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This paper presents basic concepts of inverse and optimization problems. Deterministic and stochastic minimization techniques in 
finite and infinite dimensional spaces are revised; advantages and disadvantages of each of them are discussed and a hybrid 
technique is introduced. Applications of the techniques discussed to inverse and optimization problems in heat transfer are 
presented. 

 
1. Introduction 
 

Inverse problems of heat transfer rely on temperature and/or heat flux measurements for the estimation of unknown 
quantities appearing in the mathematical formulation of physical problems in this field [1-11]. As an example, inverse 
problems dealing with heat conduction have been generally associated with the estimation of an unknown boundary 
heat flux, by using temperature measurements taken below the boundary surface. Therefore, while in the classical direct 
heat conduction problem the cause (boundary heat flux) is given and the effect (temperature field in the body) is 
determined, the inverse problem involves the estimation of the cause from the knowledge of the effect.  

The use of inverse analysis techniques represents a new research paradigm. The results obtained from numerical 
simulations and from experiments are not simply compared a posteriori, but a close synergism exists between 
experimental and theoretical researchers during the course of the study, in order to obtain the maximum of information 
regarding the physical problem under picture [12]. Therefore, in the recent past inverse problems have evolved from a 
specific theoretical research topic to an important practical tool of engineering analysis [1-21]. Nowadays, at least three 
international journals are specifically oriented to the community involved with the solution and application of inverse 
problems, both from the mathematical and from the engineering points of view, namely: Inverse Problems, Inverse and 
Ill-posed Problems and Inverse Problems in Science and Engineering. The International Conference on Inverse 
Problems in Engineering: Theory and Practice, organized under the auspices of the Engineering Conferences 
International (late United Engineering Foundation), is held in a three-year period. Also, several other seminars and 
symposia have been held in different countries in the past, including the International Symposium on Inverse Problems 
in Engineering Mechanics in Japan, and the Inverse Problems, Design and Optimization Symposium in Brazil. More 
specifically for the heat transfer community, all major conferences in the field, such as the International Heat Transfer 
Conference, have special sessions or mini-symposia dedicated to inverse problems. 

Inverse problems can be solved either as a parameter estimation approach or as a function estimation approach. If 
some information is available on the functional form of the unknown quantity, the inverse problem can be reduced to 
the estimation of few unknown parameters. On the other hand, if no prior information is available on the functional 
form of the unknown, the inverse problem needs to be regarded as a function estimation approach in an infinite 
dimensional space of functions [1-21].  

Inverse problems are mathematically classified as ill-posed, whereas standard heat transfer problems are well-
posed.  The solution of a well-posed problem must satisfy the conditions of existence, uniqueness and stability with 
respect to the input data [22]. The existence of a solution for an inverse heat transfer problem may be assured by 
physical reasoning. On the other hand, the uniqueness of the solution of inverse problems can be mathematically proved 
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only for some special cases. Also, the inverse problem is very sensitive to random errors in the measured input data, 
thus requiring special techniques for its solution in order to satisfy the stability condition.  

A successful solution of an inverse problem generally involves its reformulation as an approximate well-posed 
problem and makes use of some kind of regularization (stabilization) technique. Although the solution techniques for 
inverse problems do not necessarily make use of optimization techniques, many popular methods are nowadays based 
on them [1-21].  

Despite their similarities, inverse and optimization problems are conceptually different. Inverse problems are 
concerned with the identification of unknown quantities appearing in the mathematical formulation of physical 
problems, by using measurements of the system response. On the other hand, optimization problems generally deal with 
the minimization or maximization of a certain objective or cost function, in order to find design variables that will 
result on desired state variables. In addition, inverse and optimization problems involve other different concepts. For 
example, the solution technique for an inverse problem is required to cope with instabilities resulting from the noisy 
measured input data, while for an optimization problem the input data is given by the desired response(s) of the system. 
Differently from inverse problems, the solution uniqueness may not be an important issue for optimization problems, as 
long as the solution obtained is physically feasible and can be practically implemented. Engineering applications of 
optimization techniques are very often concerned with the minimization or maximization of different quantities, such as 
minimum weight (e.g., lighter airplanes), minimum fuel consumption (e.g., more economic cars), maximum autonomy 
(e.g., longer range airplanes), etc. The necessity of finding the maximum or minimum values of some parameters (or 
functions) can be governed by economic factors, as in the case of fuel consumption, or design characteristics, as in the 
case of maximum autonomy of an airplane. Sometimes, however, the decision is more subjective, as in the case of 
choosing a car model. In general, different designs can be idealized for a given application, but only a few of them will 
be economically viable. The best design is usually obtained by some Min-Max technique. 

In this paper we address solution methodologies for inverse and single-objective optimization problems, based on 
minimization techniques. Several gradient and stochastic techniques are introduced, together with their basic 
implementation steps and algorithms. We present some deterministic methods, such as the Conjugate Gradient Method, 
the Newton Method and the Davidon-Fletcher-Powell Method [1-12, 23-41]. In addition, we present some of the most 
promising stochastic approaches, such as the Simulated Annealing Method [42,43], the Differential Evolutionary 
Method [44], Genetic Algorithms [45,46] and the Particle Swarm Method [47-51]. Deterministic methods are in general 
computationally faster than stochastic methods, although they can converge to a local minima or maxima, instead of the 
global one. On the other hand, stochastic algorithms can ideally converge to a global maxima or minima, although they 
are computationally slower than the deterministic ones. Indeed, the stochastic algorithms can require thousands of 
evaluations of the objective functions and, in some cases, become non-practical. In order to overcome these difficulties, 
we will also discuss the so-called hybrid algorithm, which takes advantage of the robustness of the stochastic methods 
and of the fast convergence of the deterministic methods [52-59]. Each technique provides a unique approach with 
varying degrees of convergence, reliability and robustness at different cycles during the iterative minimization 
procedure. A set of analytically formulated rules and switching criteria can be coded into the program to automatically 
switch back and forth among the different algorithms as the iterative process advances. Specific concepts for inverse 
and optimization problems are discussed and several examples in heat transfer are given in the paper. 

 
2. Objective function 

 
2.1. Basic concept 

 
For the solution of inverse problems, as considered in this paper, we make use of minimization techniques that are 

of the same kind of those used in optimization problems. Therefore, the first step in establishing a procedure for the 
solution of either inverse problems or optimization problems is thus the definition of an objective function. The 
objective function is the mathematical representation of an aspect under evaluation, which must be minimized (or 
maximized). It can be mathematically stated as 

 
( ) { }NxxxUU ,...,,; 21== xx  (2.1.1) 

 
where x1, x2, … , xN are the variables of the problem under consideration that can be modified in order to find the 
minimum value of the function U.  

The relationship between U and x can, most of the times, be expressed by a physical / mathematical model. 
However, in some cases this relationship is impractical or even impossible and the variation of U with respect to x must 
be determined by experiments. 

 
2.2. Constraints 

 
Usually the variables x1, x2, … , xN which appear on the objective function formulation are only allowed to vary 

between some pre-specified ranges. Such constraints are, for example, due to physical or economical limitations.  
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We can have two types of constraints. The first one is the equality constraint, which can be represented by 
 

( ) α== xGG  (2.2.1.a) 

 
This kind of constraint can represent, for example, the pre-specified power of an automobile.  
The second type of constraint is called inequality constraint and it is represented by 

( ) α≤= xGG  (2.2.1.b) 

 
This can represent, for example, the maximum temperature allowed in a gas turbine engine.  
 

2.3. Optimization problems 
 
For optimization problems, the objective function U can be, for example, the fuel consumption of an automobile 

and the variables x1, x2, … , xN can be the aerodynamic profile of the car, the material of the engine, the type of wheels 
used, the distance from the floor, etc.  

 
2.4. Inverse problems and regularization 

 
For inverse problems, the objective function usually involves the squared difference between measured and 

estimated variables. As a result, some statistical aspects regarding the unknown parameters and the measured errors 
need to be examined in order to select an appropriate objective function. In the examples presented below we assume 
that temperature measurements are available for the inverse analysis. The eight standard assumptions [2] regarding the 
statistical description of the problem are: 

1. The errors are additive, that is, 
 

iii TY ε+=
 (2.4.1.a) 

 
where Yi is the measured temperature, Ti is the actual temperature and εi is the random error. 

2. The temperature errors εi  have a zero mean, that is, 
 

0)( =iE ε
 (2.4.1.b) 

 
where E(·) is the expected value operator. The errors are then said to be unbiased. 

3. The errors have constant variance, that is, 
 

constant})]({[ 222 ==−= σσ iii YEYE
 (2.4.1.c) 

 
which means that the variance of Y

i 
is independent of the measurement. 

4. The errors associated with different measurements are uncorrelated. Two measurement errors εi and εj , where i 
≠  j, are uncorrelated if the covariance of εi and εj is zero, that is, 

 
0)]}()][({[),(cov =−−≡ jjiiji EEE εεεεεε           for i ≠  j 

(2.4.1.d) 
 
Such is the case if the errors εi and εj have no effect on or relationship to the other. 
5.  The measurement errors have a normal (Gaussian) distribution. By taking into consideration the assumptions 

2, 3 and 4 above, the probability distribution function of εi is given by 

  −=
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(2.4.1.e) 

 
6. The statistical parameters describing εi , such as σ , are known. 
7. The only variables that contain random errors are the measured temperatures. The measurement times, 

measurement positions, dimensions of the heated body, and all other quantities appearing in the formulation of the 
inverse problem are all accurately known. 
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8. There is no prior information regarding the quantities to be estimated, which can be either parameters or 
functions. If such information exists, it can be utilized to obtain improved estimates. 

If all of the eight statistical assumptions stated above are valid, the objective function, U, that provides minimum 
variance estimates is the ordinary least squares norm [2] (i.e., the sum of the squared residuals) defined as 

 

)]([)]([)( xTYxTYx −−= TU
 

(2.4.2) 

 
where Y and T(x) are the vectors containing the measured and estimated temperatures, respectively, and the superscript 
T indicates the transpose of the vector. The estimated temperatures are obtained from the solution of the direct problem 
with estimates for the unknown quantities. 

If the values of the standard deviations of the measurements are quite different, the ordinary least squares method 
does not yield minimum variance estimates [2]. In such a case, the objective function is given by the weighted least 
squares norm, Uw, defined as 

 

)]([)]([)( xTYWxTYx −−= T
WU

 
(2.4.3) 

 
where W is a diagonal weighting matrix. Such matrix is taken as the inverse of the covariance matrix of the 
measurement errors in cases where the other statistical hypotheses remain valid [2].  

If we consider that some information regarding the unknown parameters is available, we can use the maximum a 
posteriori objective function in the minimization procedure [2]. Such an objective function is defined as: 

 

[ ] [ ] )()()()()( 1 xVxxTYWxTYx −−+−−= − µµµµµµµµ TT
MAPU  (2.4.4) 

 
where x is assumed to be a random vector with known mean µµµµ and known covariance matrix V. Therefore, the mean µµµµ 
and the covariance matrix V provide a priori information regarding the parameter vector x to be estimated. Such 
information can be available from previous experiments with the same experimental apparatus or even from the 
literature data. By assuming valid the other statistical hypotheses described above regarding the experimental errors, the 
weighting matrix W is given by the inverse of the covariance matrix of the measurement errors [2]. 

If the inverse heat transfer problem involves the estimation of only few unknown parameters, such as the estimation 
of a thermal conductivity value from the transient temperature measurements in a solid, the minimization of the 
objective functions given above can be stable.  However, if the inverse problem involves the estimation of a large 
number of parameters, such as the recovery of the unknown transient heat flux components ii ftf ≡)( at times ti, 
i=1,…,I, excursion and oscillation of the solution may occur.  One approach to reduce such instabilities is to use the 
procedure called Tikhonov’s regularization [1-21], which modifies the least squares norm by the addition of a term such 
as 

 ∑ ∑+−=
= =

I

i

I

i
iii fTYtfU

1 1

22 *)()]([ α
 

(2.4.5.a) 

 

where α*  (> 0) is the regularization parameter and the second summation on the right is the whole-domain zeroth-
order regularization term.  In equation (2.4.5.a), fi is the heat flux  at  time  ti , which  is  supposed to be constant in the 
interval ti − ∆t/2 < t < ti + ∆t/2, where ∆t is the time interval between two consecutive measurements. The values 

chosen for the regularization parameter α*  influence the stability of the solution as the minimization of equation 

(2.4.5.a) is performed. As α* → 0 the solution may exhibit oscillatory behavior and become unstable, since the 

summation of 2
if  terms may attain very large values and the estimated temperatures tend to match those measured. On 

the other hand, with large values of α*  the solution is damped and deviates from the exact result.  
The whole-domain Tikhonov’s first-order regularization procedure involves the minimization of the following 

modified least squares norm: 
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(2.4.5.b) 

 

For α* → 0, exact matching between estimated and measured temperatures is obtained as the minimization of 

U[f(t)] is performed and the inverse problem solution becomes unstable. For large values of α* , when the second 
summation in equation (2.4.5.b) is dominant, the heat flux components f

i
 tend to become constant for i = 1, 2, ..., I, that 

is, the first derivative  of f(t) tends to zero. Instabilities on the solution can be alleviated by proper selection of the value 
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of α* . Tikhonov [1] suggested that α*  should be selected so that the minimum value of the objective function would be 
equal to the sum of the squares of the errors expected for the measurements, which is know as the Discrepancy 
Principle.  

Alternative approaches for Tikhonov’s regularization scheme described above is the use of Beck’s Sequential 
Function Specification Method [4] or of Alifanov’s Iterative Regularization Methods [3,5,7]. Beck’s sequential function 
specification method is a quite stable inverse analysis technique. This is due to the averaging property of the least-
squares norm and because the measurement at the time when the heat flux is to be estimated, is used in the 
minimization procedure together with few measurements taken at future time steps [4]. In Alifanov’s regularization 

methods, the number of iterations plays the role of the regularization parameter α* and the stopping criterion is so 
chosen that reasonably stable solutions be obtained. Therefore, there is no need to modify the original objective 
function, as opposed to Tikhonov’s or Beck’s approaches. The iterative regularization approach is sufficiently general 
and can be applied to both parameter and function estimations, as well as to linear and non-linear inverse problems 
[3,5,7]. 

 
3. Minimization techniques 

 
In this section, we present deterministic and stochastic techniques for the minimization of an objective function 

U(x) and the identification of the parameters x1, x2, … , xN, which appear on the objective function formulation. 
Basically, such kind of minimization problem is solved in a space of finite dimension N, which is the number of 
unknown parameters. For many minimization problems, the unknowns cannot be recast in the form of a finite number 
of parameters and the minimization needs to be performed in an infinite dimensional space of functions [1-23]. A 
powerful and straightforward technique for the minimization in a functional space is the conjugate gradient method 
with adjoint problem formulation [3,5,7,23]. Therefore, such technique is also described below, as applied to the 
solution of an inverse problem of function estimation. 

 
3.1. Deterministic methods 

 
This type of methods, as applied to non-linear minimization problems, generally rely on establishing an iterative 

procedure, which, after a certain number of iterations, will hopefully converge to the minimum of the objective 
function. The iterative procedure can be written in the following general form [2,3,5,24-27,39,40]: 

 
kkkk dxx α+=+1  (3.1.1) 

 
where x is the vector of design variables, α is the search step size, d is the direction of descent and k is the number of 
iterations. 

An iteration step is acceptable if Uk+1 < Uk. The direction of descent d will generate an acceptable step if and only 
if there exists a positive definite matrix R, such that ].39[U∇−= Rd  

In fact, such requirement results on directions that form an angle greater than 90o with the gradient direction. A 
minimization method in which the directions are obtained in this manner is called an acceptable gradient method [39]. 

A stationary point of the objective function is one at which .0=∇U  The most that we can hope about any gradient 
method is that it converges to a stationary point. Convergence to the true minimum can be guaranteed only if it can be 
shown that the objective function has no other stationary points. In practice, however, one usually reaches the local 
minimum in the valley where the initial guess for the iterative procedure was located [39]. 

 
3.1.1. Steepest descent method 

 
In this section we will introduce the most basic gradient method, which is the Steepest Descent Method. The basic 

idea of this method is to move downwards on the objective function along the direction of highest variation, in order to 
locate its minimum value. Therefore, the direction of descent is given by 

 

)( kk U xd −∇=  (3.1.2) 

 
since the gradient direction is the one that gives the fastest increase of the objective function. Despite being the natural 
choice for the direction of descent, the use of the gradient direction is not very efficient. Usually the steepest-descent 
method starts with large variations in the objective function, but, as the minimum value is reached, the convergence rate 
becomes very low. 

The optimum choice for the search step size, α, is the one that minimizes the objective function along the direction 
of descent at each iteration. Thus, a univariate search method need to be employed in order to find the search step size 
at each iteration. In the case of a unimodal function some classical procedures can be used, such as the Dichotomous 
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Search, Fibonacci Search, Golden Search and Cubic Interpolation, among others. However, for some realistic cases, the 
variation of the objective function with the search step size is not unimodal and, then, more robust techniques are 
required, such as the exhaustive search method or a technique based on exhaustive interpolation [24-27,39,40]. 

Figure 3.1.1 illustrates the iterative procedure for the Steepest Descent Method. 
 

k=0

Make an initial guess
for xk

)(1 kk U xd −∇=+Calculate

)( kU x∇

k=k+1

11 ++ += kkkk dxx α

Calculate
kα

Calculate

)( kU x∇
Convergence?xk is the optimum Yes

No

1 - Maximum number
of iterations reached;
2 - U(xk) reached the
expected value;
3 - The gradient of
U(xk) reached the
expected value.

 
 

Figure 3.1.1. Iterative procedure for the Steepest Descent Method. 
 

3.1.2. Conjugate gradient method 
 
The Conjugate Gradient Method improves the convergence rate of the Steepest Descent Method, by choosing 

directions of descent that are a linear combination of the gradient direction with directions of descent of previous 
iterations [3,5,7,23-33]. In a general form, the direction of descent is given by: 

 

( ) qkkkkk ddxd ψγ ++−∇= −1  (3.1.3) 

 
where γk and ψk are the conjugation coefficients. This direction of descent is used in the iterative procedure specified by 
equation (3.1.1). 

The superscript q in equation (3.1.3) denotes the iteration number where a restarting strategy is applied to the 
iterative procedure of the conjugate gradient method. Restarting strategies were suggested for the conjugate gradient 
method of parameter estimation in order to improve its convergence rate [28]. 

Different versions of the Conjugate Gradient Method can be found in the literature depending on the form used for 
the computation of the direction of descent given by equation (3.1.3) [3,5,7,23-33]. In the Fletcher-Reeves version, the 
conjugation coefficients γk and ψ k are obtained from the following expressions: 

 

( )
( ) 21

2
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∇
=

k

k

k

U

U

x

x
γ , with γ 0 = 0 for k=0 (3.1.4.a) 

 

0=kψ , for k = 0,1,2,… (3.1.4.b) 

 
where || . || denotes the Euclidian norm in the vector space. 

In the Polak-Ribiere version of the Conjugate Gradient Method the conjugation coefficients are given by: 
 

( ) ( ) ( )[ ]
( ) 21
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kkTk
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xxxγ , with γ 0 = 0 for k=0 (3.1.5.a) 

 

0=kψ , for k = 0,1,2,… (3.1.5.b) 

 
Based on a previous work by Beale [32], Powell [28] suggested the following expressions for the conjugation 

coefficients, which gives the so-called Powell-Beale’s version of the Conjugate Gradient Method:  
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+
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ψ , with ψ 0 = 0 for k=0 (3.1.6.b) 

 
In accordance with Powell [28], the application of the conjugate gradient method with the conjugation coefficients 

given by equations (3.1.6.a,b) requires restarting when gradients at successive iterations tend to be non-orthogonal 
(which is a measure of the local non-linearity of the problem) and when the direction of descent is not sufficiently 
downhill. Restarting is performed by making ψ k=0 in equation (3.1.3). 

The non-orthogonality of gradients at successive iterations is tested by the following equation: 
 

( ) ( ) 21 2.0)()]([ kkTkABS xxx ∇≥∇∇ −  (3.1.7.a) 

 
where ABS (.) denotes the absolute value. 

A non-sufficiently downhill direction of descent (i.e., the angle between the direction of descent and the negative 
gradient direction is too large) is identified if either of the following inequalities is satisfied 

 

( ) ( ) 2
2.1][ kkTk xxd ∇−≤∇  (3.1.7.b) 

 
or 

 

( ) ( ) 2
8.0][ kkTk xxd ∇−≥∇  (3.1.7.c) 

 
We note that the coefficients 0.2, 1.2 and 0.8 appearing in equations (3.1.7.a-c) are empirical and are the same used 

by Powell [28]. 
In Powell-Beale’s version of the conjugate gradient method, the direction of descent given by equation (3.1.3) is 

computed in accordance with the following algorithm for k ≥ 1 [28]: 
 
STEP 1: Test the inequality (3.1.7.a). If it is true set q = k-1.  
STEP 2: Compute γk with equation (3.1.6.a). 
STEP 3: If k = q+1 set ψk  = 0. If k ≠ q+1 compute ψ k with equation (3.1.6.b). 
STEP 4: Compute the search direction dk with equation (3.1.3). 
STEP 5: If k ≠ q+1 test the inequalities (3.1.7.b,c). If either one of them is satisfied set   q = k-1 and ψ k=0. Then 

recompute the search direction with equation (3.1.3). 
 
The Steepest Descent Method, with the direction of descent given by the negative gradient equation, would be 

recovered with γk=ψ k=0 for any k in equation (3.1.3). The same procedures used for the evaluation of the search step 
size in the Steepest Descent Method are employed for the Conjugate Gradient Method.  

Figure 3.1.2 shows the iterative procedure for the Fletcher-Reeves version of the Conjugate Gradient Method. 
 

   k=0,  d0=0,
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Figure 3.1.2. Iterative procedure for the Fletcher-Reeves version of the Conjugate Gradient Method. 
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3.1.3. Newton-Raphson method 
 
While the Steepest Descent and the Conjugate Gradient Methods use gradients of the objective function in their 

iterative procedures, the Newton-Raphson Method also uses information of the second derivative of the objective 
function in order to achieve a faster convergence rate (which doesn’t mean a lower computational cost). 

Let us consider an objective function U(x), which is, at least, twice differentiable. The Taylor expansion of U(x) 
around a vector xk, where x – xk = h, is given by [2,24,26,35-40]: 

 

( ) ( )32 )(D
2

1
)()( hhxhhxxhx OUUUU kTTkkk ++∇+=+   (3.1.8) 

 
where ∇U(x) is the gradient (vector of 1st order derivatives) of the objective function and D2U(x) is the Hessian (matrix 
of 2nd order derivatives) of the objective function. 

If the objective function U(x) is twice differentiable, the Hessian is symmetric, and we can write 
 

( ) hxxhx )(D)( 2 kkk UUU +∇≅+∇  (3.1.9) 

 
A necessary condition for the minimization of the objective function is that its gradient vanishes. Therefore, from 

equation (3.1.9) we have: 
 

[ ] ( )kk UU xxh ∇−≅
−12 )(D  (3.1.10) 

 
and the vector that locally optimizes the function U(x) is given by 

 

[ ] ( )kkk UU xxxx ∇−≅
−12 )(D  (3.11) 

 
Therefore, the iterative procedure of the Newton-Raphson method, given by equation (3.1.11), can be written in the 

same form of equation (3.1.1) by setting αk=1 and  
 

[ ] ( )kkk UU xxd ∇−=
−12 )(D  (3.1.12.a) 

 
However, the Newton-Raphson method converges to the extreme point closer to the initial guess, disregarding if it 

is a maximum, a minimum or a saddle point. For this reason it is common to introduce a search step size to be taken 
along the direction of descent for this method, so that it is written as: 

 

[ ] ( )kkkk UU xxd ∇−=
−12 )(Dα  (3.1.12.b) 

 
Figure 3.1.3 shows the iterative procedure for the Newton-Raphson Method. 
Although the convergence rate of the Newton-Raphson is quadratic, the calculation of the Hessian is 

computationally expensive. As a result, other methods that approximate the Hessian with simpler and faster-computing 
forms have been developed. Some of these methods are described next. 
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Figure 3.1.3. Iterative procedure for the Newton-Raphson Method. 
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3.1.4. Quasi Newton methods 
 
In this kind of methods, the Hessian matrix appearing in the Newton-Raphson’s Method is approximated in such a 

way that it does not involve second derivatives. Usually, the approximations for the Hessian are based on first 
derivatives. As a result, the Quasi-Newton Methods have a slower convergence rate than the Newton-Raphson Method, 
but they are computationally faster [2,24,26,35-40]. 

Let us define a new matrix H, which is an approximation for the inverse of the Hessian, that is, 
 

[ ] 12 )(D
−

≅ kk U xH  (3.1.13) 

 
The direction of descent for the Quasi-Newton methods is thus given by: 
 

( )kkk U xHd ∇−=+ 1  (3.1.14) 

 
and the matrix H is iteratively calculated as 

 
111 −−− ++= kkkk NMHH  for k = 1,2,… (3.1.15.a) 

 

IH =k  for k = 0 (3.1.15.b) 
 

where I  is the identity matrix. Note that, for the first iteration, the method starts as the Steepest Descent Method.  
Different Quasi-Newton methods can be found in the literature depending on the choice of the matrices M  and N. 

For the Davidon-Fletcher-Powell (DFP) Method [33,34], such matrices are given by 
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where 

 
( ) ( )11 −− ∇−∇= kkk UU xxY  (3.1.16.c) 

 
Note that, since the matrix H is iteratively calculated, some errors can be propagated and, in general, the method 

needs to be restarted after some number of iterations. Also, since the matrix M  depends on the choice of the search step 
size α, the method is very sensitive to its choice. A variation of the DFP method is the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) Method [33-36], which is less sensitive to the choice of the search step size. For this method, the 
matrices M  and N are calculated as 
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Figure 3.1.4 shows the iterative procedure for the BFGS Method. 
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Figure 3.1.4. Iterative procedure for the BFGS Method. 
 

3.1.5. Levenberg-Marquardt method 
 
The Levenberg-Marquardt Method was first derived by Levenberg [37] in 1944, by modifying the ordinary least 

squares norm. Later, in 1963, Marquardt [38] derived basically the same technique by using a different approach. 
Marquardt’s intention was to obtain a method that would tend to the Gauss method in the neighborhood of the 
minimum of the ordinary least squares norm, and would tend to the steepest descent method in the neighborhood of the 
initial guess used for the iterative procedure. This method actually converts a matrix that approximates the Hessian into 
a positive definite one, so that the direction of descent is acceptable.  

The method rests on the observation that if P is a positive definite matrix, then A + λ P is positive definite for 
sufficiently large λ. If A is an approximation for the Hessian, we can choose P as a diagonal matrix whose elements 
coincide with the absolute values of the diagonal elements of A [39].  

The direction of descent for the Levenberg-Marquardt method is given by [39]: 
 

)()( 1 kkkkk U xPAd ∇+−= −λ  (3.1.18) 

 
and the step size is taken as αk = 1. Note that for large values of λ k  a small step is taken along the negative gradient 
direction. On the other hand, as λ k  tends to zero, the Levenberg-Marquardt method tends to an approximation of 
Newton’s method based on the matrix A. Usually, the matrix A is taken as that for the Gauss method [2,7,39]. 

 
3.2. Evolutionary and stochastic methods 

 
In this section some Evolutionary and Stochastic Methods like Genetic Algorithms, Differential Evolution, Particle 

Swarm and Simulated Annealing will be discussed. Evolutionary methods, in opposition to the deterministic methods, 
don’t rely, in general, on strong mathematical basis and do not make use of the gradient of the objective function as a 
direction of descent. They tend to mimic the nature in order to find the minimum of the objective function, by selecting, 
in a fashionable and organized way, the points where such function is going to be computed.  

 
3.2.1. Genetic algorithms 

 
Genetic algorithms are heuristic global optimization methods that are based on the process of natural selection. 

Starting from a randomly generated population of designs, the optimizer seeks to produce improved designs from one 
generation to the next. This is accomplished by exchanging genetic information between designs in the current 
population, in what is referred to as the crossover operation. Hopefully this crossover produces improved designs, 
which are then used to populate the next generation [45,46]. 
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The basic genetic algorithm works with a collection or population of potential solutions to the minimization 
problem. The algorithm works in an iterative manner. At each iteration, also called generation, three operators are 
applied to the entire population of designs. These operators are selection, crossover, and mutation. For the operators to 
be effective, each potential solution or design must be represented as a collection of finite parameters, also called genes. 
Each design must have a unique sequence of these parameters that define it. This collection of genes is often called the 
chromosome. The genes themselves are often encoded as binary strings though they can be represented as real numbers. 
The length of the binary string determines how precisely the value, also know as the allele of the gene, is represented. 

The genetic algorithm applied to an optimization problem proceeds as follows. The process begins with an initial 
population of random designs. Each gene is generated by randomly generating 0’s and 1’s. The chromosome strings are 
then formed by combining the genes together. This chromosome defines the design. The objective function is evaluated 
for each design in the population. Each design is assigned a fitness value, which corresponds to the value of the 
objective function for that design. In the case of minimization, a higher fitness is assigned to designs with lower values 
of the object function.  

Next, the population members are selected for reproduction, based upon their fitness. The selection operator is 
applied to each member of the population. The selection operator chooses pairs of individuals from the population who 
will mate and produce offspring. In the tournament selection scheme, random pairs are selected from the population and 
the individual with the higher fitness of each pair is allowed to mate. 

Once a mating pair is selected, the crossover operator is applied. The crossover operator essentially produces new 
designs or offspring by combining the genes from the parent designs in a stochastic manner. In the uniform crossover 
scheme, it is possible to obtain any combination of the two parent’s chromosomes. Each bit in each gene in the 
chromosome is assigned a probability that crossover will occur (for example, 50 % for all genes). A random number 
between 0 and 1 is generated for each bit in each gene. If a number greater than 0.5 is generated then that bit is replaced 
by the corresponding bit in the gene from the other parent. If it is less than 0.5, the original bit in the gene remains 
unchanged. This process is repeated for the entire chromosome for each of the parents. When complete, two offspring 
are generated, which may replace the parents in the population. 

The mutation process follows next. When the crossover procedure is complete and a new population is formed, the 
mutation operator is applied. Each bit in each gene in the design is subjected to a chance for a change from 0 to 1, or 
vice versa. The chance is known as the mutation probability, which is usually small. This introduces additional 
randomness into the process, which helps to avoid local minima. Completion of the mutation process signals the end of 
a design cycle. Many cycles may be needed before the method converges to an optimum design. 

For more details or for the numerical implementation of Genetic Algorithms, the reader is referred to [45,46]. 
 

3.2.2. Differential evolution 
 
The Differential Evolution Method is an evolutionary method based on Darwin’s Theory for the Evolution of the 

Species. It was created in 1995 by two researchers from Berkeley (Kenneth Price and Rainer Storn) [44] as an 
alternative to the Genetic Algorithm Method. Following the Theory for the Evolution of the Species, the strongest 
members of a population will be more capable to survive to a certain environmental condition. During the matting 
process, the chromosomes of two individuals of the population are combined in a process called crossover. During this 
process mutations can occur, which can be good (individual with a better objective function) or bad (individual with a 
worst objective function). The mutations are used as a way to escape from local minima. However, their excessive 
usage can lead to a non-convergence of the method. 

The method starts with a randomly generated population in the domain of interest. Then, successive combinations 
of chromosomes and mutations are performed, creating new generations until an optimum value is found. 

The iterative process of the Differential Evolution Method is given by: 
 

( )[ ]γβαxx −++=+ Fk
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k
i 21

1 δδ  (3.2.1) 

 
where 

xi is the i-th individual vector of parameters. 
αααα, ββββ and γγγγ are three members of the population matrix P, randomly chosen. 
F is a weight function, which defines the mutation (0.5 < F < 1). 
k is the number of generations. 
δ1 and δ2 are Dirac delta functions that define the mutation. 
In the minimization process, if U(xk+1) < U(xk), then xk+1 replaces xk in the population matrix P. Otherwise, xk is 

kept in the population matrix. 
The binomial crossover is given as 
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where CR is a factor that defines the crossover (0.5 < CR < 1) and R is a random number with uniform distribution 
between 0 and 1. 

 
Figure 3.2.1 shows the iterative procedure for the Differential Evolution Method. 
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Figure 3.2.1. Iterative procedure for the Differential Evolution Method. 
 

3.2.3. Particle swarm 
 
Another evolutionary method is the one that uses the concepts of Particle Swarm. Such method was created in 1995 

by an Electrical Engineer (Russel Eberhart) and a Social Psychologist (James Kennedy) [47-50] as an alternative to the 
Genetic Algorithm Method. This method is based on the social behavior of various species and tries to equilibrate the 
individuality and sociability of the individuals in order to locate the optimum of interest. The original idea of Kennedy 
and Eberhart came from the observation of birds looking for nesting places. When the individuality, is increased the 
search for alternative places for nesting is also increased. However, if the individuality becomes too high, the individual 
might never finds the best place. On the other hand, when the sociability is increased, the individual learns more from 
its neighbors’ experience. However, if the sociability becomes too high, all the individuals might converge to the first 
minima found, which is possibly a local minima. 

In this method, the iterative procedure is given by: 
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where: 

xi is the i-th individual vector of parameters. 
vi = 0, for k=0. 
r 1i and r 2i are random numbers with uniform distribution between 0 and 1. 
pi is the best value found for the vector xi. 
pg is the best value found for the entire population. 
0 < α < 1; 1 < β < 2 
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In equation (3.2.3.b), the second term on the right hand side represents the individuality and the third term the 
sociability. The first term on the right-hand side represents the inertia of the particles and, in general, must be decreased 
as the iterative process runs. In this equation, the vector pi represents the best value ever found for the i-th component 
vector of parameters xi during the iterative process. Thus, the individuality term involves the comparison between the 
current value of the i-th individual xi with its best value in the past. The vector pg is the best value ever found for the 
entire population of parameters (not only the i-th individual). Thus the sociability term compares xi with the best value 
of the entire population in the past. 

Figure 3.2.2 shows the iterative procedure for the Particle Swarm Method. 
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Figure 3.2.2. Iterative procedure for the Particle Swarm Method. 
 

3.2.4. Simulated annealing 
 
This method is based on the thermodynamics of the cooling of a material from a liquid to a solid phase [42,43]. If a 

liquid material (e.g. liquid metal) starts being slowly cooled down and left for a sufficiently long time close to the phase 
change temperature, a perfect crystal will be created, which has the lowest internal energy state. On the other hand, if 
the liquid material is not left for a sufficient long time close to the phase change temperature, or, if the cooling process 
is not sufficiently slow, the final crystal will have several defects and a high internal energy state. This is similar to the 
quenching process used in metallurgical applications. 

We can say that gradient-based methods “cool down too fast”, going rapidly to an optimum location which, in most 
cases, is not the global but the local one. Differently from the gradient-based methods, the Simulated Annealing Method 
can move in any direction, escaping from possible local minimum or maximum values. Consider, for example, the 
Boltzmann probability function 

 

( ) ( )TKEeE /Prob −∝  (3.2.4) 

 
This equation expresses the idea that a system in thermal equilibrium has its energy distributed probabilistically 

among different energy states E. In this equation, K is the Boltzmann constant. Such equation tells us that, even at low 
temperatures, there is a chance, even small, that the system is at a high energy level, as illustrated in figure 3.2.3. Thus, 
there is a chance of the system to get out of this local minimum and search for a global one. 
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Figure 3.2.3. Schematic representation of eq. (3.2.4). 
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Figure 3.2.4 shows the iterative procedure for the Simulated Annealing Method. The procedure starts by generating 
a population of individuals of the same size of the number of variables (n=m), in such a way that the population matrix 
is a square matrix. Then, the initial temperature (T), the reducing ratio (RT), the number of cycles (Ns) and the number 
of iterations of the annealing process (Nit) are selected. After NS*n function evaluations, each element of the step length 
V is adjusted, so that approximately half of all function evaluations are accepted. The suggested value for the number of 
cycles is 20. After Nit*Ns*n function evaluations, the temperature (T) is changed by the factor RT. The value suggested 
for the number of iterations by Corana et al [42] is MAX(100, 5*n). 

The iterative process is given by the following equation: 
 

iii RVxx += 01  (3.2.5) 

 
where R is a random number with uniform distribution between 0 and 1 and V is a step-size which is continuously 
adjusted. 

To start, it randomly chooses a trial point within the step length V (a vector of length N) of the user selected starting 
point. The function is evaluated at this trial point (xi

1) and its value is compared to its value at the initial point (xi
0). In a 

minimization problem, all downhill moves are accepted and the algorithm continues from that trial point. Uphill moves 
may be accepted; the decision is made by the Metropolis criteria. It uses T (temperature) and the size of the downhill 
move in a probabilistic manner 

 
( ) ( )[ ] TxUxU iieP /01 −=  (3.2.6) 

 
The smaller T and the size of the uphill move are, the more likely that move will be accepted. If the trial is 

accepted, the algorithm moves on from that point. If it is rejected, another point is chosen for a trial evaluation.  
Each element of V is periodically adjusted, so that half of all function evaluations in that direction are accepted. The 

number of accepted function evaluations is represented by the variable Ni. Thus the variable r represents the ratio of 
accepted over total function evaluations for an entire cycle Ns and it is used to adjust the step length V. 

A decrease in T is imposed upon the system with the RT variable by using 
 

)(*)1( iTRTiT =+  (3.2.7) 

 
where i is the i-th iteration. Thus, as T declines, uphill moves are less likely to be accepted and the percentage of 
rejections rises. Given the scheme for the selection for V, V falls. Thus, as T declines, V falls and the algorithm focuses 
upon the most promising area for optimization. 

The parameter T is crucial for the successful use of the algorithm. It influences V, the step length over which the 
algorithm searches for the minimum. For a small initial T, the step length may be too small; thus not enough values of 
the function will be evaluated to find the global minimum. To determine the starting temperature that is consistent with 
optimizing a function, it is worthwhile to run a trial run first. The user should set RT = 1.5 and T = 1.0. With RT > 1.0, 
the temperature increases and V rises as well. Then it must be selected the T that produces a large enough V. 
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Figure 3.2.4. Iterative procedure for the Simulated Annealing Method. 
 

3.3. Hybrid methods 
 
The so-called Hybrid Methods are a combination of the deterministic and the evolutionary/stochastic methods, in a 

sense that the advantages of each one of them are used. Hybrid Methods usually employ an evolutionary/stochastic 
method to locate the region where the global minimum is located and then switches to a deterministic method to get 
closer to the exact point faster.  

As an example, consider the Hybrid Method illustrated in figure 3.3.1. The main module is the Particle Swarm 
Method, which does almost the entire optimization task. When some percentual of the particles find a minima (lets say, 
some birds already found their best nesting place), the algorithm switches to the Differential Evolution Method and the 
particles (birds) are forced to breed. If there is an improvement on the objective function, the algorithm returns to the 
Particle Swarm Method, meaning that some other region is more prone to have a global minimum. If there is no 
improvement on the objective function, this can indicate that this region already contains the global minimum expected 
and the algorithm switches to the BFGS Method in order to locate more precisely its location. Finally, the algorithm 
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returns again to the Particle Swarm Method in order to check if there are any changes in the minimum location and the 
entire procedure is repeated for few more iterations (e.g., 5). 

More involved Hybrid Methods, dealing with the application of other deterministic and stochastic methods, can be 
found in references [52-59]. 
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Figure 3.3.1. Global procedure for the Hybrid Method. 
 

3.4. Function estimation approach 
 
The methods described above were applied for the minimization of an objective function U(x), where x = [x1, x2, 

…, xN] is the vector with the parameters of the problem under consideration that can be modified in order to find the 
minimum of U(x). Therefore, the minimization is performed in a parameter space of dimension N. Several optimization 
or inverse problems rely on functions, instead of parameters, which need to be selected for the minimization of an 
objective function. In these cases, the minimization needs to be performed in an infinite dimensional space of functions 
and no a priori assumption is required regarding the functional form of the unknown functions, except for the 
functional space that they belong to [3,5,7]. A common selection is the Hilbert space of square integrable functions in 
the domain of interest.  

In this paper we use the conjugate gradient method with adjoint problem formulation for the minimization of the 
objective function. We illustrate here the function estimation approach as applied to the solution of a specific inverse 
problem involving the following diffusion equation [59]: 
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where r* denotes the vector of coordinates and the superscript * denotes dimensional quantities. 
Equation (3.4.1) can be used for the modeling of several physical phenomena, such as heat conduction, 

groundwater flow and tomography. We focus our attention here to a one-dimensional version of equation (1) written in 
dimensionless form as 
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and subject to the following boundary and initial conditions. 
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Notice that in the direct problem, the diffusion coefficient function D(x) and the source term distribution function 
µ(x) are regarded as known quantities, so that a direct (analysis) problem is concerned with the computation of T(x,t). 

 
3.4.1. Inverse problem 

 
For the inverse problem of interest here, the functions D(x) and µ(x) are regarded as unknown. Such functions will 

be simultaneously estimated by using measurements of T(x,t) taken at appropriate locations in the medium or on its 
boundaries. Such measurements may contain random errors. These measurement errors are assumed to be uncorrelated, 
additive, normally distributed, with zero mean, and with a known constant standard deviation.  

Practical applications of this inverse problem include the identification of non-homogeneities in the medium, such 
as inclusions, obstacles or cracks, determination of thermal diffusion coefficients and distribution of heat sources, 
groundwater flow and tomography physical problems, in which both D(x) and µ(x) vary. 

The basic steps of the conjugate gradient method of function estimation are discussed below. 
 

3.4.2. Conjugate gradient method with adjoint problem 
 
For the simultaneous estimation of the functions D(x) and µ(x) with the conjugate gradient method with adjoint 

problem, we consider the minimization of the following objective functional 
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where Ym(t) are the transient measurements of T(x,t) taken at the positions xm, m = 1,…, M. The estimated dependent 
variable T[xm,t;D(x),µ(x)] is obtained from the solution of the direct problem (3.4.2.a-d) at the measurement positions 
xm, m = 1,…, M, with estimates for D(x) and µ(x). When dealing with an optimization problem, instead of an inverse 
problem, Ym(t) represents the desired temperature at the positions xm, m = 1,…, M. We note in equation (3.4.3) that, for 
simplicity in the analytical analysis developed below, the measurements Ym(t) are assumed to be continuous in the time 
domain. 

The use of the conjugate gradient method with an adjoint problem for the minimization of the objective functional 
(3.4.3) requires the solution of auxiliary problems, known as sensitivity and adjoint problems.   

The sensitivity function, solution of the sensitivity problem, is defined as the directional derivative of T(x,t) in the 
direction of the perturbation of the unknown function [3,5,7]. Since the present problem involves two unknown 
functions, two sensitivity problems are required for the estimation procedure, resulting from perturbations in D(x) and 
µ(x). 

The sensitivity problem for ∆TD(x,t) is obtained by assuming that the dependent variable T(x,t) is perturbed by 
ε∆TD(x,t) when the diffusion coefficient D(x) is perturbed by ε∆D(x), where ε  is a real number. The sensitivity problem 
resulting from perturbations in D(x) is then obtained by applying the following limiting process: 
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where Lε(Dε) and L(D) are the direct problem formulations written in operator form for perturbed and unperturbed 
quantities, respectively. The application of the limiting process given by equation (3.4.4) results in the following 
sensitivity problem: 
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A limiting process analogous to that given by equation (3.4.4), obtained from the perturbation ε∆µ(x), results in the 

following sensitivity problem for ∆Tµ(x,t) 
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A Lagrange multiplier λ(x,t) is utilized in the minimization of the functional (3.4.3) because the estimated 

dependent variable T[xm,t;D(x),µ(x)] appearing in such functional needs to satisfy a constraint, which is the solution of 
the direct problem. Such Lagrange multiplier, needed for the computation of the gradient equations (as will be apparent 
below), is obtained through the solution of problems adjoint to the sensitivity problems, given by equations (3.4.5.a-d) 
and (3.4.6.a-d) [3]. Despite the fact that the present inverse problem involves the estimation of two unknown functions, 
thus resulting in two sensitivity problems as discussed above, one single problem, adjoint to problems (3.4.5.a-d) and 
(3.4.6.a-d), is obtained.  

In order to derive the adjoint problem, the governing equation of the direct problem, equation (3.4.2.a), is 
multiplied by the Lagrange multiplier λ(x,t), integrated in the space and time domains of interest and added to the 
original functional (3.4.3). The following extended functional is obtained: 
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where δ is the Dirac delta function. 

Directional derivatives of U[D(x),µ(x)] in the directions of perturbations in D(x) and µ(x) are respectively defined 
by 
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where U[Dε,µ] and U[D,µε] denote the extended functional (3.4.7) written for perturbed D(x) and µ(x), respectively. 

After letting the above directional derivatives of U[D(x),µ(x)] go to zero, which is a necessary condition for the 
minimization of the extended functional (3.4.7), and after performing some lengthy but straightforward manipulations 
[3,5,7], the following adjoint problem for the Lagrange multiplier λ(x,t) is obtained 
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During the limiting processes used to obtain the adjoint problem, applied to the directional derivatives of 

S[D(x),µ(x)] in the directions of perturbations in D(x) and µ(x), the following integral terms are respectively obtained: 
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By invoking the hypotheses that D(x) and µ(x) belong to the Hilbert space of square integrable functions in the 

domain 10 << x , it is possible to write [3,5,7]: 
 

( )∫ ∆∇=∆
=

1

0
 )(][],[

x
D dxxDxDSDU µ  (3.4.11.a) 

 

( )∫ ∆∇=∆
=

1

0
 )(][],[

x
dxxxSDU µµµµ  (3.4.11.b) 

 
Hence, by comparing equations (3.4.10.a,b) and (3.4.11.a,b) we obtain the gradient components of U[D,µ] with 

respect to D(x) and µ(x), respectively, as 
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An analysis of equations (3.4.12.a) and (3.4.9.b.c) reveals that the gradient component with respect to D(x) is null 

at x = 0 and at x = 1. As a result, the initial guess used for D(x) is never changed by the iterative procedure of the 
conjugate gradient method at such points, which can create instabilities in the inverse problem solution in their 
neighborhoods. 

For the simultaneous estimation of D(x) and µ(x), the iterative procedure of the conjugate gradient method is 
written respectively as [3,5,7] 
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where )(xd k
D and )(xd k

µ are the directions of descent for D(x) and µ(x), respectively; k
Dα  and k

µα  are the search step 

sizes for D(x) and µ(x), respectively; and k is the number of iterations.  
For the iterative procedure for each unknown function, the direction of descent is obtained as a linear combination 

of the gradient direction with directions of descent of previous iterations. The directions of descent for the conjugate 
gradient method for D(x) and µ(x) can be written respectively as 
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where k
Dγ , k

µγ , k
Dψ  and k

µψ  are the conjugation coefficients. The superscripts qD and qµ in equations (3.4.14.a,b) 

represent the iteration numbers where a restarting strategy is applied to the iterative procedure for the estimation of D(x) 
and µ(x), respectively [28].  

Different versions of the conjugate gradient method can be found in the literature, depending on how the 
conjugation coefficients are computed. In this work we use the so-called Powell-Beale’s version of the conjugate 
gradient method because of its superior robustness and convergence rate in non-linear problems [59]. The conjugation 
coefficients for this version of the conjugate gradient method are given by: 
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where k
Dγ  = k

µγ  = k
Dψ  = k

µψ = 0, for k = 0. 

Powell-Beale’s version of the conjugate gradient method is restarted by making the conjugation coefficient k
Dψ  = 0 

(or k
µψ = 0) if gradients at successive iterations are too far from being orthogonal (which is a measure of the 

nonlinearity of the problem) or if the direction of descent is not sufficiently downhill. For further details, the reader is 
referred to [59]. 

The search step sizes kDα  and k
µα , appearing in the expressions of the iterative procedures for the estimation of 

D(x) and µ(x), equations (3.4.13.a,b), respectively, are obtained by minimizing the objective functional at each iteration 
along the specified directions of descent. If the objective functional given by equation (3.4.3) is linearized with respect 

to k
Dα  and k

µα , closed form expressions can be obtained for such quantities as follows [3,5,7]: 
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In equations (3.4.18.a-e), ),( txT k
D∆ and ),( txT k

µ∆  are the solutions of the sensitivity problems given by equations 

(3.4.5.a-d) and (3.4.6.a-d), respectively, obtained by setting )()( xdxD k
D

k =∆  and )()( xdx kk
µµ =∆ . 

The use of the conjugate gradient method for the simultaneous estimation of D(x) and µ(x) can be suitably arranged 
in a systematic and straightforward computational procedure, which is omitted here for the sake of brevity, but can be 
readily adapted from those found in reference [7]. The conjugate gradient method of function estimation belongs to the 
class of iterative regularization methods [3]. For this class of methods, the stopping criterion for the computational 
procedure is chosen so that sufficiently accurate and smooth solutions are obtained for the unknown functions. 
Although different approaches can be used for the specification of the tolerance for the stopping criterion, we use in this 
work the discrepancy principle [3].  

With the use of the discrepancy principle, the iterative procedure of the conjugate gradient method is stopped when 
the difference between measured and estimated variables is of the order of the standard deviation, σ, of the 
measurements, that is, when 

 
σµ ≈− )(),;,( tYDtxT mm  (3.4.19) 

 
Therefore, the iterative procedure is stopped when 
 

ϕµ <)](),([ xxDU  (3.4.20) 

 
where the tolerance, ϕ, is obtained by substituting equation (3.4.19) into the definition of the functional given by 
equation (3.4.3), that is, 
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4. Applications 

 
We now present some applications of inverse and optimization problems in heat transfer. The first example deals 

with the simultaneous estimation of the spatial distributions of the diffusion coefficient and of the source-term in a 1D 
diffusion problem. Such is the same kind of inverse problem for which the conjugate gradient method of function 
estimation was derived above. The other four examples of applications deal with convective heat transfer. The first two 
examples involve the solution of inverse problems in irregularly shaped channels (forced convection) and cavities 
(natural convection), respectively, while the other two involve the optimization of externally induced electro or 
magnetic fields in order to control the solidification characteristics of melts. 

 
4.1. Simultaneous estimation of spatially-dependent diffusion coefficient and source term in a nonlinear diffusion 
problem [59] 

 
This work deals with the simultaneous estimation of the spatially varying diffusion coefficient and of the source 

term distribution in a one-dimensional nonlinear diffusion problem. The problem formulation is given by equations 
(3.4.2.a-d). This work can be physically associated with the detection of material non-homogeneities such as inclusions, 
obstacles or cracks, heat conduction, groundwater flow detection, and tomography. Two solution techniques are applied 
in this work to the inverse problem under consideration, namely: the conjugate gradient method with adjoint problem 
and a hybrid optimization algorithm. For the hybrid optimization algorithm, stabilization for the solution of the inverse 
problem was obtained with Tikhonov’s first order regularization. Thus, the objective function was rewritten in the form 
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where α1 is the first-order Tikhonov’s regularization parameter. 

The test cases examined below in dimensionless form are physically associated with a heat conduction problem in a 
homogeneous steel bar of length 0.050 m. The diffusion coefficient and the spatial distribution of the source term are 
supposed to vary from base values of D(x) = 54 W/mK and µ(x) = 105 W/m3K, which result in dimensionless base values 
of Dc = 1 and µc = 5, respectively. The base values for the diffusion coefficient and source term distribution are 
associated with solid-solid phase transformations in steels. The final time is assumed to be 60 seconds, resulting in a 
dimensionless value of tf = 0.36, and 50 measurements are supposed available per temperature sensor.  
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Figure 4.1.1 shows the results obtained with the conjugate gradient method and with the measurements of two non-
intrusive sensors, for a step variation of D(x) and for constant µ(x). The simulated measurements in this case contained 
random errors with standard deviation σ = 0.01 Ymax, where Ymax is the maximum absolute value of the measured 
variable. The initial guesses used for the iterative procedure of the conjugate gradient method and for the hybrid 
optimizer were D(x) =  0.9 and µ(x) = 4.5. We note in Figure 4.1.1 that quite good results were obtained for such a strict 
test case involving a discontinuous variation for D(x), even with only two non-intrusive sensors, by using the conjugate 
gradient method of function estimation. 
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Figure 4.1.1. Estimation of µ(x) and D(x) obtained by the CGM with  
two non-intrusive sensors with standard deviation (σ = 0.01 Ymax). 

 
Figure 4.1.2 shows the results obtained for the same test case shown in Figure 1, but with 10 sensors. We note in 

Figure 2 that more accurate results are obtained for both D(x) and µ(x) when more sensors are used in the inverse 
analysis.  
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Figure 4.1.2. Estimation of µ(x) and D(x) obtained by the CGM  
with ten sensors with standard deviation (σ = 0.01 Ymax). 

 
Figure 4.1.3 shows results similar to those presented in Figure 4.1.1, obtained with the hybrid optimization 

algorithm by using 2 non-intrusive sensors, with the regularization parameter set as zero. The x-axis in this figure 
represents the i th value of the control volume, that is, i = 80 represents x = 1.0. Note that the estimated functions suffer 
from large oscillations resulting from the ill-posed character of the inverse problem.  
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Figure 4.1.3. Estimation of µ(x) and D(x) by the hybrid optimizer  
without regularization and with 2 sensors (σ = 0.01 Ymax). 

 
In order to find the best value of the first order Tikhonov’s regularization parameter α1, we used the L-shape curve 

as shown in Figure 4.1.4. In this figure, the x-axis represents the second term appearing on the RHS of equation (4.1.1) 
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and the y-axis represents the first term appearing on the RHS of equation (4.1.1). The best choice for α1 is the one that 
minimizes both terms represented by the x and y-axis. The optimum value for α1 in this case was 0.0001. 
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Figure 4.1.4. L-shape curve for choice of the regularization parameter using 2 sensors. 
 
Figure 4.1.5 shows the estimated functions obtained with such value of the regularization parameter and the hybrid 

optimization approach, with the measurements of two non-intrusive sensors. Note that the oscillations are eliminated 
because of the stabilization introduced by the first order regularization term. However, the estimated function for D(x) 
is in very bad agreement with the exact one. This is probably due to the fact that this case, involving 50 measurements 
per sensor and only two sensors, is underdetermined, that is, the number of unknown parameters is less than the number 
of measurements. Note that for the hybrid optimization approach, 2 parameters are estimated for each of the control-
volumes used for the discretization of the domain, corresponding to the values of D(x) and µ(x) at the control volume. 
Therefore, a total of 160 parameters were estimated in this case. A comparison of the functions estimated for D(x) with 
the conjugate gradient method and with the hybrid optimization approach by using only two sensors (see figures 4.1.1 
and 4.1.5, respectively) shows that the conjugate gradient method is not as sensitive to the fact that the problem is 
undetermined. This is because of the fact that the measured data is used in the source-function term of the adjoint 
problem in the function estimation approach with the conjugate gradient method, so that the information from the 
sensors at the boundaries is extended to the rest of the domain through the adjoint function λ(x,t). On the other hand, the 
accuracies of the functions estimated for µ(x) with the conjugate gradient method and with the hybrid optimization 
approach, with the measurements of two non-intrusive sensors (see figures 4.1.1 and 4.1.5, respectively), are similar. 
This is due to the fact that the exact µ(x) is constant and the initial guess used for both approaches was relatively near 
the exact function. 
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Figure 4.1.5. Estimation of µ(x) and D(x) by the hybrid optimizer  
with regularization and with 2 sensors  (σ  = 0.01 Ymax). 

 
Figure 4.1.6 shows the estimated functions obtained with the hybrid optimization approach and the measurements 

of 10 sensors evenly spread in the medium and with α1 = 0.0001. It is interesting to note that the function estimated for 
µ(x) with 10 sensors is in much better agreement with the exact one than that obtained with 2 sensors. A comparison of 
figures 4.1.2 and 4.1.6 shows that similar results are obtained for the simultaneous estimation of D(x) and µ(x), by using 
either the conjugate gradient method or the hybrid optimization approach, when ten sensors are used in the inverse 
analysis. 

 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004, Invited Lecture – CIT04-IL13 
 

0 20 40 60 80 100
Control Volume

0.8

1.2

1.6

2.0

D
 (

x)

Exact

Estimated

0 20 40 60 80
Control Volume

4.0

4.5

5.0

5.5

6.0

µ 
(x

)

Exact

Estimated

 
 

Figure 4.1.6. Estimation of µ(x) and D(x) by the hybrid optimizer  
with regularization and with 10 sensors (σ  = 0.01 Ymax). 

 
We note that the use of the regularization parameter, based on the Tikhonov’s technique, produced the 

regularization necessary to obtain stable results for the estimation of both functions with the hybrid optimization 
approach. In fact, completely unstable results were obtained if the regularization technique was not used, as a result of 
the ill-posed character of the inverse problem under picture. Also, the results presented above show that the two 
solution approaches examined in this paper are not sensitive to measurement errors. In fact, qualitatively similar results 
were obtained by using errorless simulated measurements. 

Finally, Figure 4.1.7 shows the convergence history of the hybrid optimizer for the estimation of the functions 
presented in Figure 4.1.6, where one can see that no further reduction in the cost function is obtained after 
approximately 500 iterations. 
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Figure 4.1.7. Convergence history for the simultaneous estimation of µ(x) and D(x)  
by the hybrid optimizer with regularization and with 10 sensors. 

 
4.2. Inverse forced convection problem of simultaneous estimation of two boundary heat fluxes in irregularly 
shaped channels [60] 

 
This work deals with the use of the conjugate gradient method of function estimation for the simultaneous 

identification of two unknown boundary heat fluxes in channels with laminar flows. The irregularly shaped channel in 
the physical domain is transformed into a parallel plate channel in the computational domain, by using an elliptic 
scheme of numerical grid generation. The direct problem, as well as the auxiliary problems and the gradient equations, 
required for the solution of the inverse problem with the conjugate gradient method, are formulated in terms of 
generalized boundary-fitted coordinates. Therefore, this solution approach can be readily applied to forced convection 
boundary inverse problems in channels of any shape. Direct and auxiliary problems are solved with finite-volumes. The 
numerical solution for the direct problem is validated by comparing the results obtained here with benchmark solutions 
for smoothly expanding channels.  

For the results presented below, we considered as an example of application of the present solution approach, test-
cases involving the laminar flow of water (ρ = 1000.52 kg/m3, µ = 0.001 kg/m s, k = 0.597 W/m, Cp = 4.1818 x 103 J/kg 
oC) inside a channel with a smooth expansion, as illustrated in figure 4.2.1. 
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Figure 4.2.1. Geometry for the channel with smooth expansion. 
 
Test-cases involving the estimation of the time and spatial variations for the heat fluxes were examined. For the 

estimation of the unknown functions we considered available the readings of 28 sensors uniformly distributed along the 
channel and located at the second control-volumes distant from each of the walls. Simulated measurements with a 
standard-deviation σ = 0.01 Tmax were used for the inverse analysis. Figures 4.2.2.a and 4.2.2.b show that the estimated 
functions are quite accurate, even for the strict exact functions tested here, and for measurements with random errors. 
These figures present the results obtained for t = 999 s and 1665 s, respectively. 

 

53.00 78.00 103.00 128.00
ξ

1600.00

2000.00

2400.00

2800.00

3200.00

3600.00

4000.00

4400.00

q 
(ξ

,t)
 [W

/m
 2

]

Exact

Estimated (η=1)

Estimated (η=N)

 
 

Figure 4.2.2.a. Estimated and exact heat fluxes for t=999 s. 
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Figure 4.2.2.b. Estimated and exact heat fluxes for t=1665 s. 
 

4.3. Inverse natural convection problem of simultaneous estimation of two boundary heat fluxes in irregular 
cavities [61] 

 
This paper deals with the use of the Conjugate Gradient Method of function estimation with Adjoint Problem for 

the simultaneous identification of two boundary conditions in natural convection inverse problems in two-dimensional 
irregular cavities. This is a much more involved inverse problem solution than that addressed above for forced 
convection. Such is the case because, for natural convection, the energy equation is coupled with continuity and 
momentum equations. As a result, the counterparts of these equations for the sensitivity and adjoint problems are also 
coupled.  
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The unknown boundary conditions are estimated with no a priori information about their functional forms. 
Irregular geometries in the physical domain are transformed into regular geometries in the computational domain by 
using an elliptic scheme of numerical grid generation. The methodology is applied to cases involving an annular cavity, 
as depicted in figure 4.3.1, where the position and time dependent heat fluxes are unknown at the inner and outer 
surfaces. These two surfaces are supposed to be maintained at the constant temperatures Th and Tc, respectively. 

For the results presented here we considered natural convection of air with physical properties: ρ=1.19 kg/m3; 
µ=1.8 x 10-5 kg/m s; β=0.00341 K-1; Pr=0.70; K=0.2624 W/m K; CP=1020.4 J/Kg oC. The test-cases analyzed below 
correspond to a Rayleigh number of 5 x 104, where the characteristic length used was L=R2 - R1. For this Rayleigh 
number, R2 was taken as 54.4 mm and R1 as 22.9 mm, while the temperatures at the walls η=N and η=1 were taken as 
Th = 30 oC and Tc = 20 oC, respectively. 

 

 
 

Figure 4.3.1. Geometry for the irregular cavity. 
 
We now examine the results obtained with simulated measurements containing random errors of standard deviation 

σ = 0.6 oC. For this test-case, the measurements of 27 sensors, located near each of the boundaries, were assumed 
available for the inverse analysis. The sensors were located 1.08 mm below the surface at η=1 and 1.25 mm below the 
surface at η=N. Figures 4.3.2.a,b show that the estimated functions are in very good agreement with the exact ones for 
such test-case, although some oscillations are observed in the inverse problem solution, specially near the sharp 
variation around 2 seconds at η=N (see figure 4.3.2.a). 
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Figure 4.3.2. Results for: (a) ξ=79, (b) t =7.5 seconds. 
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Figure 4.3.2. (Continued).. 

 
4.4. Optimization problem in magnetohydrodynamics [54-58] 

 
This section presents the optimization problem for achieving desired features of a melt undergoing solidification, 

involving the application of an external magnetic field, whose intensity and spatial distribution are obtained by the use 
of a Hybrid Method. The intensities of the magnets along the boundaries of the container are described as B-splines. 
The inverse problem is then formulated as to find the magnetic boundary conditions (the coefficients of the B-splines) 
in such a way that the gradients of temperature along the gravity acceleration direction are minimized.  

Transient Navier-Stokes and Maxwell equations were discretized using the Finite Volume Method in a generalized 
curvilinear non-orthogonal coordinate system. For the phase change problems, an enthalpy formulation was used. The 
code was validated against analytical and numerical benchmark results with very good agreement in both cases. 

First, let us demonstrate the inverse determination of the magnetic boundary conditions that create certain pre-
specified flow-field within some domain. Figure 4.4.1 shows the geometry and the boundary conditions for the test 
cases considered here. The height and length of the square container were equal to 0.15 m. The top and bottom walls 
were kept thermally insulated. The left boundary was kept at a “hot” temperature while the right wall was kept at a 
“cold” temperature. For the first test case, there was no phase change, since the “hot” and “cold” temperatures were 
above the melting temperature. 

 

 
Figure 4.4.1. Geometry and boundary conditions for MHD. 

 
The four walls were subjected to unknown magnetic field distributions whose directions were made orthogonal to 

each wall. In order to satisfy the magnetic flux conservation equation 
 

0=•∇ B  (4.4.1) 
 
The following periodic conditions were imposed 
 

( ) ( )yByB 21 =  (4.4.2) 
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( ) ( )xBxB 43 =  (4.4.3) 
 
The objective was to minimize the natural convection effects by reducing the gradient of temperature along the y 

direction, thus trying to obtain a temperature profile similar to those obtained for pure conduction. The objective 
function to be minimized is then formulated as: 

 ∑  ∂
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 (4.4.4) 

 
The magnetic field boundary conditions were inversely determined at either four or six points equally spaced along 

each of the four boundaries and interpolated using B-splines for the other points at those boundaries. The magnetic 
boundary conditions at x = 0.15 m and y = 0.15 m were then obtained using the periodic conditions from equation 
(4.4.2) and equation (4.4.3). 

The fluid analyzed was silicon. For the first test case, the temperature difference Th-Tc was set equal to 0.65 K, 
which gives a Rayleigh number of 105.  

Figure 4.4.2 shows streamlines, isotherms and heat fluxes on all four boundaries, predicted without any magnetic 
flux applied and no phase change (left column), as well as streamlines, isotherms and heat fluxes on all four boundaries 
resulting from the optimized magnetic boundary conditions with six points on each boundary. One can see that the 
gradients of temperature in the y direction are reduced. Figure 4.4.3 shows the optimized magnetic field boundary 
conditions for x = 0 and y = 0 and figure 4.4.4 shows the convergence history of the process.  
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Figure 4.4.2. Natural convection; results of analysis with no magnetic field (left column) and results with optimized 
magnetic boundary conditions (right column) for Ra = 105. The parameter s is measured counterclockwise along the 

boundaries of the rectangular container starting from lower left corner. 
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Figure 4.4.3. Natural convection; optimized magnetic boundary conditions  
at x = 0 and y = 0 with the estimation of B at six points per boundary 
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Figure 4.4.4. Natural convection; optimization convergence history for the  
estimation of B at six points per boundary. 

 
As a second test case, we minimized the curvature of the isotherms in a solidifying process after a pre-specified 

time from the start of the solidification process. The temperature difference Th-Tc was set equal to 6.5 K (Th = 1686. K, 
Tc = 1676.5 K) and the length of the square container was taken as 0.069 m, which gives a Rayleigh number of 105. The 
solidus and liquidus temperatures were equal to 1681.0 K and 1686.0 K, respectively. Thus, a mushy region exists 
between the phases. The initial condition was set as T0 = Th. Then, the solidifying process started at the right wall, 
where T = Tc.  

Figure 4.4.5 shows the streamlines, isotherms and heat fluxes on all four boundaries for this test case without any 
magnetic flux applied, predicted at 500 seconds, (left column) as well as the streamlines, isotherms and heat fluxes on 
all four boundaries resulting from the optimization of six B-spline points for the estimation of the magnetic boundary 
conditions on each boundary (right column). The boundary conditions at the other points were interpolated using B-
splines. One can see that the curvature of the isotherms is smaller than in the case without any magnetic fields applied.  

Figure 4.4.6 shows the optimized variation of the magnetic fields orthogonal to x = 0 and y = 0 boundaries. Figure 
4.4.7 shows the convergence history of the optimization process.  
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Solidification with no MHD effects 
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Solidification with optimized MHD effects 
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Figure 4.4.5. Natural convection with solidification; results of analysis with no magnetic field (left column) and results 

with optimized magnetic boundary conditions (right column) for Ra = 105 . The parameter s is measured 
counterclockwise along the boundaries of the rectangular container starting from lower left corner. 
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Figure 4.4.6. Optimized magnetic boundary conditions on x = 0 and y = 0 boundaries with the  
estimation of B at six points per boundary in case with solidification. 
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Figure 4.4.7. Optimization convergence history for the estimation of B at  
six points per boundary in case with solidification. 

 
4.5. Optimization problem in electrohydrodynamics [52,53] 

 
In another test case we dealt with the inverse determination of the electric boundary conditions that create some 

pre-specified flow-field features within some region. Figure 4.5.1 shows the geometry and the boundary conditions for 
the configuration considered here.  
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Figure 4.5.1. Geometry and boundary conditions for EHD. 
 
The height and length of the closed container filled with the electrically conducting liquid were equal to 33.3 mm 

and 66.7 mm, respectively. The vertical walls were kept thermally insulated. The bottom boundary was kept at a “hot” 
temperature while the top wall was kept at a “cold” temperature. A slightly triangular temperature profile was applied to 
the bottom wall in order to create a preferential direction for the thermally induced fluid flow. 

The vertical walls were subjected to unknown electric potential boundary conditions. The electric charged particles 
were assumed to enter the fluid from the walls where the electric potential was applied. The objective was to minimize 
the natural convection effects by reducing the gradient of temperature along the x direction, thus trying to obtain a 
temperature profile similar to those obtained for pure conduction. The objective function to be minimized was then 
formulated as 
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The electric boundary conditions were inversely determined at six points equally spaced along each of the vertical 

walls and parameterized using B-splines for the other points of these boundaries. In this case we considered natural 
convection of gallium arsenide. The temperature difference Th-Tc was set equal to 1.0 K, which gives a Rayleigh 
number of 1.9x104. 

For the first test case, there was no phase change, since the “hot” and “cold” temperatures were above the melting 
temperature (Th = 1521.5 K; Tc = 1520.5 K). 

Figure 4.5.2 shows the streamlines, isotherms and heat fluxes on all four walls predicted for the first test case 
without any electric field applied and no phase change (left column). Figure 4.5.2 also shows the streamlines, 
isotherms, and heat fluxes on the four walls when using six points on each vertical wall for the estimation of the electric 
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boundary conditions (right column). One can see that the gradients of temperature in the x direction are reduced close to 
the top and bottom walls. One can see that the isotherms start to become horizontal which is similar to those obtained if 
the gravity vector were acting in the horizontal direction. 
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Figure 4.5.2. Natural convection with no solidification; results of analysis with no electric field (left column) and results 

of optimized electric boundary conditions (right column) for Ra = 1.9x104 . The parameter s is measured 
counterclockwise along the boundaries of the rectangular container starting from lower left corner. 

 
Figure 4.5.3 shows the optimized electric potential and figure 4.5.4 shows the convergence history. 
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Figure 4.5.3. Optimized electric field potential at x = 0 and y = 0 with the  
estimation of E at six points per boundary. 
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Figure 4.5.4. Optimization convergence history for the  
estimation of E at six points per boundary. 

 
In a second test case, we tried to minimize the curvature of the isotherms in a solidifying process after a pre-

specified time from the start of the solidifying process. Figure 4.5.5 shows (left column) the results obtained for a 
Rayleigh number equal to 1.9x104 without any electric field applied. In this case, the “hot” and “cold” temperatures 
were equal to 1510.5 K and 1511.5 K, respectively. Figure 4.5.5 also shows the results obtained with an optimized 
electric potential acting in the horizontal direction. Note that the isotherms are smoother than those for a case without 
any electric field applied.  

Figure 4.5.6 shows the optimized electric potential and figure 4.5.7 shows the convergence history for the hybrid 
optimizer.  
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Figure 4.5.5. Natural convection with solidification; results of analysis with  

no electric field (left column) and results of optimized electric boundary conditions  
(right column) for Ra = 1.9x104. The parameter s is measured counterclockwise along the  

boundaries of the rectangular container starting from lower left corner. 
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Figure 4.5.6. Solidification case: optimized electric potential boundary conditions  
at x = 0 with Ra = 1.9x104 and estimation of E at six points. 

 

0 10 20 30 40
Iteration number

0.016

0.020

0.024

0.028

0.032

C
os

t f
un

ct
io

n

SQP
DFP
GA
NM

0

200

400

600

800

1000

# 
of

 o
bj

. f
un

c.
 e

va
l.

LM
DE

 
 

Figure 4.5.7. Solidification case: convergence history for Ra = 1.9x104  

and optimization of E at six points at x = 0. 
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