is adequately described
within a limited region by related linear equations in which all parameters involved have their local values taken as
being invariant. This is the underlying assumption of the local linearization concept described in Spreiter and Alksne
(1958), and also in Rubbert and Landahl (1967). This approach suggests that, in the case of unsteady flow, the
calculations can be carried out with sufficient accuracy, using the linearized equations which contain the local values of
the steady flow parameters. Landahl (1963) cites evidence for the validity of applying the concept of local linearization
to the case of unsteady flow.

The approach here is to stretch the physical wing in order to work on a transformed plane with a transformed wing,
which can be considered a thin wing, and whose local Mach numbers over its surface are known and has the same value
of the corresponding Mach numbers over the surface of the physical wing. The free stream flow is sonic for both wings.

The computation of the unsteady flow is then performed transforming back the flow properties obtained in the
transformed plane applying the similarity law for unsteady transonic flow Eq. (8), Cesar (2004), given by:

)~;;;;,,();;;;,,( 1 esfesf 0N0]\[00N]\[ �= , (8)
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where s  is the semi-span to semi-chord ratio, e is the thickness ratio defined by the thick to semi-chord ratio, e~  is the
transformed wing thickness ratio, and 1~ <<e .

The linearized boundary condition on the wing surface is written in the transformed plane as
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where K�[�\� represents the wing surface non-dimensional vertical displacement. The complex pressure coefficient is
written as
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and pressure continuity is ensured if Eq. (10) is applied to both sides of the wake, that is,
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where df and d&�  are the complex velocity potential and pressure coefficient jump between the lower and upper
surfaces of the wake, respectively. It is important to stress that the same condition applies whenever the trailing edges
are subsonic. The treatment of the three-dimensional thick wing problem is similar, though not the same, to the one
performed by Ruo HW�DO� (1974), where it was used the classical sonic box method reported in (Rodemich and Andrew,
1965; Olsen, 1966). Here it is used the new sonic box method reported in (Soviero and Pinto, 2000; Cesar and Soviero,
2001).

The solution of problem just described is obtained from the integral equation that relates the potential jump across
the lifting surface (and wake) to the downwash. For a planar configuration this integral is written as
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The integrand represents a doublet at ([0, \0) inducing a normal velocity in the wing plane (]=0) at the receiving
point ([,\). The integral sign must be taken in its usual way along \0 and in the sense of the finite part integration
(Hadamard, 1928; Heaslet and Lomax, 1957) along [0. The general formulation relative to integral Eq. (12) can be
found  in Morse and Feshbach (1953), and is a result of the application of Green’s theorem to the diffusion equation
(Eq. (7)). Its kernel function, the induced doublet velocity, comes from the unitary strength source velocity potential,
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for a point source placed at ([0, \0, ]0), with [ > [0, which  must  be  differentiated twice  along the  ]� direction, and  for
[ � [0, f = 0. In order to have the correspondent values for the physical wing we apply Eq. (8) to the results obtained by
Eq. (13).

�����(XOHU�DHURG\QDPLF�PRGHO
The Euler solver used in the present work is a modified version of a code developed by Sankar HW�DO�(1990). The

vector form of the 3-D Euler equations based on an arbitrary curvilinear coordinate system can be written in non-
dimensional form as:

0� � � �+ + + =4 ( ) * (14)

where 4�is the vector of unknown flow properties; and (��)��* are the inviscid flux vectors.
The time derivative, 4 	 , of equation (1) is approximated using two-point backward difference at the new time level

1+Q . All spatial derivatives are approximated by standard second-order central differences and are represented by the
difference operators d. With the above described time and space discretizations, Eq. (14) becomes:
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Application of Eq. (15) to the grid points leads to a system of non-linear, block penta-diagonal matrix equations for
the unknown ��� 444 -=D �� 11 , Eq. (15), since the convection fluxes (��)��* are non-linear functions of the vector
of unknown flow properties 4. Eq. (15) is then linearized using the Jacobean matrices 4($ ��=  and 4*& ��= .
This results in a system of linear, block penta-diagonal matrix equations, which is considerably expensive to solve. The
approach used here is to employ an approximate factorization and the diagonal algorithm of Pulliam and Chaussee11, to
diagonalize $ and &. This approach yields:

( ) ( )1 1 , 1� ��� ��� � � � �td td t d d d� � �+ D + D D = D + +Î Þ Î ÞÐ à Ð à7 , 1 , 7 4 ( ) *� � � � � � � ��� �
(16)

The solution of Eq. (16) involves two block-tridiagonal systems where the blocks are diagonal matrices. The use of
standard central differences to approximate the spatial derivatives can give rise to the growth of high frequency errors in
the numerical solution with time. To control this growth, a set of 2nd/4th difference non-linear, spectral radius based,
explicit artificial dissipation terms are added to the discretized equations.

Oscillations were simulated around a steady state angle 00.0=�a . For the test cases presented here, the Mach
number was 1.0. The reduced frequency N is defined as the ratio of the circular frequency w times a reference chord F
by the speed of the sound D �  . In order to avoid any transient contributions to the unsteady results, acquisition of the
unsteady pressures was performed only in the second cycle of oscillation. That is, from a steady state converged
solution the unsteady simulation is run for two cycles of wing movement, and the unsteady data is stored after the end
of the first cycle. Considering the non-dimensionalization of the Navier-Stokes formulation, the non-dimensional time
is given as FWD �=t .  As the unsteady pressures are acquired, a Fourier transformation is used to obtain the frequency-
domain components, which can be written as a discrete transformation as:
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���1XPHULFDO�0RGHO
The physical wing is approximated by a region composed of Q[ boxes along the root chord and Q\ boxes along the

wing semi-span Fig. (2). The chords of these panels equals to F�Q[ and its spans are equal to E��Q\.

Figure 2. Mapping the wing by Q[ panels in the root chord direction and Q\ panels in the wing semi-span direction.



3URFHHGLQJV�RI�(1&,7���������$%&0��5LR�GH�-DQHLUR��%UD]LO��1RY��������'HF�����������±�3DSHU�&,7�������
Using the Euler finite difference solver described in 2.2 to calculate the local Mach number, we apply a type of

Prandtl-Glauert transformation (Eq. 6) to obtain a transformed thin wing that has the similarity transonic law (Eq. 8)
relating its velocity potential in the transformed plane to that of the physical wing.

The transformed wing is a stretched wing mapped by Q[ rows, having Q\ columns in each row. The local Mach
number is used to stretch each panel of a row and since 0 presents small differences between the panels. Therefore,
they will have different span in the transformed plane. In order to circumvent the problem of having different span for
each panel the transformed wing surface is discretized by Q[ panels along its root chord and Q\ panels along its semi-
span. The transformed wing has panels with chords given by F/Q[ and spans given by Q\E 2 , where E  is the span of
the transformed wing. This transformed span is found considering it equal to the maximum value encountered
comparing the sum of each transformed panel that forms the Q[ rows in which it was divided the transformed wing. The
resulting transformed wing could have a different number of panels in each row, if this is the case; the wing is treated as
a swept wing, if not; as an unswept wing.

Once the number of panels per row could be different from the physical to the transformed wing, the following
criteria is adopted: Each time that the centroid of the transformed wing panel is correspondent to a point inside a certain
panel of the physical wing, the parameters of that transformed panel will be related to the parameters of the physical
panel. The panels formed by this approximation of the transformed wing are rectangular and have a constant
distribution of normal doublet over its surface. This distribution is given by the value of the normal doublet superficial
density.

The flow tangency condition is satisfied in the control points of each panel, which coincide with the geometric
center of the panels, by assuming a non-penetrability condition written as a boundary condition relation in the small
disturbance context. Thus, the boundary conditions are enforced at control points located at each panel geometrical
center. The solution of the problem is obtained by solving integral Eq. (12) for df by using the boundary conditions
Eqs. (9) and (11) for the wing and wake surfaces, respectively. Both surfaces are discretized through the use of small
rectangular elements of unknown constant density doublets, as for the case of the sonic Mach box formulation,
Rodemich and Andrew (1965).

One can identify four kinds of integration domain, Fig. (3), in order to obtain the influence coefficients at P. Region
I is completely upstream of the limiting Mach lines drawn from P, region II is only partially upstream of the limiting
Mach lines, and region III is completely downstream of the limiting Mach lines, corresponding to zero influence.
Region IV corresponds to the self-induced influence coefficient. In region I numerical integration is straightforward
because the integrand is never singular.

Figure 3. Transformed wing with aspect ratio L and thickness ratio e~ = 0 at 0 �  = 1.0, mapped with Q[ panel along
root chord and Q\ panels along its semi-span.

The influence coefficient for regions II and IV is, Soviero and Pinto (2000),
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Denoting : *  as the induced velocity over the panel L, ) * +  as the influence coefficient of panel M over panel L and df+  the
superficial doublet density of panel M, follows the system that represents the problem

[ ] { } { },-, - :) =¼ df . (21)

Solving the system we find the values of df+  which belong to the transformed wing to have the correspondent values for
the physical wing we apply Eq. (8).

���5HVXOWV
The test case to be investigated is the AGARD wing 445.6 weakened model #3 (Yates, 1988), in sonic flow

condition. The test case under investigation, is well known as a standard aeroelastic configuration, and it has an aspect
ratio of 4 and a NACA 65A004 airfoil section. The flow Reynolds number is 0,627�106 and the density of the test
medium (air) is 0.0634 kg/m3 , at low pressure condition.

Figure 4 : Sketch of the AGARD 445.6 wing.

The computation of the nonlinear unsteady pressures is performed from the finite differences solution of Euler
equations, using the numerical method described in section 2.2. The computational mesh surrounding the wing is an
algebraic generated “C” type topology, with 141 points in the x direction, tangent to the lifting surface boundary, where
121 points are over the lifting surface solid surface. In the h direction, normal to the wing surface, there are 41 points
between the solid surface and the limit of the computational mesh. And finally, in the z direction there are 25 points
aligned with the spanwise direction, where 17 points are over the lifting surface, and the remaining are between the
wing tip and the computational domain limit.

The finite difference Euler simulation were performed for the wing undergoing a rigid body pitch harmonic
oscillation around an axis perpendicular to the root chord, at its 50% location. The reduced frequency for the finite
difference solution of the Euler equations is defined as 0.28252.N F Dw /= = , in conformity with the Euler equations
nondimensionalization.

The sonic box results for the thick wing case were obtained for a discretization of the same wing in 45 boxes along
its extended root chord (c*), which is defined by the distance from the wing apex to its most afterward point, that is
from the apex to the trailing edge of the wing tip, and with 90 boxes along the wing half span. The thickness effect is
represented herein by the consideration of the computed local Mach number distribution, interpolated in the centroid of
each of the boxes. These Mach number are computed using same Euler numerical method, for steady state conditions at
zero angle of attack.

The reduced frequency used in the sonic box computation is a different value from the one employed in the Euler
formulation, since it is nondimensionalized by the extended half root chord and the undisturbed flow speed. Therefore,
for the case of the sonic box method, its definition is * / 2N F 8X�  , leading to N� ��������.

A calculation using the sonic box procedure was conduced for the thin wing case in order to evaluate the influence
of the thickness on the pressure distribution jump over the wing. It was noticed that the pressure jump was diminished
when the wing thickness is taken into account.

The resulting pressure coefficient difference distribution along the wing chord nondimensionalized for the wing
extended root chord (c*) are presented in Figures 5, 6 and 7.
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Figure 5 – Pressure distribution along chord length y/s = 7.7%.
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Figure 6 – Pressure distribution along chord length y/s = 15.4%.
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Figure 7 – Pressure distribution along chord length y/s = 53.9%.

Figure 8 – Surface pressure distribution over AGARD 445.6 wing

In Figure 8 is presented the computed pressure distribution along the wing surface for the thick wing case. The
Mach cone line, here is a straight line perpendicular to the ;-axis, have its origin at the leading and at the trailing edge
points of the wing root and at the wing tip chords,  are noted in the sonic box formulation results as well as in the Euler
results. The Mach cone line explains the peak that is seen near the point [/F* = 0.45 at Fig. 5. One should observe that
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the results obtained from the Sonic Box formulation presents a good agreement with those computed from the nonlinear
Euler simulation.

The Euler solution, expended approximately 8.2 CPU hours for the simulation of two cycles of pitch motion, in a
Silicon Graphics Octane II workstation, with two R12000 Risc processor, while the time expended by the sonic box
method was less than seven minutes on a computer with a single 2.8 GHz Pentim IV processor.

���&RQFOXVLRQV
The method show good agreement with a nonlinear solution obtained by the finite difference Euler equation

simulation. method, used here for comparison.  In spite of the fact that further investigation is necessary to evaluate the
limits of the method, the quality of the results obtained, till now, suggests that the present Method could be an useful
tool for unsteady pressures computation for a preliminary transonic aeroelastic analysis.
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