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The recently developed overset field-panel method (Chen et al., 2004), known as the ZTRAN method, has been

validated with experimental data of various wings at transonic speeds.  These include the unsteady pressure coefficients
(Cp) on the F-5 wing (Tijdeman and Nunen, 1978), Lessing wing (Lessing et al., 1960), and LANN wing (Malone and
Ruo, 1983) as well as the flutter boundaries of the AGARD 445.6 wing (Yates, 1987), the PAPA wing (Farmer and
Rivera 1998), and the YXX wing (Yonemoto, 1984).  Meanwhile, further efforts have been made to improve the
ZTRAN method and to validate its computer program with existing Computational-Fluid-Dynamic (CFD) methods and
available measured data.

The ZTRAN method is an evolution from the Transonic Doublet Lattice Method (TDLM) by Lu and Voss (1992)
where several technical issues of TDLM have been resolved by ZTRAN.
���%ORFN�7ULGLDJRQDO�$SSUR[LPDWLRQ�IRU�VROYLQJ�D�ODUJH�FRPSOH[�PDWUL[�LQYROYHG�LQ�WKH�ILHOG�SDQHO�PHWKRG�

The field-panel method involves a complex and fully populated matrix whose size is the number of volume cells.
To model a general three-dimensional problem might require more than 10,000 volume cells, and this number increases
rapidly as the complexity of the configurations increases.  Therefore, to invert (or decompose) such a large matrix is
impractical for routine aeroelastic applications.  The ZTRAN method employs a block-tridiagonal approximation
techniques to circumvent this technical issue.  The details of this block-tridiagonal approximation technique are
described in Chen et al. (2004).
���� 2YHUVHW�)LHOG�3DQHO�6FKHPH�IRU�&RPSOH[�&RQILJXUDWLRQV

In the applications of TDLM, Lu and Voss (1992) show the results on planar wing cases only because it might
require an extensive volume-cell generation effort to generate a “patched” volume-cell model for non-planar or wing-
body configurations.  The ZTRAN method employs an overset field-panel scheme to minimize such a volume-cell
generation effort for complex configurations.  This overset field-panel scheme allows the volume cells to be generated
independently on each component of the complex configuration.  Therefore, among all volume blocks, volume cells of
different volume blocks can intersect each other.  The interference between volume blocks can be transmitted through
the integral equations.  Therefore, there is no need to compute the topology of the intersection among cells, greatly
simplifying the volume-cell generation effort.
��� 6WHDG\�%DFNJURXQG�)ORZ�IURP�WKH�+LJK�)LGHOLW\�&)'�&RGHV

The field-panel method solves the time-linearized transonic small disturbance equation that involves the steady
velocity solutions, defined as the steady background flow, in its variant coefficient terms.  In order to obtain the steady
background flow solution in the volume cells, TDLM uses the Norstrud extrapolation formulation (Norstrud, 1973) to
extrapolate the steady background flow solution from a given surface steady pressure.  However, it is found that the
Norstrud extrapolation formula is an empirical formula and often yields inaccurate steady background flow solutions.
The ZTRAN method takes advantage of the advance in the CFD development where the steady background flow from
ZTRAN can be directly imported from the CFD solutions.  Because the CFD mesh is usually much more refined than
the volume cells of the field-panel model, to interpolate the CFD steady flow solution can be easily achieved by a
simple interpolation.

The purpose of the present paper is twofold.  First, the improved version of ZTRAN which includes more nonlinear
terms of the transonic small disturbance equation is described.  Next, applications of the improved ZTRAN to various
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wings with control surface and the Aerodynamics-Influence-Coefficient (AIC) capability of ZTRAN for computer time
saving are demonstrated.

���7KH�7LPH�/LQHDUL]HG�7UDQVRQLF�6PDOO�'LVWXUEDQFH�(TXDWLRQ�7H[W�IRUPDW
The Transonic Small Disturbance (TSD) equation can be expressed as
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= - , 0 �  is the freestream Mach number, g  is the specific heat ratio and F  is the total potential
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the reduced frequency, w  is the harmonic frequency, and 9�  is the freestream velocity. Then equation (1) can be split
into a steady TSD equation and an unsteady TSD equation:
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Equation (3) is the so-called time-linearized transonic small disturbance (TLTSD) equation which involves a

variant coefficient term 1�2F  from the steady TSD equation, defined here as the steady background flow solution.  Note

that in equation (3), we have dropped the terms involving 354F  and 6/7F  because they are much smaller than 1�2F .  In

addition, the source term ( )8[ s�
�  on the right hand side (RHS) of equation (3) consists of two terms

( )( )21 2F + F9�:0: 9�:;:. .f f  as opposed to one term ( )<�=;=. fF  in equation (2) of Chen et al. (2004).  Later, we will

show that in some highly nonlinear cases, the term ( )21 2 F >/?0?. f  can greatly improve the solution accuracy because

21�2F  could be in the same order of magnitude as 1�2F .
The validity of equation (3) is based on the assumption of small structural oscillating amplitude. The solution of

equation (3) is linearly varying with the structural oscillating amplitude but it contains the nonlinear transonic shock
effects embedded in the steady background flow.  Because of its linear characteristics with respect to the structural
oscillating amplitude, equation (3) can lead to a linear operator that relates the unsteady pressures to the structural
oscillating amplitude.  In fact, this linear operator can be formulated in a matrix form that is called the AIC matrix.

One of the key elements for the success of the ZTRAN method lies in the adoption of the steady background flow
from the high-fidelity CFD code; rather than obtaining it by solving the steady TSD equation as the one shown in
equation (2).  It is well known that the TSD theory might not provide accurate solutions for strong transonic shock cases
because it cannot correctly model the entropy quadrants from the strong shock nor convect the vorticity.  However, this
is not to say that the TSD equation is not suitable for the prediction of unsteady flows due to small aeroelastic
deformation if the total unsteady flow is decomposed into a steady background flow and an unsteady of small
disturbance.  If the steady background flow in the equation (3) is externally provided by a high-fidelity CFD code,
accurate unsteady flow prediction can be ensured because the steady background flow on which the unsteady
disturbance propagation is accurately accounted for.

Equation (3) can be simplified by introducing a modified unsteady potential  defined as :@BA C
H

D
E

j f
FG
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Substituting equation (4) into equation (3) yields :
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�  on the right hand side of equation (5) to be a volume source, the integral solution of

equation (4) using the Green’s function method at a point ([o, \o, ]o) reads
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Transforming  back to f  gives
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fD  is the unsteady doublet singularity distributed on the configuration surface and wake

Q
f�
� is the unsteady source singularity on the configuration surface
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The term 
NsD  in equation (7) represents the jump of the volume source strength across the shock surface and it

automatically vanishes if the transonic shock is absent.  Chen et al. (2004) shows that the second integral on the RHS of
equation (7) can be eliminated by performing an integration by parts in the third integral which leads to the following
simpler equation,
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The first integral on the RHS of equation (8) is the integral solution of the linear unsteady potential equation and is

the equation solved by the linear panel method such as ZONA6 (Chen et al.,1993) and doublet lattice method (Rodden
et al., 1971).  The ZTRAN method employs the ZONA6 formulation which can deal with wing-body configurations as
opposed to the TDLM which uses the doublet lattice method for the lifting surfaces only.

The second integral on the RHS of equation (9) can be solved by first defining a volume block surrounding the
lifting surfaces or bodies and the descritizing the volume block into many small volume cells.  Unlike the CFD
methodology whose mesh must be extracted far away from the surface mesh, the domain of the volume block needs
only to contain the nonlinear flow region in which the volume source strength Ys  is significant.  This is because
outside the domain of the volume block the solution is dominated by the first integral on the RHS of equation (8);
thereby the contribution from the second integral can be ignored.

By locating the points on the surface and in the volume cells, equation (8) can be recast into two sets of matrix
equations, one relates the surface singularity and the volume source strength to the normal velocity on the surface and
the other relates the surface singularity and the volume source to the unsteady potential in the volume cells.  These two
matrix equations can be further combined by introducing a finite difference operator that is constructed according to the
Murman’s scheme (Murman, 1974).  This results in a single matrix equation such as:

[ ]{ }
�&

$,& :
Q
f

DÑ áÔ Ô =Ò â�Ô Ô�Ó ã
(9)

where �&D  and Q
f�
�  are the unsteady pressure jump across the lifting surface and the unsteady source strength on the

body surfaces, respectively, and : is the downwash due to structural oscillation. The detailed derivations from equation
(8) to equation (9) can be found in Chen et al., (2004).
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The AIC (Aerodynamic Influence Coefficient) matrix in equation (9) is one of the key elements in the industrial

aeroelastic design process because it is independent of the structural characteristics.  For a given aerodynamic
configurations, it needs to be computed only once and repeatedly used in a structural design loop, rendering ZTRAN as
an ideal tool for transonic aeroelastic optimization, flutter analysis of a massive number of aircrafts with store
configurations and flutter analysis with payloads and fuel weight variations.

To date, many unsteady CFD codes such as CFL3D (Krist et al., 1997), ENS3DAE (Schuster et al., 1989), CAPTSP
(Batubam, et al., 1989) can compute the frequency-domain generalized aerodynamic forces, but they can not generate
the AIC matrix.  Therefore, they can not be efficiently used in the structural design loop.  For the gust load analysis the
ZTRAN can generate the gust aerodynamic forces by simply multiplying the AIC matrix to the downwash due to the
discrete gust profile (Karpel et al., 2003) . However, to compute such a gust aerodynamic force using the unsteady CFD
codes is difficult because of the lack of the AIC matrix.
In addition, to generate the unsteady aerodynamic forces due to oscillating flap using the CFD codes requires an
extensive grid generation effort to model the discontinuity of the mesh along the flap boundary.  On the other hand, this
extensive grid generation effort is not needed by ZTRAN nor its steady background flow generation by the steady CFD
computation because the flap motion is only introduced in the ZTRAN computation where the unsteady aerodynamic
forces is obtained by the product of the AIC matrix and the downwash due to the flap motion.
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As shown earlier, the term on the RHS of equation (3) consist of two source terms �/�0�. fF  and ( ) 21 2 F ���;�. f  as

opposed to one term ( ) 21 2 F ���0�. f  in equation (2) of Chen et al., (2004).  To study the effects of the additional source

term ( ) 21 2 F ���;�. f  on the unsteady aerodynamic prediction.  We selected the LANN wing as the test case because its

supercritical aerodynamic characteristics might yield strong transonic shock effects where the term ( ) 21 2 F ���;�. f
could be in the same order of magnitude as �/�0�. fF �
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Figure 1 presents the unsteady pressures on the LANN wing pitching about 62% root chord at 0 ¸ =0.822 and
N=0.105 computed by ZTRAN with one source term denoted at ZTRAN (Chen et al., 2004)), ZTRAN with two source
terms denoted as ZTRAN (present) and measured by the wind-tunnel experiment.  The steady background flow is
computed by the CFL3D Navier-Stokes solver.  The spikes in the unsteady pressure distributions are clearly caused by
the transonic shock effects.  Because the steady background flow obtained by the CFL3D provides accurate steady
shock locations (see Figure 14 of Chen et al., 2004)), the unsteady shock locations presented by the locations of these
spikes are well predicted by ZTRAN.  At all y/2b = 47.5%, 65%, and 82.5%, ZTRAN with two source terms gives a
higher spike at the unsteady shock locations than that of ZTRAN with one source term; indicating indeed that the
additional source term yields stronger transonic shock effects.  In addition, at y/2b = 82.5%, the higher spike also
slightly shifts the unsteady shock location backward and gives a better correlation with the experimental shock location
than that of the results obtained by ZTRAN with one source term.
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Three test cases are selected to validate the unsteady pressure coefficients ( �&D ) with the experimental data.  The
steady background flow of all three test cases are computed by the CFL3D Navier-Stokes solver and interpolated to the
volume cells.

)���:LQJ�ZLWK�2VFLOODWLQJ�)ODS�DW�0� �����DQG�N� ������
Figure 2 depicts the field-panel model and the CFL3D surface mesh of a F-5 wing.  The field-panel model consists

of 20x10 surface boxes and 25x12x12 volume cells, whereas the CFL3D mesh contains 181x77x71 grid points for the
Navier-Stokes computation.  The CFL3D steady pressure coefficients ( ¹& ) at M º � ������DQJOH�RI�DWWDFN�� �� ���GHJUHHV
and Reynolds number (Re) = 9x105 are first compared to the wind-tunnel measurements and are shown in Figure 3 for
three span stations at y/2b=18%, 51%, and 81%.  At y/2b = 18% and 51% CFL3D overpredicts the steady shock
strength at x/c=0.6 and x/c=0.55, respectively.  Therefore, overprediction of the unsteady shock strength by ZTRAN at
these two span stations is expected.

ZTRAN surface box and 
volume cell models

CFL3D Surface Mesh
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In order to show the ZTRAN’ s AIC capability, the unsteady D A&  on the F-5 wing due to a pitch mode about the

50% root chord is first computed and shown in Figure 4.  Meanwhile, the AIC matrix is saved for the flap oscillation
case.  Using the CFL3D solution as the steady background flow, the unsteady D A&  computed by ZTRAN due to the

pitch mode correlates well with the experimental data except the unsteady shock strength at y/2b=18% and 51% is
slightly overpredicted.  As discusses earlier, this overprediction of unsteady shock strength is caused by the
overprediction of the steady shock strength by CFL3D.  Also shown in Figure 4 by the dash lines is the ZONA6 results
which fails to capture the unsteady shock because of its linear theory.
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Using the saved AIC matrix from the pitch mode computation, the unsteady D A&  due to an oscillating trailing

edge flap on the F-5 wing at y/b = 18%, 51%, and 81% are compared to the experimental data (Persoon et al., 1980) at
y/b = 19%, 49%, and 79%, respectively, and shown in Figure 5.  There are two spikes in the unsteady D A&  at y/2b =

18% and 51% appearing in both the experimental data and the ZTRAN results.  The first spike is caused by the
unsteady shock and the second by the discontinuity in slope at the hinge line.  At y/2b = 81%, there is only one spike at
the shock location and the spike at the hinge line disappears because it is outside the flap region.  All spikes at the shock
locations at y/2b = 18% and y/2b = 51% are slightly overpredicted by ZTRAN due to the overprediction of the steady
shock strength by CFL3D.  Again, ZONA6 (shown by the dashed lines) fails to capture the spikes due to transonic
shock, as expected.

It should be noted that the CPU time of computing the pitch mode case is about one hour whereas that of the flap
case takes less than one minute because of the reuse of the saved AIC matrix from the pitch mode case.  This great
amount of savings in the CPU time clearly demonstrates the importance of the AIC matrix for the rapid aeroelastic
analysis with structural variations.
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%$&7�:LQJ�ZLWK�2VFLOODWLQJ�)ODS�DW�0� ������DQG�����
The BACT (NASA Langley Benchmark Active Controls Technology) wing is a rectangular wing with a NACA

0012 airfoil section whose planform at the trailing edge flap location are depicted in Figure 6.  The steady D& �and the

unsteady  D C&  due to the oscillating flap were measured in the NASA Langley Research Center’ s, Transonic Dynamic

Tunnel (TDT).
Figure 7 shows the field-panel model and the CFL3D surface mesh of the BACT wing where the field-panel model

consist of 20x20 surface boxes and 24x20x24 volume cells whereas the CFL3D mesh has 121x79x182 grid points.  It
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should be noted that the modeling of the flap is not required for the CFL3D grid because the flap motion is only needed
in the unsteady computations.  The modeling effort for flap motion using ZTRAN is very easy, only requiring the
demarcation of the wing boxed from the flap boxes.
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The steady z&  along the 60 % span station at M = 0.77 and 0.82 depicted in Figure 8 shows the excellent
correlation between the CFL3D steady results and the experimental data at M = 0.77.  But at M = 0.82 when the
transonic shock appears at x/c = 0.4, CFL3D overpredicts the shock location and strength.  Using these CFL3D results
as the steady background flow, it is expected that ZTRAN can give good agreement with experimental data at M {  =
0.77 but overpredict unsteady shock location and strength at M { = 0.82.
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Indeed, the magnitude and phase angle of the unsteady D C&  due to the flap oscillation and at oscillating

frequencies 2Hz and 10Hz shown in Figure 9 for the M {  = 0.77 case and in Figure 10 for the M {  = 0.82 case do verify
this expectation.  Shown in Figures 9 and 10 by the dashed lines is the unsteady CFL3D results computed by Roughen
et al., (1999).  Good correlation between the ZTRAN and unsteady CFL3D results can be seen.  This good correlation
indicates that simple theories based on small disturbance such as the present ZTRAN method can yield the same level
of accuracy as the unsteady Navier-Stokes computations if the oscillating amplitude is small.  This is clearly
demonstrated in this BACT case because of the adoption of the steady CFL3D solution by ZTRAN as the steady
background flow.
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���9DOLGDWLRQ�RI�)OXWWHU�%RXQGDU\�DQG�&RQWURO�6XUIDFH�(IIHFWLYHQHVV
The Goland wing (Roughen et al., 1999) is selected as the test case for the validation of flutter boundary and

control surface effectiveness.  The Goland wing is a rectangular wing with a 4% thick parabolic arc section whose
planform is depicted in Figure 11.  Figure 12 shows the field-panel model and the CFL3D surface mesh of the Goland
wing where the field-panel model consists of 20x10 surface boxes and 24x10x14 volume cells and the CFL3D mesh
consists of 113x130x97 grid points.  In order to show the impact of the viscous effects on the steady flow on the
unsteady aerodynamics, two sets of the steady background flows using CFL3D Euler solver and Navier-Stokes solver
are generated for ZTRAN.
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Two structural configurations of the Goland wing are considered; one with a tip store mass and the other without
the tip store mass and whose natural frequencies and mode shapes can be found in Schuster et al., (1997).  This is an
ideal case to demonstrate the AIC capability of ZTRAN because the flutter analyses of both structural configurations
have the same aerodynamic geometry and can share the same AIC matrix.  The flutter boundary at 9 Mach numbers for
the “with store mass” cases is first computed and the AIC matrix is saved for the “without store mass” case.  The flutter
boundaries computed by ZTRAN are presented in Figure 13 along with the inviscid ENS3DAE and CAPTSD results
computed by Snyder el al., (2003) and the ZONA6 results.  All methods predict a transonic dip in the flutter boundary
ranging from M { = 0.91 to M { = 0.94 except the ZONA6 method because of its linear theory.  In this transonic dip, the
ZTRAN with Euler steady solution gives the lowest flutter velocity which agrees well with that predicted by CAPTSD
because both methods are based on the inviscid and small disturbance assumptions.  The highest flutter velocity in the
transonic dip is the one predicted by ZTRAN with the steady Navier-Stokes solution; suggesting that flow viscosity
provides a stabilizing effects in flutter instability.  The CPU time for the ZTRAN flutter computation of the Goland
wing with tip store case at 9 Mach numbers takes about 22 hours on a 2.4 Ghz computer.
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The flutter boundary of the “without store mass” case predicted by ZTRAN but using the saved AIC matrix from
the “with store mass” case is shown in Figure 14.  This case takes only less than two minutes of CPU time as opposed
to 22 hours for the “with store mass” case, again, demonstrating the ZTRAN’ s AIC capability for rapid aeroelastic
analysis with structural variations.

Unlike the flutter boundary of the “with store mass” case where the sudden drop in flutter velocity appears in the
transonic dip, the flutter velocity of the “without store mass” continuously decreases up to M { =0.88.  After M { =0.88,
the flutter velocity rapidly increases and forms a transonic flutter dip around M { =0.88.  This transonic flutter dip is well
captured by all methods except ZONA6.  Again, among all results, ZTRAN with the steady Navier-Stokes solution
gives the highest flutter velocity at the transonic dip due to the viscous effects.

&RQWURO�6XUIDFH�(IIHFWLYHQHVV�RI�WKH�*RODQG�:LQJ�DW�0 �  ���
The objective of this test case is to show that the saved AIC matrix can be also used for static aeroelastic analysis.

By using the saved AIC matrix for the Goland wing flutter analysis, the aileron control effectiveness at M { =0.7 and at 8
dynamic pressures computed by ZTRAN takes only one minute of CPU time.  The comparison of the ZTRAN results
with the inviscid ENS3DAE and CAPTSD results computed by Schuster et al  (1997) is presented in Figure 15.
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Among all results, ENS3DAE gives the lowest control-reversal dynamic pressure of 310 psf and ZTRAN with the
steady Navier-Stokes solution gives the highest control-reversal dynamic pressure of 540 psf.  Note that the ENS3DAE
computation for the control surface effectiveness study of the Goland wing requires two grid zones to model the flap
deflection, on the other hand, such a modeling for the flap deflection is not required for the CFL3D steady flow
computation because the flap deflection is only introduced in the ZTRAN computation.

���&RQFOXVLRQV
To date, many unsteady CFD codes can perform dynamic aeroelastic analysis, but they can not generate the AIC

matrix nor be effectively used for routine aeroelastic applications.  On contrast, once the AIC matrix is generated by
ZTRAN, this ZTRAN’ s AIC matrix can be repeatedly used for aeroelastic analysis of difference structural designs
because of the fact that the AIC matrix is independent of the structural characteristics.  In addition, because the AIC
matrix generated by ZTRAN can be readily plugged in the frequency-domain-based aeroelastic analysis procedure
including flutter, aeroservoelastic, gust, and store ejection loads analysis, the adoption of the ZTRAN method in an
existing industrial aeroelastic design process requires a minimum integration effort.

For an aeroelastic analysis with anti-symmetric modes of a symmetric configuration, the unsteady CFD analysis
requires the modeling of both the right hand side and the left hand side of the configuration whereas ZTRAN only needs
the right hand side of the model because of the integral equation formulation.  For a configuration involving control
surface oscillation, an extensive grid generation effort to account for the flap motion is required for an unsteady CFD
analysis.  On the other hand, modeling effort for flap motion using ZTRAN is the same as that of DLM and ZONA6,
only required to demarcate the wing boxes from the flap boxes.

The unsteady panel methods such as DLM and ZONA6 have been well accepted by the aerospace industry for
many years as the primary tools for routine aeroelastic applications in subsonic flows, but there is a great demand for a
transonic counterpart of ZONA6 and DLM.  Because the surface boxes of the field-panel model can adopt those of
ZONA6 and DLM and the AIC matrix generated by ZTRAN has the same form as that of ZONA and DLM, such a
demand can be satisfied by the ZTRAN method.

���$FNQRZOHGJHPHQWV
The author thanks R.D. Snyder of AFRL for providing the finite element model of the Goland wing.
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