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This paper presents basic concepts of inverse and optimization problaieisnidistic and stochastic minimization techniques in
finite and infinite dimensional spaces are revised; advantages and disadvantages of them are discussed and a hybrid
technique is introduced. Applications of the techniques discussed tceiaver®ptimization problems in heat transfer are
presented.

1. Introduction

Inverse problems of heat transfer rely on temperature and/ofdreatdasurements for the estimation of unknown
guantities appearing in the mathematical formulation of phlypicdlems in this field [1-11]. As an example, inverse
problems dealing with heat conduction have been generally assbeidh the estimation of an unknown boundary
heat flux, by using temperature measurements taken below the boundary sinéaefare, while in the classical direct
heat conduction problem the cause (boundary heat flux) is given areffelse (temperature field in the body) is
determined, the inverse problem involves the estimation of the causéh&dmowledge of the effect.

The use of inverse analysis techniques represemtsvaresearch paradignThe results obtained from numerical
simulations and from experiments are not simply comparegubsteriorj but a close synergism exists between
experimental and theoretical researchers during the coursesitithe in order to obtain the maximum of information
regarding the physical problem under picture [12]. Thereforderdcent past inverse problems have evolved from a
specific theoretical research topic to an important pradoclof engineering analysis [1-21]. Nowadays, at least three
international journals are specifically oriented to the communitolved with the solution and application of inverse
problems, both from the mathematical and from the engineering pbwitsag namelylnverse Problems, Inverse and
lll-posed Problemsand Inverse Problems in Science and Engineeripe International Conference on Inverse
Problems in Engineering: Theory and Practicerganized under the auspices of the Engineering Conferences
International (late United Engineering Foundation), is held in @eetiglear period. Also, several other seminars and
symposia have been held in different countries in the past, ingltlointernational Symposium on Inverse Problems
in Engineering Mechanice Japan, and thiwverse Problems, Design and Optimization SymposiuBrazil. More
specifically for the heat transfer community, all major cagriees in the field, such as thernational Heat Transfer
Conferencghave special sessions or mini-symposia dedicated to inverse problems.

Inverse problems can be solved either garameter estimatioapproach or as fanction estimatiorapproach. If
some information is available on the functional form of the unknguamtity, the inverse problem can be reduced to
the estimation of few unknown parameters. On the other hand, if noigfidgomation is available on the functional
form of the unknown, the inverse problem needs to be regarded astiarfuggtimation approach in an infinite
dimensional space of functions [1-21].

Inverse problems are mathematically classifiedllggosed whereas standard heat transfer problemswete
posed The solution of a well-posed problem must satisfy the conditbrxistence, uniqueness and stability with
respect to the input data [22]. The existence of a solution fanvamse heat transfer problem may be assured by
physical reasoning. On the other hand, the uniqueness of the solution of inversespoalnldr® mathematically proved



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Now R&c. 03, 2004, Invited Lecture — CIT04-IL13

only for some special cases. Also, the inverse problem yssearsitive to random errors in the measured input data,
thus requiring special techniques for its solution in order to satisftabdity condition.

A successful solution of an inverse problem generally involweseformulation as an approximate well-posed
problem and makes use of some kind of regularization (stdlutiggechnique. Although the solution techniques for
inverse problems do not necessarily make use of optimizégchniques, many popular methods are nowadays based
on them [1-21].

Despite their similarities, inverse and optimization probleres conceptually differentnverse problems are
concerned with the identification of unknown quantities appearing inntathematical formulation of physical
problems, by using measurements of the system resgiamslee other hanaptimization problems generally deal with
the minimization or maximization of a certain objective or dosattion, in order to find design variables that will
result on desired state variablds addition, inverse and optimization problems involve other diffesentepts. For
example, the solution technique for an inverse problem is reqairedpe with instabilities resulting from the noisy
measured input data, while for an optimization problem the idgta is given by the desired response(s) of the system.
Differently from inverse problems, the solution uniqueness may na lmportant issue for optimization problems, as
long as the solution obtained is physically feasible and can b&cpiigcimplemented. Engineering applications of
optimization techniques are very often concerned with the minimization or rzationi of different quantities, such as
minimum weight (e.g., lighter airplanes), minimum fuel consump#og.(more economic cars), maximum autonomy
(e.g., longer range airplanes), etc. The necessity of finding #xénuam or minimum values of some parameters (or
functions) can be governed by economic factors, as in the casel abfiisumption, or design characteristics, as in the
case of maximum autonomy of an airplane. Sometimes, however, diséodds more subjective, as in the case of
choosing a car model. In general, different designs can be &tkédiza given application, but only a few of them will
be economically viable. The best design is usually obtained by some Min-Maxgtezhni

In this paper we address solution methodologies for inverse magld-sbjective optimization problems, based on
minimization techniques. Several gradient and stochastic technapeesntroduced, together with their basic
implementation steps and algorithms. We present some determingttiods, such as the Conjugate Gradient Method,
the Newton Method and the Davidon-Fletcher-Powell Method [1-12, 23-41diditicmn, we present some of the most
promising stochastic approaches, such as the Simulated AnnealihgdVid2,43], the Differential Evolutionary
Method [44], Genetic Algorithms [45,46] and the Particle Swarm Method [472&t¢rministic methods are in general
computationally faster than stochastic methods, although they can convetgeabnainima or maxima, instead of the
global one. On the other hand, stochastic algorithms can ideally gerteea global maxima or minima, although they
are computationally slower than the deterministic ones. Indbedstochastic algorithms can require thousands of
evaluations of the objective functions and, in some cases, become oticaprin order to overcome these difficulties,
we will also discuss the so-called hybrid algorithm, which taikhsntage of the robustness of the stochastic methods
and of the fast convergence of the deterministic methods [52-&6h tchnique provides a unique approach with
varying degrees of convergence, reliability and robustnessffatedi cycles during the iterative minimization
procedure. A set of analytically formulated rules and switchiitgra can be coded into the program to automatically
switch back and forth among the different algorithms as tiatiite process advances. Specific concepts for inverse
and optimization problems are discussed and several examples in héat &angiven in the paper.

2. Objective function
2.1. Basic concept

For the solution of inverse problems, as considered in this papenatee use of minimization techniques that are
of the same kind of those used in optimization problems. Thereforérghstep in establishing a procedure for the
solution of either inverse problems or optimization problemdis tthe definition of arbjective function The
objective function is the mathematical representation ofspech under evaluation, which must be minimized (or
maximized). It can be mathematically stated as

U =U(x); x:{xl,xz,...,xN} (2.1.1)

wherex,, X, ... , Xy are the variables of the problem under consideration that carothiéied in order to find the
minimum value of the functiob.

The relationship betweebd and x can, most of the times, be expressed by a physical / matbahraodel.
However, in some cases this relationship is impractical or ewpossible and the variation Gfwith respect tax must
be determined by experiments.

2.2. Constraints

Usually the variableg,, x,, ... , Xy Which appear on the objective function formulation are only allowedaty
between some pre-specified ranges. Sumtstraintsare, for example, due to physical or economical limitations.
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We can have two types of constraints. The first one isdhality constraintwhich can be represented by
G=G(x)=a (2.2.1.a)

This kind of constraint can represent, for example, the pre-specified pbareaatomobile.
The second type of constraint is caliedquality constrainaind it is represented by

G=G(x)<a (2.2.1.b)
This can represent, for example, the maximum temperature allowaghstarbine engine.
2.3. Optimization problems

For optimization problems, the objective functioncan be, for example, the fuel consumption of an automobile
and the variableg,, x,, ... , Xy can be the aerodynamic profile of the car, the materigdeoéngine, the type of wheels
used, the distance from the floor, etc.

2.4. Inverse problems and regularization

For inverse problems, the objective function usually involves thered difference between measured and
estimated variable#\s a result, some statistical aspects regarding the unknowmet@rs and the measured errors
need to be examined in order to select an appropriate objéatieton. In the examples presented below we assume
that temperature measurements are available for the irmeadgsis. The eight standard assumptions [2] regarding the
statistical descriptiorof the problem are:

1. The errors are additive, that is,

Y =Ti+¢; (2.4.1.a)

whereYi; is the measured temperatufeis the actual temperature agds the random error.
2. The temperature errogshave a zero mean, that is,

E(£)=0 (2.4.1.b)

whereE(") is the expected value operator. The errors are then said to be unbiased.
3. The errors have constant variance, that is,

2 _ _ 2y — 2
o = E][Y, -E(Y;)]“} =o“=constant (2.4.1.c)

which means that the variance\(lnﬁs independent of the measurement.

4. The errors associated with different measurements are uatestéfwo measurement errarands , wherei
# ], are uncorrelated if the covariancegofindg is zero, that is,

cov(g; .&;)=E{[ & -E(&)][&;-E(&;)]}=0 fori Z | 2.4.1.d)

Such is the case if the errggsandg have no effect on or relationship to the other.
5.  The measurement errors have a normal (Gaussian) distiibBy taking into consideration the assumptions
2, 3 and 4 above, the probability distribution functios;a$ given by

2
f(6)=——exp 2
oo\ 202 (2.4.1.e)

6. The statistical parameters describingsuch asr, are known.

7. The only variables that contain random errors are the negh$emperatures. The measurement times,
measurement positions, dimensions of the heated body, and allqotatities appearing in the formulation of the
inverse problem are alccuratelyknown.
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8. There is no prior information regarding the quantities to dtenated, which can be either parameters or
functions. If such information exists, it can be utilized to obtain improved atstim

If all of the eight statistical assumptions stated abovevalié, theobjective functionU, that provides minimum
variance estimates is tedinary least squares norf@] (i.e., the sum of the squared residuals) defined as

U)Y-TX)]T[Y-T(X)] (2.4.2)

whereY andT(x) are the vectors containing the measured and estimated temgregapectively, and the superscript
T indicates the transpose of the vector. The estimated termesrate obtained from the solution of the direct problem
with estimates for the unknown quantities.

If the values of the standard deviations of the measurenaeatquite different, the ordinary least squares method
does not yield minimum variance estimates [2]. In such a tasepjective functioris given by theweighted least
squares nornJ,, defined as

Uy () =LY =TT WY =T(x)] (2.4.3)

where W is a diagonal weighting matrixSuch matrix is taken as the inverse of the covariandeixmaf the
measurement errors in cases where the other statistical hypotrasgs valid [2].

If we consider that some information regarding the unknown paresristavailable, we can use th@ximum a
posterioriobjective functiorin the minimization procedure [2]. Such an objective function is defined as:

Umap () =[Y =T TW[Y =T0)]+@-%)TV L (u-x) (2.4.4)

wherex is assumed to be a random vector with known npeand known covariance matrix. Therefore, the megn

and the covariance matriX provide a priori information regarding the parameter vecxoto be estimated. Such
information can be available from previous experiments withstmae experimental apparatus or even from the
literature data. By assuming valid the other statistical hypothesebdedsabove regarding the experimental errors, the
weighting matriXW is given by the inverse of the covariance matrix of the measuremest [

If the inverse heat transfer problem involves the estimation of only few umkpasameters, such as the estimation
of a thermal conductivity value from the transient temperatoeasurements in a solid, the minimization of the
objective functions given above can be stable. However, if trezsavproblem involves the estimation of a large
number of parameters, such as the recovery of the unknownetraigiat flux components (t;) = f; at timest;,
i=1,...1, excursion and oscillation of the solution may occur. One approaeitioe such instabilities is to use the
procedure called@ikhonov’s regularizatioil-21], which modifies the least squares norm by the addition of a term such
as

UL ()] =5(Y -T2+ a* 3 2 (2.4.5.3)
i=1 i=1

where " (> 0) is theregularization parameteand the second summation on the right isvthele-domain zeroth-
order regularization term In equation (2.4.5.a,is the heat flux at time;, which is supposed to be constant in the
intervalt; — 4t/2 < t < t; + At/2, where4t is the time interval between two consecutive measureni€hés values

chosen for the regularization parame@r influence the stability of the solution as the minimizationeqgtiation
(2.4.5.a) is performed. A" - 0 the solution may exhibit oscillatory behavior and become unstaiviee the
summation offi2 terms may attain very large values and the estimategetaares tend to match those measured. On

the other hand, with large valuesaf the solution is damped and deviates from the exact result.
The whole-domainTikhonov'sfirst-order regularizationprocedure involves the minimization of the following
modified least squares norm:

ULFOI=5 (Y -T))2+a* 3 (fa—1,)? (2.4.5.b)
i=1 i=1

For @ — 0, exact matching between estimated and measured temperatuietsined as the minimization of

U[f(t)] is performed and the inverse problem solution becomes unstabléarg§ervalues oy, when the second
summation in equation (2.4.5.b) is dominahg heat flux componenf.lstend to become constant for 1, 2 ..., |, that

is, the first derivative dfit) tends to zero. Instabilities on the solution can be alleviated byrseleetion of the value
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of a". Tikhonov [1] suggested thal should be selected so that the minimum value of the objectivedonetiuld be
equal to the sum of the squares of the errors expected for theuraments, which is know as tBéscrepancy
Principle.

Alternative approaches for Tikhonov's regularization schemeritbesi above is the use &eck’'s Sequential
Function Specification Methdd] or of Alifanov’s Iterative Regularization Method8,5,7]. Beck’s sequential function
specification method is a quite stable inverse analysis techriidig is due to the averaging property of the least-
squares norm and because the measurement at the time whheathBux is to be estimated, is used in the
minimization procedure together with few measurements takéutiae time steps [4]. In Alifanov’'s regularization

methods, the number of iterations plays the role of the regnﬁmizparameten* and the stopping criterion is so

chosen that reasonably stable solutions be obtained. Therefoe,igheo need to modify the original objective
function, as opposed to Tikhonov's or Beck’s approaches. Theiniteragularization approach is sufficiently general
and can be applied to both parameter and function estimatiomgllags to linear and non-linear inverse problems
[3,5,7].

3. Minimization techniques

In this section, we present deterministic and stochastimigues for the minimization of an objective function
U(X) and the identification of the parametess x,, ... , Xy, Which appear on the objective function formulation.
Basically, such kind of minimization problem is solved in a spafcénite dimensionN, which is the number of
unknown parameters. For many minimization problems, the unknowns canmamabkein the form of a finite number
of parameters and the minimization needs to be performed in iafieirdimensional space of functions [1-23]. A
powerful and straightforward technique for the minimization in atfanal space is the conjugate gradient method
with adjoint problem formulation [3,5,7,23]. Therefore, such technique ¢s ddscribed below, as applied to the
solution of an inverse problem of function estimation.

3.1. Deterministic methods

This type of methods, as applied to non-linear minimization problgemerally rely on establishing an iterative
procedure, which, after a certain number of iterations, will holyefidnverge to the minimum of the objective
function. The iterative procedure can be written in the following genamal [2,3,5,24-27,39,40]:

X =xk 4 gkdk (3.1.1)

wherex is the vector of design variablesjs the search step sizkjs the direction of descent akds the number of
iterations.

An iteration step iscceptablaf U** < U The direction of descertwill generate an acceptable step if and only
if there exists a positive definite matf such thad = -ROU [39].

In fact, such requirement results on directionsg them an angle greater than®d@ith the gradient direction. A
minimization method in which the directions areaiféd in this manner is called aoceptable gradient meth¢d9].
A stationary poinbf the objective function is one at whi€lJ =  Dhe most that we can hope about any gradient

method is that it converges to a stationary p(&'Zqﬂvergence to the true minimum can be guararueldf it can be
shown that the objective function has no otherigtaty points. In practice, however, one usuallgches the local
minimum in the valley where the initial guess floe iterative procedure was located [39].

3.1.1. Steepest descent method

In this section we will introduce the most basiadjent method, which is the Steepest Descent Mefhuel basic
idea of this method is to move downwards on theaibje function along the direction of highest a#idn, in order to
locate its minimum value. Therefore, the directiblescent is given by

d* =-0uU (x*) (3.1.2)

since the gradient direction is the one that gthesfastest increase of the objective function.ddeseing the natural
choice for the direction of descent, the use ofgtaglient direction is not very efficient. Usuathe steepest-descent
method starts with large variations in the objexfinction, but, as the minimum value is reacheel convergence rate
becomes very low.

The optimum choice for the search step sizés the one that minimizes the objective functidong the direction
of descent at each iteration. Thus, a univariadé&cbemethod need to be employed in order to fiedstrarch step size
at each iteration. In the case of a unimodal famciome classical procedures can be used, sutie &idhotomous
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Search, Fibonacci Search, Golden Search and Qufieipblation, among others. However, for some stalcases, the
variation of the objective function with the seamtiep size is not unimodal and, then, more rolechriques are
required, such as the exhaustive search methotbchaique based on exhaustive interpolation [2827%0].

Figure 3.1.1 illustrates the iterative proceduretlie Steepest Descent Method.

k=0
» K+l — _ Kk
Make an initial guess 7] Calculaie d*" =-0U(x") Calculate

for xk Ou(x) a*
1- Maximumnumber | l
of iterations reached;
2 - U(x*) reached the
expected value; No X1 = xK 4 gkgke

3 - The gradient of
U(x¥) reached the
expected value.

Calculate < k=k+1
0Ou (x4)

xkis the optimum ~ {«—Yes

Convergence?

Figure 3.1.1. Iterative procedure for the Steepesicent Method.

3.1.2. Conjugate gradient method

The Conjugate Gradient Method improves the convergaate of the Steepest Descent Method, by chgposin
directions of descent that are a linear combinatibithe gradient direction with directions of dasicef previous
iterations [3,5,7,23-33]. In a general form, theediion of descent is given by:

dk =-0fxk )+ y*at + grkde (3.1.3)

where)f andy/f are the conjugation coefficients. This directiodebcent is used in the iterative procedure specifi
equation (3.1.1).

The superscripy in equation (3.1.3) denotes the iteration numbkeere a restarting strategy is applied to the
iterative procedure of the conjugate gradient nektiiRestarting strategies were suggested for thpigate gradient
method of parameter estimation in order to imprits’eonvergence rate [28].

Different versions of the Conjugate Gradient Metlead be found in the literature depending on thn fased for
the computation of the direction of descent givgrequation (3.1.3) [3,5,7,23-33]. In the FletcheeResversion, the
conjugation coefficientg* and ¢/* are obtained from the following expressions:

N L RS
=, y- =0 fork=0 (3.1.4.9)
|oube)]
w*=0,fork=0,1,2,... (3.1.4.b)
where || . || denotes the Euclidian norm in théovespace.

In the Polak-Ribiere version of the Conjugate GeatiMethod the conjugation coefficients are givgn b

‘- [Du(x")]T lDU(xk)—ZDU (xk‘l)]
|oube)

, with y° = 0 fork=0 (3.1.5.9)

w*=0,fork=0,1,2,... (3.1.5.b)

Based on a previous work by Beale [32], Powell [288ygested the following expressions for the catjog
coefficients, which gives the so-called Powell-Bé&alersion of the Conjugate Gradient Method:

« Z [OUIT [OU () -0U (™M)
[d“ T [OU (x) - 0U ()]

, with y° = 0 fork=0 (3.1.6.a)
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« Z [OUCOTT[OU (x4 - 0U (x9)]

, with ¢° = 0 fork=0 3.1.6.b
T U -aueey R

Y

In accordance with Powell [28], the applicationtiud conjugate gradient method with the conjugatioefficients
given by equations (3.1.6.a,b) requires restantihgn gradients at successive iterations tend tadseorthogonal
(which is a measure of the local non-linearity lo€ toroblem) and when the direction of descent tssafficiently
downhill. Restarting is performed by makig§=0 in equation (3.1.3).

The non-orthogonality of gradients at successemitons is tested by the following equation:

ABS[O( T O(x)) 2 0.2“D(xk}‘2 (3.1.7.9)

where ABS (.) denotes the absolute value.
A non-sufficiently downhill direction of descentgi, the angle between the direction of descentlamdhegative
gradient direction is too large) is identified ifreer of the following inequalities is satisfied

[d*]" D(xk)s—l.zuu(xk}‘z (3.1.7.0)
or
[d*]7 D(x")z—O.B”D(xkl‘z (3.1.7.0)

We note that the coefficients 0.2, 1.2 and 0.8 appg in equations (3.1.7.a-c) are empirical aredthe same used
by Powell [28].

In Powell-Beale’s version of the conjugate gradimethod, the direction of descent given by equai®h.3) is
computed in accordance with the following algoritfunk > 1 [28]:

STEP 1 Test the inequality (3.1.7.a). If it is true get k-1.

STEP 2 Computey* with equation (3.1.6.a).

STEP 31f k=q+1 sety/ = 0. Ifk # gq+1 compute/* with equation (3.1.6.b).

STEP 4 Compute the search directidhwith equation (3.1.3).

STEP 5 If k # g+1 test the inequalities (3.1.7.b,c). If either @fiehem is satisfied setq = k-1 and¢*=0. Then
recompute the search direction with equation (3.1.3

The Steepest Descent Method, with the directiodesfcent given by the negative gradient equationidvbe
recovered with/*= ¢/*=0 for anyk in equation (3.1.3). The same procedures usethéoevaluation of the search step
size in the Steepest Descent Method are employdtiddConjugate Gradient Method.

Figure 3.1.2 shows the iterative procedure forfleécher-Reeves version of the Conjugate Gradiezthbd.

k=0, d°=0, )° =0

kel _ K K
Make an initial guess g Calculatke » d“T=-0U (X)) +yMd > Calculate
for x¥ du(x) a~

1 - Maximum number
of iterations reached,;
2 - U(x¥) reached the
expected value;

3 - The gradient of
U(x¥) reached the
expected value.

X

-~ Calculate k=k+1
0uU (x*)

XK is the optimum <—Yes Convergence?

Figure 3.1.2. Iterative procedure for the FletcReeves version of the Conjugate Gradient Method.
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3.1.3. Newton-Raphson method

While the Steepest Descent and the Conjugate Gitalfiethods use gradients of the objective functiotheir
iterative procedures, the Newton-Raphson Method akes information of the second derivative of tihgective
function in order to achieve a faster convergeate fwhich doesn’'t mean a lower computational cost)

Let us consider an objective functiti{x), which is, at least, twice differentiable. Theylba expansion otJ(x)
around a vectax®, wherex —x* = h, is given by [2,24,26,35-40]:

U< +h) =U (<) +0U (<) h +hTDAU (<) + of?) (3.1.8)

wheredU(x) is the gradient (vector of‘brder derivatives) of the objective function arfdU[X) is the Hessian (matrix
of 2™ order derivatives) of the objective function.
If the objective functiotJ(x) is twice differentiable, the Hessian is symmetaicd we can write

00U (x* +h) 00U (x* )+ D2U (x*)h (3.1.9)

A necessary condition for the minimization of tHgeative function is that its gradient vanisheser#fore, from
equation (3.1.9) we have:

h 0-[p2u () "ou x*) (3.1.10)
and the vector that locally optimizes the functidx) is given by
x OxX —[DZU (xk)]_IDU(xk) (3.11)

Therefore, the iterative procedure of the Newtoptigan method, given by equation (3.1.11), can liewrin the
same form of equation (3.1.1) by settidg1 and

d* =-p20 (x*)| "0u [x¥) (3.1.12.a)

However, the Newton-Raphson method converges texttieme point closer to the initial guess, disrdigg if it
is a maximum, a minimum or a saddle point. For thason it is common to introduce a search steptsibe taken
along the direction of descent for this methodhsa it is written as:

d* =-a*[p2u (x*)| "0u [x*) (3.1.12.b)

Figure 3.1.3 shows the iterative procedure folNBaton-Raphson Method.

Although the convergence rate of the Newton-Raphsorguadratic, the calculation of the Hessian is
computationally expensive. As a result, other mgshtbat approximate the Hessian with simpler astkfacomputing
forms have been developed. Some of these methedkeacribed next.

k=0
- Calculate » 441 = —[p2u (x") [t Ou (¢ »> Calculate
Make anfgtl)il guess OU(), DU (XY [ ( )] ( ) o
1- Maximumnurber | T l

of iterations reached,;
2 - U(x¥) reached the
expected value;

3 - The gradient of
U(x¥) reached the
expected value.

Calculate Xt = x* + gk
/ D2U (x¥)

Calculate < k=k+1
0u (x*)

x¥ is the optimum <—Yes Convergence?

Figure 3.1.3. lterative procedure for the Newtorpfian Method.
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3.1.4. Quasi Newton methods

In this kind of methods, the Hessian matrix appepim the Newton-Raphson’s Method is approximatesiich a
way that it does not involve second derivativesudlly, the approximations for the Hessian are basedirst
derivatives. As a result, the Quasi-Newton Methualge a slower convergence rate than the Newtondeaptethod,

but they are computationally faster [2,24,26,35-40]
Let us define a new matrbt, which is an approximation for the inverse of Hessian, that is,

HK D[DZU (xk)]_l (3.1.13)

The direction of descent for the Quasi-Newton mashe thus given by:

d*t = —HxOuxk) (3.1.14)
and the matri is iteratively calculated as

HK =H* T+ MK+ N fork=1,2,... (3.1.15.a)

HX =1 fork=0 (3.1.15.b)

wherel is the identity matrix. Note that, for the firggriation, the method starts as the Steepest Deglethod.
Different Quasi-Newton methods can be found inliteeature depending on the choice of the matrideandN.
For the Davidon-Fletcher-Powell (DFP) Method [33,34ich matrices are given by

k-1[ k1T
MK = a"‘ld—(d—L (3.1.16.a)

(d k—l)T vkt

(H k-ly k—l)(H k-Ly k—l)T

Nk = e e (3.1.16.0)
where
v<t = ouxk)-ou k) (3.1.16.0)

Note that, since the matrkt is iteratively calculated, some errors can be agaped and, in general, the method
needs to be restarted after some number of itesat&lso, since the matrid depends on the choice of the search step
size a, the method is very sensitive to its choice. Alataosn of the DFP method is the Broyden-Fletchetd@ob-
Shanno (BFGS) Method [33-36], which is less seresitd the choice of the search step size. Forrttathod, the
matricesM andN are calculated as

er (1 (] ety ) gerfger]
M= (Y k—1)T gkt (d k_l)T =

(3.1.17.a)

gk (Y k—l)T KLy g ky ke (d k—l)T

N' = (Y k—l)T gkt

(3.1.17.b)

Figure 3.1.4 shows the iterative procedure foBR&S Method.
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Figure 3.1.4. Iterative procedure for the BFGS Mdth
3.1.5. Levenberg-Marquardt method

The Levenberg-Marquardt Method was first derivedLbyenberg [37] in 1944, by modifying the ordindegast
squares norm. Later, in 1963, Marquardt [38] detibasically the same technique by using a diffeemroach.
Marquardt's intention was to obtain a method thaul tend to the Gauss method in the neighborhdothe
minimum of the ordinary least squares norm, andidvtend to the steepest descent method in the Ioeigbod of the
initial guess used for the iterative proceduresThethod actually converts a matrix that approxésdhe Hessian into
a positive definite one, so that the direction e@cknt is acceptable.

The method rests on the observation th& i§ a positive definite matrix, thel + A P is positive definite for
sufficiently largeA. If A is an approximation for the Hessian, we can ch@bas a diagonal matrix whose elements
coincide with the absolute values of the diagotethents ofA [39].

The direction of descent for the Levenberg-Marquarethod is given by [39]:

d* =—(A% + 2*P¥)0U (x*) (3.1.18)

and the step size is taken@s= 1. Note that for large values #f a small step is taken along the negative gradient
direction. On the other hand, a& tends to zero, the Levenberg-Marquardt method témdsn approximation of
Newton’s method based on the matixUsually, the matriA is taken as that for the Gauss method [2,7,39].

3.2. Evolutionary and stochastic methods

In this section some Evolutionary and Stochastithides like Genetic Algorithms, Differential Evoloki, Particle
Swarm and Simulated Annealing will be discussealiionary methods, in opposition to the deternticisethods,
don't rely, in general, on strong mathematical $asid do not make use of the gradient of the abgfiinction as a
direction of descent. They tend to mimic the natarerder to find the minimum of the objective ftion, by selecting,
in a fashionable and organized way, the points &/kach function is going to be computed.

3.2.1. Genetic algorithms

Genetic algorithms are heuristic global optimizatinethods that are based on the process of natelesdtion.
Starting from a randomly generated population dfigles, the optimizer seeks to produce improvedgdedirom one
generation to the next. This is accomplished byharging genetic information between designs in ¢heent
population, in what is referred to as the crossamaration. Hopefully this crossover produces imptbdesigns,
which are then used to populate the next generptinA6].
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The basic genetic algorithm works with a collection population of potential solutions to the mirdation
problem. The algorithm works in an iterative mann&r each iteration, also called generation, thoperators are
applied to the entire population of designs. Theserators are selection, crossover, and mutatimnthié operators to
be effective, each potential solution or designtrbesrepresented as a collection of finite pararagtdso called genes.
Each design must have a unique sequence of themmegtars that define it. This collection of gersesfien called the
chromosome. The genes themselves are often enasdedary strings though they can be representezbsumbers.
The length of the binary string determines how isedy the value, also know as the allele of theegénrepresented.

The genetic algorithm applied to an optimizationlpem proceeds as follows. The process begins avitinitial
population of random designs. Each gene is gentbgteandomly generating 0's and 1's. The chromasstrings are
then formed by combining the genes together. Tiisrnosome defines the design. The objective funéti@valuated
for each design in the population. Each designs@igaed a fitness value, which corresponds to #ieevof the
objective function for that design. In the casenifiimization, a higher fithess is assigned to desigith lower values
of the object function.

Next, the population members are selected for cemtion, based upon their fitness. The selectioeraipr is
applied to each member of the population. The Seteoperator chooses pairs of individuals frompbeulation who
will mate and produce offspring. In the tournamsalection scheme, random pairs are selected frerpdpulation and
the individual with the higher fitness of each paiallowed to mate.

Once a mating pair is selected, the crossover tparaapplied. The crossover operator essenimtigluces new
designs or offspring by combining the genes fromphrent designs in a stochastic manner. In tHferamicrossover
scheme, it is possible to obtain any combinatiorthef two parent’s chromosomes. Each bit in eacle gernthe
chromosome is assigned a probability that crossaileoccur (for example, 50 % for all genes). Andam number
between 0 and 1 is generated for each bit in eah.df a number greater than 0.5 is generatedttfa¢rit is replaced
by the corresponding bit in the gene from the offeent. If it is less than 0.5, the original mitthe gene remains
unchanged. This process is repeated for the eriti@mosome for each of the parents. When completepffspring
are generated, which may replace the parents ipdpelation.

The mutation process follows next. When the crasspvocedure is complete and a new populationriadd, the
mutation operator is applied. Each bit in each gerthe design is subjected to a chance for a ahéiogn 0 to 1, or
vice versa. The chance is known as the mutatiobgimibty, which is usually small. This introduceddéional
randomness into the process, which helps to awail Iminima. Completion of the mutation processaig the end of
a design cycle. Many cycles may be needed beferemtithod converges to an optimum design.

For more details or for the numerical implementatib Genetic Algorithms, the reader is referrefi46].

3.2.2. Differential evolution

The Differential Evolution Method is an evolutioganethod based on Darwin’s Theory for the Evolutidrthe
Species. It was created in 1995 by two researciers Berkeley (Kenneth Price and Rainer Storn) [44] an
alternative to the Genetic Algorithm Method. Follow the Theory for the Evolution of the Species #trongest
members of a population will be more capable taigarto a certain environmental condition. Durifg tmatting
process, the chromosomes of two individuals ofpiyeulation are combined in a process called cress®@uring this
process mutations can occur, which can be goodvighul with a better objective function) or baddividual with a
worst objective function). The mutations are usedaavay to escape from local minima. However, tegiressive
usage can lead to a non-convergence of the method.

The method starts with a randomly generated pdpuolat the domain of interest. Then, successivehipations
of chromosomes and mutations are performed, cgeaéiv generations until an optimum value is found.

The iterative process of the Differential Evolutidiethod is given by:

X = gxk + S, la+F(p-v)] (3.2.1)

where
X; is thei-th individual vector of parameters.
a, B andy are three members of the population ma®ixandomly chosen.
F is a weight function, which defines the mutatidrb(<F < 1).
k is the number of generations.
d, andg, are Dirac delta functions that define the mutation
In the minimization process, B(x*Y) < U(x"), thenx**! replacesc* in the population matri. Otherwisex® is
kept in the population matrix.
The binomial crossover is given as
{o, if R<CR {1 if R<CR
L= . y = _ (3.2.2.a,b)
1 if R>CR 0 if R>CR
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where CR is a factor that defines the crossovér €0CR < 1) and R is a random number with unifoiistribution
between 0 and 1.

Figure 3.2.1 shows the iterative procedure fodherential Evolution Method.

k=0, n=population size
Define F (mutation) tf?r:\ ?;ZEZ?SOZ:V P Generate a random
Generate population "| Define CR (crossover) e number R
matrix P o, B,y
5,20
“—Yes
5,=1
No
v
0 k+1 k 51 :l
x*1 replaces x¥in P «—Yes 1 X = 9 +52[11+F(ﬁ"‘l)] N 3.=0
, =
No
v
k=k+1 - xkis keptin P

’\b @

1 - Maximum nurmber
of iterations reached;
2- U(best membey

Yes

v

best memberis the
optimum reachs the expected

value.

Figure 3.2.1. Iterative procedure for the DiffeiahEvolution Method.

3.2.3. Particle swarm

Another evolutionary method is the one that usestincepts of Particle Swarm. Such method wasedéatl 995
by an Electrical Engineer (Russel Eberhart) and@a$Psychologist (James Kennedy) [47-50] as tarradtive to the
Genetic Algorithm Method. This method is based o social behavior of various species and triesgtdlibrate the
individuality and sociability of the individuals iorder to locate the optimum of interest. The oadjidea of Kennedy
and Eberhart came from the observation of bird&ifgpfor nesting places. When the individuality,insreased the
search for alternative places for nesting is alsodased. However, if the individuality becomeshagt, the individual
might never finds the best place. On the other hahen the sociability is increased, the individiearns more from
its neighbors’ experience. However, if the socigblbecomes too high, all the individuals might eerge to the first
minima found, which is possibly a local minima.

In this method, the iterative procedure is given by

X:‘ﬂ = Xik + V=(+l (3.2.3.a)
K+l _ ok K K
Vi =avy + [y (pi =X )+ﬂzi (pg =X ) (3.2.3.b)
where:
X; is thei-th individual vector of parameters.
v, = 0, for k=0.

r4 andr,; are random numbers with uniform distribution besw® and 1.
p; is the best value found for the veckor

p, is the best value found for the entire population
O<a<1;1<p<2



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Now R&c. 03, 2004, Invited Lecture — CIT04-IL13

In equation (3.2.3.b), the second term on the rigrid side represents the individuality and thedttérm the
sociability. The first term on the right-hand sigpresents the inertia of the particles and, ireganmust be decreased
as the iterative process runs. In this equatiomnvéttorp, represents the best value ever found for the sthponent
vector of parameters, during the iterative process. Thus, the individyaierm involves the comparison between the
current value of the i-th individuad, with its best value in the past. The veqtgris the best value ever found for the
entire population of parameters (not only the iridlividual). Thus the sociability term compasgswith the best value

of the entire population in the past.
Figure 3.2.2 shows the iterative procedure forRagicle Swarm Method.

k=0, n=population size

" :
vk=0 ) Def!ne a =1 Generate random
Generate population Define vectors rj;and ry,
matrix P

1 - Maximum number

of iterations reached;

2- U(pg) reachs the
Py is the optimum expected value. .

— No Determine p; and Py

No
? -
Convergence? V.M _m/‘k +,Bf1, (pi _X‘k)+ﬂf2‘ (Pg _Xik)
I A
k=k+1 +Yes <« =i+l > x:‘*l - X‘k Fyki

Figure 3.2.2. Iterative procedure for the Part®earm Method.

3.2.4. Simulated annealing

This method is based on the thermodynamics ofabéng of a material from a liquid to a solid phgé2,43]. If a
liquid material (e.g. liquid metal) starts beingwly cooled down and left for a sufficiently longie close to the phase
change temperature, a perfect crystal will be egawhich has the lowest internal energy stateti@rother hand, if
the liquid material is not left for a sufficientrig time close to the phase change temperatur#,tbe, cooling process
is not sufficiently slow, the final crystal will kka several defects and a high internal energy.staie is similar to the
quenching process used in metallurgical application

We can say that gradient-based methods “cool dowffietst”, going rapidly to an optimum location whjén most
cases, is not the global but the local one. Diffdyefrom the gradient-based methods, the Simulaiaekaling Method
can move in any direction, escaping from possibtall minimum or maximum values. Consider, for ex@nghe
Boltzmann probability function

Profg) O elE/KT) (3.2.4)

This equation expresses the idea that a systefmeimmtl equilibrium has its energy distributed phulistically
among different energy statésIn this equationK is the Boltzmann constant. Such equation telihat even at low
temperatures, there is a chance, even small,iHbatystem is at a high energy level, as illustratdijure 3.2.3. Thus,
there is a chance of the system to get out ofabel minimum and search for a global one.

High temperature

——
High Probability of high

energy state

Prob (E)

Low temperature

A Y
* Small Probability of high
energy state

EKT

Figure 3.2.3. Schematic representation of eq.4B.2.
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Figure 3.2.4 shows the iterative procedure forSimeulated Annealing Method. The procedure startgdnerating
a population of individuals of the same size of tlkenber of variablesném), in such a way that the population matrix
is a square matrix. Then, the initial temperatdne the reducing ratioRT), the number of cycleN) and the number
of iterations of the annealing procebg)(are selected. Afteds*n function evaluations, each element of the stegtken
Vis adjusted, so that approximately half of alldtion evaluations are accepted. The suggested f@dlee number of
cyclesis 20. AfterNy*Ns*n function evaluations, the temperatuf@ is changed by the fact®T. The value suggested
for the number of iterationtsy Corana et al [42] is MAX(100, Bj.

The iterative process is given by the following &iipn:

X =x? +RV (3.2.5)

whereR is a random number with uniform distribution beéwed and 1 an is a step-size which is continuously
adjusted.

To start, it randomly chooses a trial point witttie step length (a vector of lengtiN) of the user selected starting
point. The function is evaluated at this trial piai’) and its value is compared to its value at thiainpoint °). In a
minimization problem, all downhill moves are acegpand the algorithm continues from that trial pdisphill moves
may be accepted; the decision is made by the Maisogriteria. It use§ (temperature) and the size of the downhill
move in a probabilistic manner

p= e[U (o Gellr (3.2.6)

The smallerT and the size of the uphill move are, the morelylikbat move will be accepted. If the trial is
accepted, the algorithm moves on from that pofrit.i$ rejected, another point is chosen for alteivaluation.

Each element of is periodically adjusted, so that half of all ftino evaluations in that direction are acceptec Th
number of accepted function evaluations is repteseby the variabld&l. Thus the variable represents the ratio of
accepted over total function evaluations for atiremtycleNs and it is used to adjust the step length

A decrease i is imposed upon the system with R€variable by using

T@i+D=RT*T() (3.2.7)

wherei is the i-th iteration. Thus, &b declines, uphill moves are less likely to be ategmnd the percentage of
rejections rises. Given the scheme for the seledtioV, V falls. Thus, ag declines)V falls and the algorithm focuses
upon the most promising area for optimization.

The parameter is crucial for the successful use of the algoritfininfluencesV, the step length over which the
algorithm searches for the minimum. For a smatlaht, the step length may be too small; thus not enaadres of
the function will be evaluated to find the globahimum. To determine the starting temperature ivabnsistent with
optimizing a function, it is worthwhile to run aakrun first. The user should gefl = 1.5 andl = 1.0. WithRT> 1.0,
the temperature increases ahdses as well. Then it must be selectedThieat produces a large enough



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Now R&c. 03, 2004, Invited Lecture — CIT04-IL13

Define initial
menumber of variables temperature T;
n=population size=m temperature reducing i=0; j=0; k=0 -
Make a initial guess for ration RT; number of N=0, where i=1,....m Fil
x=x%and U(x°) cycles Ng; number of
iterations N, l
Calculate Generate a random

+No number R
pP= e[U (ol

i X l

Generate a random x0=x1 X =x"+RV
=X
nurrber R Objective function
goes down

I ]

— Calculate U(x!)

Reject x! (+No N=N+1

Yes

v
x0=x1
i
Goto Objective function No
B goes up
No

Yes

x¥is the optimum i+ NO
Yes

Reduce the 1 - Maximum nurmber
temperature of iterations reached;

pli 2 - U(x¥) reachs the

T=T'RT

expected value.
¥
Yes
. 2(r- 04,
-« k=k+1 V, :\/‘[l+%}+r\b

@ g
<
|
<
[
+ [
LN

I

o

>

;

Figure 3.2.4. Iterative procedure for the Simulated Annealing Method.

3.3. Hybrid methods

The so-called Hybrid Methods are a combination of the deteriiaistl the evolutionary/stochastic methods, in a
sense that the advantages of each one of them are used Mgihods usually employ an evolutionary/stochastic
method to locate the region where the global minimum is locatedhandswitches to a deterministic method to get
closer to the exact point faster.

As an example, consider the Hybrid Method illustrated in figuBel3The main module is the Particle Swarm
Method, which does almost the entire optimization task. When some patagithe particles find a minima (lets say,
some birds already found their best nesting place), the &lgositvitches to the Differential Evolution Method and the
particles (birds) are forced to breed. If there is an impnave on the objective function, the algorithm returns to the
Particle Swarm Method, meaning that some other region is prore to have a global minimum. If there is no
improvement on the objective function, this can indicate that thisrregieady contains the global minimum expected
and the algorithm switches to the BFGS Method in order to lonate precisely its location. Finally, the algorithm



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Now R&c. 03, 2004, Invited Lecture — CIT04-IL13

returns again to the Particle Swarm Method in order to cifi¢hkre are any changes in the minimum location and the
entire procedure is repeated for few more iterations (e.g., 5).

More involved Hybrid Methods, dealing with the application of otheerdahistic and stochastic methods, can be
found in references [52-59].

m% of the particles found a minima

Particle Swarm Differential
using Boltzmann L i
g botar Improvement of the objective Evolution
probability <
unction

No-improvement of
the objective function

BFGS
Method

Figure 3.3.1. Global procedure for the Hybrid Method.

3.4. Function estimation approach

The methods described above were applied for the minimizatian objective functiotJ(x), wherex = [xy, X,
..., Xy] is the vector with the parameters of the problem under deration that can be modified in order to find the
minimum ofU(x). Therefore, the minimization is performed in a parameteresphidimensiomN. Several optimization
or inverse problems rely on functions, instead of parametershwigied to be selected for the minimization of an
objective function. In these cases, the minimization needs to tmerped in an infinite dimensional space of functions
and noa priori assumption is required regarding the functional form of the unknowatibns, except for the
functional space that they belong to [3,5,7]. A common selection idithert space of square integrable functions in
the domain of interest.

In this paper we use the conjugate gradient method with aglmbtem formulation for the minimization of the
objective function. We illustrate here the function estimatiqpr@gch as applied to the solution of a specific inverse
problem involving the following diffusion equation [59]:

C*(r*)W:DEﬂD*(r*) OT# + pu* (%) T* (3.4.1)

wherer* denotes the vector of coordinates and the superscript * denotes dimeqeamiles.

Equation (3.4.1) can be used for the modeling of several physical phemosiech as heat conduction,
groundwater flow and tomography. We focus our attention here to a onesitime version of equation (1) written in
dimensionless form as

—=—[D(x)ﬂ]+,u(x)T in 0<x<1,fort>0 (3.4.2.a)

and subject to the following boundary and initiahditions.

oT

—=0 atx=0fort>0 (3.4.2.b)

0 X

D(x)z—Tzl atx=1 for t>0 (3.4.2.c)
X

T=0 fort=0 in0O<x<1 (3.4.2.d)
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Notice that in thairect problem the diffusion coefficient functio®(x) and the source term distribution function
M(X) are regarded as known quantities, so that atd@ealysis) problem is concerned with the compamadf T(X,1).

3.4.1. Inverse problem

For theinverse problenof interest here, the functioXx) and(x) are regarded as unknown. Such functions will
be simultaneously estimated by using measureméntgxd) taken at appropriate locations in the medium roiite
boundaries. Such measurements may contain randons.eFhese measurement errors are assumed tacbeelated,
additive, normally distributed, with zero mean, avith a known constant standard deviation.

Practical applications of this inverse problem e the identification of non-homogeneities in thedium, such
as inclusions, obstacles or cracks, determinatiothermal diffusion coefficients and distributiori beat sources,
groundwater flow and tomography physical probleimsyhich bothD(x) and(X) vary.

The basic steps of the conjugate gradient methdanation estimation are discussed below.

3.4.2. Conjugate gradient method with adjoint problem

For the simultaneous estimation of the functi@{g) and (x) with the conjugate gradient method with adjoint
problem, we consider the minimization of the follog objective functional

1'% M 2
UID09. 00 =5 [ 2 {TTxm.t: D9, 400] = Vi O}t
(3.4.3)

whereY,,(t) are the transient measurementslpft) taken at the positiong, m= 1,..., M. The estimated dependent
variable T[xy,t;D(X),£(X)] is obtained from the solution of the direct pieoh (3.4.2.a-d) at the measurement positions
xm, M= 1,..., M, with estimates foD(x) andz(x). When dealing with an optimization problem, iegteof an inverse
problem,Yn(t) represents the desired temperature at the posikigm= 1,...,M. We note in equation (3.4.3) that, for
simplicity in the analytical analysis developeddvelthe measuremen¥s(t) are assumed to be continuous in the time
domain.

The use of the conjugate gradient method with goirsgdoroblem for the minimization of the objectifenctional
(3.4.3) requires the solution of auxiliary problerkisown assensitivity and adjoint problems

The sensitivity functionsolution of the sensitivity problem, is definesithe directional derivative Gf(x,f) in the
direction of the perturbation of the unknown fupati[3,5,7]. Since the present problem involves twiknown
functions, two sensitivity problems are requiredtfte estimation procedure, resulting from perttidos in D(x) and
H(X).

The sensitivity problem foATp(xt) is obtained by assuming that the dependent Jarigx,t) is perturbed by
EATp(x,t) when the diffusion coefficierid(x) is perturbed byAD(x), wheree is a real number. The sensitivity problem
resulting from perturbations I(X) is then obtained by applying the following limigj process:

£-0 £

(3.4.4)

whereL{D,) andL(D) are the direct problem formulations written inecgtor form for perturbed and unperturbed
quantities, respectively. The application of thmiting process given by equation (3.4.4) resultgha following
sensitivity problem:

OAT, _ @ 0 ATy oT

=—| D{x + AD(X)— |+ u\x) AT i 3.45.a
T ax( () 3 x ()6x] ,u() b in 0<x<l fort>0 ( )
98T _g atx=0 for t>0
0 X

(3.4.5.0)

AD(x)a—T+D(x)aATD:O atx=1 for t>0 (3.4.5.c)

d X 0 X

AT, =0 in0<x<1 fort=0 (3.4.5.d)
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A limiting process analogous to that given by eiume3.4.4), obtained from the perturbatigky(x), results in the
following sensitivity problem foAT(xt)

0 AT 3 d AT .
£ =— | D(x K1+ u(x)AT, +Au(x)T  in 0<x<1 fort>0 3.4.6.
St = e P o, @4
9 AT,
3 =0 atx=0 and x=1 for t>0 (3.4.6.b,c)
X
AT,=0 in0sx<1;fort=0 (3.4.6.d)

A Lagrange multiplierA(x,t) is utilized in the minimization of the function#B.4.3) because the estimated
dependent variabl@ x,t;D(X),£(X)] appearing in such functional needs to satistpmstraint, which is the solution of
the direct problem. Such Lagrange multiplier, neefde the computation of the gradient equationsifitisoe apparent
below), is obtained through the solution of proldexdjoint to the sensitivity problems, given by equationg &a-d)
and (3.4.6.a-d) [3]. Despite the fact that the gméinverse problem involves the estimation of twwknown functions,
thus resulting in two sensitivity problems as d&sad above, one single problem, adjoint to problg@ms5.a-d) and
(3.4.6.a-d), is obtained.

In order to derive the adjoint problem, the gowvegniequation of the direct problem, equation (3a},2is
multiplied by the Lagrange multipliet(x,t), integrated in the space and time domains ofésteand added to the
original functional (3.4.3). The following extendgdhctional is obtained:

11 tr ™ )
U[D(X),,U(X)]:Ef [ ZIT=Y]73(x = xy)dt dx +

x=0t=0 m=1

} tff {G—T— 9 {D(x)a—Tj— u(x)r}\(x,t) dt dx

x=0t=0 a t a a X

(3.4.7)

wheredis the Dirac delta function.
Directional derivatives oJ[D(X),.(X)] in the directions of perturbations (x) and/(x) are respectively defined

by

AU [D, 4] = |imOS[Df"“]£_S[D"“] (3.4.8.)

AU [D, 4] = lim SID. 41~ 9D, A4 (3.4.8.b)
£-0 Py

whereU[D4] andU[D, ] denote the extended functional (3.4.7) writtemderturbed(x) and(x), respectively.

After letting the above directional derivatives WfD(x),(X)] go to zero, which is a necessary condition far t
minimization of the extended functional (3.4.7)dafter performing some lengthy but straightforwardnipulations
[3,5,7], the following adjoint problem for the Lagrge multipliei\(x,t) is obtained

oA 0 01 M .

————— [ D{xX)— |~ XA + Y[T -Y]o(x-%,)=0 in0O<x<1l, fot>0 3.4.9.
222 {062l + B i) @9
0A

a—:O atx=0 and x=1 fort>0 (3.4.9.b,c)
X

A=0 inOsxslfort:t]c (3.4.9.d)

During the limiting processes used to obtain thgiat problem, applied to the directional derivatv of
9D(X),.4(X)] in the directions of perturbations(x) and(x), the following integral terms are respectivelyabed:
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o1 0T aA
AU [D, 1] = x£0t 50 AD(X)Hﬂdt dx (3.4.10.a)
ty
AU ,[D, 4] =~ } [ AU(YA(X, )T (x,t)dt dx (3.4.10.b)

x=0t=0

By invoking the hypotheses thBi(X) and p(x) belong to the Hilbert space of square integrditetions in the
domain0< x <1, it is possible to write [3,5,7]:

AU [D, 4] = }DS[D(x)]AD(x)dx (3.4.11.a)
x=0
AU ,[D, 4] = i)DS[,u(x)]A,u(x)dx (3.4.11.b)

Hence, by comparing equations (3.4.10.a,b) and (3.4.11.a,b) we obtain thetgradipanents ofJ[D,u] with
respect td(x) andu(x), respectively, as

_aTaA
t
OU[(x)] = = [ AT (x,t)dt (3.4.12.b)

t=0

An analysis of equations (3.4.12.a) and (3.4.9.b.c) reveals that thengieatigponent with respect @(x) is null
atx = 0 and ax = 1. As a result, the initial guess used {K) is never changed by the iterative procedure of the
conjugate gradient method at such points, which can create ingsbititthe inverse problem solution in their
neighborhoods.

For the simultaneous estimation Bfx) and ((x), the iterative procedure of the conjugate gradient ndeto
written respectively as [3,5,7]

D¥1(x) = DX (x) + aSd (x) (3.4.13.a)
() = () +ad (%) (3.4.13.b)

where df (x) and dl'j(x) are the directions of descent (x) andz(x), respectively;a and al‘j are the search step

sizes forD(x) and(Xx), respectively; andt is the number of iterations.

For the iterative procedure for each unknown fuamgtihe direction of descent is obtained as a ficeabination
of the gradient direction with directions of dedcefprevious iterations. The directions of desdentthe conjugate
gradient method foD(x) andz(x) can be written respectively as

df () = -09D*(x)] + y§ds™(x) +wSd 3P (3.4.14.2)
d () = -0 (] + yd () + @ d ¥ (3.4.14.b)

where yE, yl'j, z//|'§ and t///'j are the conjugation coefficients. The supersciii@sandqu in equations (3.4.14.a,b)

represent the iteration numbers where a restastiategy is applied to the iterative procedurettierestimation ob(x)
and(x), respectively [28].

Different versions of the conjugate gradient metlwash be found in the literature, depending on hbe t
conjugation coefficients are computed. In this war& use the so-called Powell-Beale’s version of ¢hajugate
gradient method because of its superior robustmedonvergence rate in non-linear problems [58¢ Gonjugation
coefficients for this version of the conjugate geatl method are given by:



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Now R&c. 03, 2004, Invited Lecture — CIT04-IL13

Hosio* (o1 - sD* (1S D () dix
yg — x=0 (3.4.15.a)

Hosiok (01 - o (k™ () dx
x=0

}{DS[N"(X)] - DS[,U"'l(X)]}DS[ﬂk ()] dx
=20 (3.4.15.b)

st oo - st oarfa 09 o

) }({DS[D“D*%x)] -09 DqD<x)]}DS[Dk(x)] dx
Wp =5 (3.4.16.a)
J{DS[DqD+1(x)1 OSDP (P (x) dx

x=0

Hosu 001 - ot (oS 1 (0] dx
wy =22 (3.4.16.b)
Hostu® (91 - DS (1Jd % () dx

x=0

wherey§ = yi = ¢ =@ ;=0,fork=0.
Powell- Beale s version of the conjugate gradienthoe is restarted by making the conjugation coeffity/p =

(or z///,= 0) if gradients at successive iterations are favofrom being orthogonal (which is a measure & th

nonlinearity of the problem) or if the direction @éscent is not sufficiently downbhill. For furthéetails, the reader is
referred to [59].

The search step sizezsl'; and a/k,, appearing in the expressions of the iterativeguares for the estimation of

D(x) and(x), equations (3.4.13.a,b), respectively, are obthloy minimizing the objective functional at eatdration
along the specified directions of descent. If thgpative functional given by equation (3.4.3) iselarized with respect

to af and a/'j, closed form expressions can be obtained for quehtities as follows [3,5,7]:

k_FAn—FhA, — FoAu—FAL

al=-122 212 . 4 (3.4.17.a,b)
‘ A11A22 - A122 g A11A22 - A122
where
An—f Z[ATD(X 1%t (3.4.18.a)
t=0 m=1
Azz—J Z[AT (X, D] 20t (3.4.18.b)
t=0 m=1
—j ZATD (xm,t)AT (X, ) dt (3.4.18.c)
t=0 m=1
Fl—f STV =T (i DIATE (g D]
t=0 M=l
(3.4.18.d)
= f S [YK -T* (X DILAT 5 (g, )] 0t (3.4.18.)

t=0 m=1
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In equations (3.4.18.a-eAT[‘§(x,t) and AT)f(x,t) are the solutions of the sensitivity problems gitay equations
(3.4.5.a-d) and (3.4.6.a-d), respectively, obtaimgdettingAD* (x) = df (x) andAu*(x) = df(x) .

The use of the conjugate gradient method for tmeilsiineous estimation &f(x) and(x) can be suitably arranged
in a systematic and straightforward computatiomatedure, which is omitted here for the sake ofibyebut can be
readily adapted from those found in referenceTfg conjugate gradient method of function estinmahielongs to the
class ofiterative regularization method@]. For this class of methods, the stopping dote for the computational
procedure is chosen so that sufficiently accuraté smooth solutions are obtained for the unknowmctions.
Although different approaches can be used for pleeification of the tolerance for the stoppingamiiin, we use in this
work thediscrepancy principlg3].

With the use of the discrepancy principle, theaitiee procedure of the conjugate gradient methatbisped when
the difference between measured and estimatedblesids of the order of the standard deviatian, of the
measurements, that is, when

[T (X ;D 1) =Y (O) = & (3.4.19)
Therefore, the iterative procedure is stopped when
U[D(X), u(X)] < ¢ (3.4.20)

where the tolerancey, is obtained by substituting equation (3.4.19) itite definition of the functional given by
equation (3.4.3), that is,

=%M ot (3.4.21)

4. Applications

We now present some applications of inverse aninggztion problems in heat transfer. The first eptardeals
with the simultaneous estimation of the spatialritiigtions of the diffusion coefficient and of tkeurce-term in a 1D
diffusion problem. Such is the same kind of invepseblem for which the conjugate gradient methodusiction
estimation was derived above. The other four exampf applications deal with convective heat transfhe first two
examples involve the solution of inverse problemsriegularly shaped channels (forced convectiord eavities
(natural convection), respectively, while the otteo involve the optimization of externally inducedectro or
magnetic fields in order to control the solidifiicet characteristics of melts.

4.1. Simultaneous estimation of spatially-dependent diffusion coeffent and source term in a nonlinear diffusion
problem [59]

This work deals with the simultaneous estimationthef spatially varying diffusion coefficient and thfe source
term distribution in a one-dimensional nonlinedifudion problem. The problem formulation is givey équations
(3.4.2.a-d). This work can be physically associated the detection of material non-homogeneitigshsas inclusions,
obstacles or cracks, heat conduction, groundwhterdetection, and tomography. Two solution teche&are applied
in this work to the inverse problem under consitiera namely: the conjugate gradient method witfoiad problem
and a hybrid optimization algorithm. For the hybojgtimization algorithm, stabilization for the sban of the inverse
problem was obtained with Tikhonov’s first ordegutarization. Thus, the objective function was rigen in the form

1 oM 2
U[D(x), 4(X)] =3 jo ZiT[xm,t;D(x),,u(x)]—Ym(t)} dt+ (4.1.1)
t=0 m= .

+ al“g{[oi 200 = 0,012 + [t4200 - 14 017}

whereaq, is the first-order Tikhonov’s regularization paster.

The test cases examined below in dimensionless denphysically associated with a heat conductioblpm in a
homogeneous steel bar of length 0.0&0The diffusion coefficient and the spatial distitibn of the source term are
supposed to vary from base value®@f) = 54W/mKandp(x) = 1¢ W/nK, which result in dimensionless base values
of D, = 1 and = 5, respectively. The base values for the difmstoefficient and source term distribution are
associated with solid-solid phase transformationstéels. The final time is assumed to be 60 seaedulting in a
dimensionless value ¢f= 0.36, and 50 measurements are supposed avakablemperature sensor.
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Figure 4.1.1 shows the results obtained with thguzmte gradient method and with the measureméégoonon-
intrusive sensors, for a step variatiorDgk) and for constant(x). The simulated measurements in this case cowtaine
random errors with standard deviation= 0.01 Yya Where Ynay is the maximum absolute value of the measured
variable. The initial guesses used for the iteeativocedure of the conjugate gradient method andhi® hybrid
optimizer wereD(x) = 0.9 andi(x) = 4.5. We note in Figure 4.1.1 that quite gollts were obtained for such a strict
test case involving a discontinuous variationdgx), even with only two non-intrusive sensors, byngghe conjugate
gradient method of function estimation.

—e— FBExact

—+— Estimated
2.00 — 6.00 —

1.50 —

D (x)
u((})
Ly

1.00

0.50 T T 400 I B e

00 02 04 06 08 10 00 02 04 06 08 0

Figure 4.1.1. Estimation gi(xX) andD(x) obtained by the CGM with
two non-intrusive sensors with standard deviati@r 0.01Yay).

Figure 4.1.2 shows the results obtained for theestast case shown in Figure 1, but with 10 sen$@esnote in
Figure 2 that more accurate results are obtaineddth D(x) and 1(x) when more sensors are used in the inverse
analysis.

—e—— Exact

—+— Estimated

2.00 — 6.00
| 550 —|
150 —| i
= | = P e
2500 43 <
100 450 —|
050 T 400 LA B e
00 02 04 06 08 10 00 02 04 06 08 10
X X

Figure 4.1.2. Estimation gf(x) andD(x) obtained by the CGM
with ten sensors with standard deviation=(0.01Ypay).

Figure 4.1.3 shows results similar to those preseim Figure 4.1.1, obtained with the hybrid opgation
algorithm by using 2 non-intrusive sensors, witk tlegularization parameter set as zero. ¥agis in this figure
represents thd" value of the control volume, that isz 80 represents= 1.0. Note that the estimated functions suffer
from large oscillations resulting from the ill-paseharacter of the inverse problem.

20— —@— Exact
—@— Exact 607 —=— Estimated

Estimated

=

a 124 = 5.0

08 4.5+
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0 20 40 60 80 100 0 20 40 60 80
Control Volume Control Volume

Figure 4.1.3. Estimation gi(x) andD(x) by the hybrid optimizer
without regularization and with 2 sensots< 0.01Y,ay.

In order to find the best value of the first ordédthonov’s regularization parameter, we used the L-shape curve
as shown in Figure 4.1.4. In this figure, thaxis represents the second term appearing onk&dR equation (4.1.1)
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and they-axis represents the first term appearing on th& RfHequation (4.1.1). The best choice dgiis the one that
minimizes both terms represented by xtandy-axis. The optimum value far, in this case was 0.0001.
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©
>
o
[
(=]
o 1E-4
T
2
2
= 8E-5-
c
o
E | -
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a3 a =0.00005 a = 0.000001
,‘Y_WTWT_T_FWWW_T_WWW_T_WW_Y_WTW}

1E-4 1E-3 1E-2 1E-1 1E+0 1E+1
2nd term on the RHS of equation (19)

Figure 4.1.4. L-shape curve for choice of the regetion parameter using 2 sensors.

Figure 4.1.5 shows the estimated functions obtawiddsuch value of the regularization parametet gae hybrid
optimization approach, with the measurements of man-intrusive sensors. Note that the oscillatiares eliminated
because of the stabilization introduced by the tirsler regularization term. However, the estimdtedttion for D(x)
is in very bad agreement with the exact one. Thgobably due to the fact that this case, invgh\b@ measurements
per sensor and only two sensors, is underdetermihatdis, the number of unknown parameters istleess the number
of measurements. Note that for the hybrid optinnratipproach, 2 parameters are estimated for eattte c@ontrol-
volumes used for the discretization of the domemresponding to the values B{x) and(x) at the control volume.
Therefore, a total of 160 parameters were estimatéus case. A comparison of the functions est@ador D(x) with
the conjugate gradient method and with the hybpitihtization approach by using only two sensors (&pees 4.1.1
and 4.1.5, respectively) shows that the conjugaaelignt method is not as sensitive to the fact thatproblem is
undetermined. This is because of the fact thatntlkasured data is used in the source-function tértheoadjoint
problem in the function estimation approach witke gonjugate gradient method, so that the informatiom the
sensors at the boundaries is extended to thefrdst domain through the adjoint functid(x,t). On the other hand, the
accuracies of the functions estimated fgx) with the conjugate gradient method and with tlgbrid optimization
approach, with the measurements of two non-inteusensors (see figures 4.1.1 and 4.1.5, respsgtieek similar.
This is due to the fact that the exa€k) is constant and the initial guess used for bpfir@aches was relatively near
the exact function.
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20 6.0
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Figure 4.1.5. Estimation gf(x) andD(x) by the hybrid optimizer
with regularization and with 2 sensorg € 0.01Yay).

Figure 4.1.6 shows the estimated functions obtami#dthe hybrid optimization approach and the meaments
of 10 sensors evenly spread in the medium andayith0.0001. It is interesting to note that the fumetestimated for
M(X) with 10 sensors is in much better agreement thithexact one than that obtained with 2 sensommparison of
figures 4.1.2 and 4.1.6 shows that similar resarnésobtained for the simultaneous estimatioB@) andz(x), by using
either the conjugate gradient method or the hybptimization approach, when ten sensors are uséhdeinnverse
analysis.
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Figure 4.1.6. Estimation gi(x) andD(x) by the hybrid optimizer
with regularization and with 10 sensots € 0.01Y,y).

We note that the use of the regularization paramdiased on the Tikhonov's technique, produced the
regularization necessary to obtain stable resualtstife estimation of both functions with the hybdgtimization
approach. In fact, completely unstable results wétained if the regularization technique was resd) as a result of
the ill-posed character of the inverse problem urmleture. Also, the results presented above shmat the two
solution approaches examined in this paper arsemngitive to measurement errors. In fact, qualgtisimilar results
were obtained by using errorless simulated measmtsn

Finally, Figure 4.1.7 shows the convergence histifryhe hybrid optimizer for the estimation of thenctions
presented in Figure 4.1.6, where one can see thafurther reduction in the cost function is obtainefter
approximately 500 iterations.
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Figure 4.1.7. Convergence history for the simulbaseestimation of(x) andD(x)
by the hybrid optimizer with regularization and hvitO sensors.

4.2. Inverse forced convection problem of simultaneous estation of two boundary heat fluxes in irregularly
shaped channels [60]

This work deals with the use of the conjugate gnaidimethod of function estimation for the simultzune
identification of two unknown boundary heat fluxaschannels with laminar flows. The irregularly ped channel in
the physical domain is transformed into a parallate channel in the computational domain, by usingelliptic
scheme of numerical grid generation. The direcbiam, as well as the auxiliary problems and theligra equations,
required for the solution of the inverse problenthwihe conjugate gradient method, are formulatedemms of
generalized boundary-fitted coordinates. Therefthis, solution approach can be readily appliedotedd convection
boundary inverse problems in channels of any sHajpect and auxiliary problems are solved with tiavolumes. The
numerical solution for the direct problem is vatieth by comparing the results obtained here witlcherark solutions
for smoothly expanding channels.

For the results presented below, we considered axample of application of the present solutioprapch, test-
cases involving the laminar flow of water £ 1000.52 kg/rf) 7= 0.001 kg/m sk = 0.597 W/m, G=4.1818 x 18J/kg
°C) inside a channel with a smooth expansion, astitited in figure 4.2.1.
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Figure 4.2.1. Geometry for the channel with smangbansion.

Test-cases involving the estimation of the time apdtial variations for the heat fluxes were examirFor the
estimation of the unknown functions we consideneallable the readings of 28 sensors uniformly disted along the
channel and located at the second control-volunigand from each of the walls. Simulated measurdgsneith a
standard-deviatiow = 0.01T,,.x Were used for the inverse analysis. Figures 428d 4.2.2.b show that the estimated
functions are quite accurate, even for the stoieicefunctions tested here, and for measuremetksrandom errors.
These figures present the results obtainetl #0999 s and 1665 s, respectively.
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Figure 4.2.2.a. Estimated and exact heat fluxes=f#9 s.
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Figure 4.2.2.b. Estimated and exact heat fluxes=ft865 s.

4.3. Inverse natural convection problem of simultaneous estimian of two boundary heat fluxes in irregular
cavities [61]

This paper deals with the use of the Conjugate i@nadviethod of function estimation with Adjoint Brem for
the simultaneous identification of two boundary ditions in natural convection inverse problemsvin-dimensional
irregular cavities. This is a much more involvederse problem solution than that addressed abowdofoed
convection. Such is the case because, for natoralection, the energy equation is coupled with icoity and
momentum equations. As a result, the counterpérisese equations for the sensitivity and adjonatbfems are also
coupled.
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The unknown boundary conditions are estimated witha priori information about their functional forms.
Irregular geometries in the physical domain aredf@med into regular geometries in the computati@omain by
using an elliptic scheme of numerical grid generatirhe methodology is applied to cases involvinganular cavity,
as depicted in figure 4.3.1, where the position aim& dependent heat fluxes are unknown at theriand outer
surfaces. These two surfaces are supposed to béamad at the constant temperaturgandT,, respectively.

For the results presented here we considered hatomaection of air with physical properties=1.19 kg/nf;
1=1.8 x 10° kg/m s;4=0.00341 K%; Pr=0.70;K=0.2624 W/m K;Cp=1020.4 J/KFC. The test-cases analyzed below
correspond to a Rayleigh number of 5 ¥, Mhere the characteristic length used WaR, - R,. For this Rayleigh
number,R, was taken as 54.4 mm aRgas 22.9 mm, while the temperatures at the wgild and;=1 were taken as
Th = 30°C andT, = 20°C, respectively.

R2
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=
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¢=1
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Figure 4.3.1. Geometry for the irregular cavity.

We now examine the results obtained with simulatedsurements containing random errors of standavidtebn
o= 0.6°C. For this test-case, the measurements of 27 iserleoated near each of the boundaries, were &sbum
available for the inverse analysis. The sensore \Wmated 1.08 mm below the surfacezal and 1.25 mm below the
surface aty=N. Figures 4.3.2.a,b show that the estimated funstare in very good agreement with the exact oores f
such test-case, although some oscillations arervdx$dn the inverse problem solution, specially rnékee sharp

variation around 2 seconds/atN (see figure 4.3.2.a).
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Figure 4.3.2. Results for: (79, (b)t =7.5 seconds.
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Figure 4.3.2. (Continued)..
4.4. Optimization problem in magnetohydrodynamics [54-58]

This section presents the optimization problemafciiieving desired features of a melt undergoingli§ichtion,
involving the application of an external magneté&d, whose intensity and spatial distribution abgained by the use
of a Hybrid Method. The intensities of the magredtsng the boundaries of the container are descidiseB-splines.
The inverse problem is then formulated as to fimel mnagnetic boundary conditions (the coefficieriitte B-splines)
in such a way that the gradients of temperatunegatbe gravity acceleration direction are minimized

Transient Navier-Stokes and Maxwell equations vdseretized using the Finite Volume Method in aegatized
curvilinear non-orthogonal coordinate system. e phase change problems, an enthalpy formulatasused. The
code was validated against analytical and numebeathmark results with very good agreement in bages.

First, let us demonstrate the inverse determinadiothe magnetic boundary conditions that creat¢éate pre-
specified flow-field within some domain. Figure A4hows the geometry and the boundary conditionsghie test
cases considered here. The height and length dfgghare container were equal to 0.15 m. The topbattom walls
were kept thermally insulated. The left boundarys Wwapt at a “hot” temperature while the right walis kept at a
“cold” temperature. For the first test case, thees no phase change, since the “hot” and “coldpenatures were
above the melting temperature.

By ()
Insulated
Ty o=9.81 mis T
By () Bz ()

ey
Insulated
B (%)

Figure 4.4.1. Geometry and boundary conditiondvbiD.

The four walls were subjected to unknown magnedic fdistributions whose directions were made aythmal to
each wall. In order to satisfy the magnetic fluxgervation equation

O0+B=0 (4.4.1)
The following periodic conditions were imposed

B.(y)=B,(y) (4.4.2)
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B,(x) = B,(x) (4.4.3)

The objective was to minimize the natural convettffects by reducing the gradient of temperatlwagathey
direction, thus trying to obtain a temperature fo$imilar to those obtained for pure conductidie objective
function to be minimized is then formulated as:

#eell
F= |t Lt il (4.4.9)
#eells iz | oy,

The magnetic field boundary conditions were invigrdetermined at either four or six points equalbaced along
each of the four boundaries and interpolated uBirgplines for the other points at those boundarié® magnetic
boundary conditions at = 0.15 m andy = 0.15 m were then obtained using the periodic timmd from equation
(4.4.2) and equation (4.4.3).

The fluid analyzed was silicon. For the first tease, the temperature differenieT, was set equal to 0.65 K,
which gives a Rayleigh number of*10

Figure 4.4.2 shows streamlines, isotherms andfheags on all four boundaries, predicted withouy amagnetic
flux applied and no phase change (left columnjyelsas streamlines, isotherms and heat fluxedidow boundaries
resulting from the optimized magnetic boundary d¢timols with six points on each boundary. One cam that the
gradients of temperature in tlyedirection are reduced. Figure 4.4.3 shows themopéid magnetic field boundary
conditions forx = 0 andy = 0 and figure 4.4.4 shows the convergence higibtiye process.

Natural convection with no MHD Natural convection with optimized MHD
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Figure 4.4.2. Natural convection; results of arialygth no magnetic field (left column) and resuitish optimized
magnetic boundary conditions (right column) for/R&C. The parametesis measured counterclockwise along the
boundaries of the rectangular container startiompflower left corner.
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Figure 4.4.3. Natural convection; optimized magnbbundary conditions
atx = 0 andy = 0 with the estimation of B at six points per bdary
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Figure 4.4.4. Natural convection; optimization cergence history for the
estimation of B at six points per boundary.

As a second test case, we minimized the curvatutbeoisotherms in a solidifying process after a-ppecified
time from the start of the solidification proce$he temperature differendg-T, was set equal to 6.5 K= 1686. K,
T.= 1676.5 K) and the length of the square contairses taken as 0.069 m, which gives a Rayleigh numb&@. The
solidus and liquidus temperatures were equal to 1681.0 K and 1686.te¢fectively. Thus, a mushy region exists
between the phases. The initial condition was séfpa T, Then, the solidifying process started at thetrighll,
whereT = T..

Figure 4.4.5 shows the streamlines, isotherms &ad fluxes on all four boundaries for this testecadthout any
magnetic flux applied, predicted at 500 secondsdt ¢olumn) as well as the streamlines, isotherntsteeat fluxes on
all four boundaries resulting from the optimizatioihsix B-spline points for the estimation of thegnetic boundary
conditions on each boundary (right column). Therlalauy conditions at the other points were intefgolausing B-
splines. One can see that the curvature of thhaswis is smaller than in the case without any mégfields applied.

Figure 4.4.6 shows the optimized variation of thegnetic fields orthogonal to= 0 andy = 0 boundaries. Figure
4.4.7 shows the convergence history of the optitiingrocess.
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Solidification with no MHD effects

Solidification with optimized MHD effects
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Figure 4.4.5. Natural convection with solidificatjoesults of analysis with no magnetic field (leflumn) and results
with optimized magnetic boundary conditions (rightumn) for Ra = 19. The parameter s is measured
counterclockwise along the boundaries of the regtkm container starting from lower left corner.
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Figure 4.4.6. Optimized magnetic boundary condgtionx = 0 andy = 0 boundaries with the
estimation of B at six points per boundary in cagh solidification.
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Figure 4.4.7. Optimization convergence historytha estimation of B at
six points per boundary in case with solidification

4.5. Optimization problem in electrohydrodynamics [52,53]

In another test case we dealt with the inversergtation of the electric boundary conditions thetate some
pre-specified flow-field features within some ragid-igure 4.5.1 shows the geometry and the bounotarglitions for
the configuration considered here.

y A
Te
~
N
N g=9.81m& R
Insulated g X Insulated
N N
~ N
B S
X

Th
Figure 4.5.1. Geometry and boundary condition€tdb.

The height and length of the closed containerdiligth the electrically conducting liquid were efjta33.3 mm
and 66.7 mm, respectively. The vertical walls wiept thermally insulated. The bottom boundary wegst lat a “hot”
temperature while the top wall was kept at a “caédhperature. A slightly triangular temperaturefifgavas applied to
the bottom wall in order to create a preferentisdation for the thermally induced fluid flow.

The vertical walls were subjected to unknown elegtotential boundary conditions. The electric dear particles
were assumed to enter the fluid from the walls whbe electric potential was applied. The objectas to minimize
the natural convection effects by reducing the igratdof temperature along thedirection, thus trying to obtain a
temperature profile similar to those obtained farepconduction. The objective function to be mizied was then
formulated as

2
1 #Hcells( 9T
F= — 4.5.1
\/#cells El (axi J ( )

The electric boundary conditions were inverselyedatned at six points equally spaced along eachefertical
walls and parameterized using B-splines for thesrothoints of these boundaries. In this case weidered natural
convection of gallium arsenide. The temperaturéeihceT,-T, was set equal to 1.0 K, which gives a Rayleigh
number of 1.9x10

For the first test case, there was no phase chaimge the “hot” and “cold” temperatures were abtheemelting
temperatureT,= 1521.5 K;T,= 1520.5 K).

Figure 4.5.2 shows the streamlines, isotherms a@ad fhuxes on all four walls predicted for the fitest case
without any electric field applied and no phase ngea (left column). Figure 4.5.2 also shows theasties,
isotherms, and heat fluxes on the four walls whangusix points on each vertical wall for the estiion of the electric
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boundary conditions (right column). One can setttiegradients of temperature in thdirection are reduced close to
the top and bottom walls. One can see that thhesois start to become horizontal which is simitethibse obtained if
the gravity vector were acting in the horizontakdtion.

Natural convection with no EHD effects With EHD effects
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Figure 4.5.2. Natural convection with no soliditica; results of analysis with no electric fieléfflcolumn) and results
of optimized electric boundary conditions (righturan) for Ra = 1.9x10 The parametesis measured
counterclockwise along the boundaries of the regtkm container starting from lower left corner.

Figure 4.5.3 shows the optimized electric poteraial figure 4.5.4 shows the convergence history.
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Figure 4.5.3. Optimized electric field potentiakat 0 andy = 0 with the
estimation of E at six points per boundary.



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Now R&c. 03, 2004, Invited Lecture — CIT04-IL13

4+  sopP
o DFP
GA
0.065 Y 1200
E ] LM
DE L
0.060 *
- 1 800 £
o
g 0.055 — <=m (=N I
c c
=] 1 F 2
2 0.050 g
© | 400 5
*+
0.045 XX H X I
0.040 , ‘ , ‘ —h 10
0 20 40 60

Iteration number

Figure 4.5.4. Optimization convergence historytfar
estimation of E at six points per boundary.

In a second test case, we tried to minimize theature of the isotherms in a solidifying procesteraf pre-
specified time from the start of the solidifyingopess. Figure 4.5.5 shows (left column) the realitained for a
Rayleigh number equal to 1.9¥1@ithout any electric field applied. In this casee “hot” and “cold” temperatures
were equal to 1510.5 K and 1511.5 K, respectivEigure 4.5.5 also shows the results obtained wittogtimized
electric potential acting in the horizontal directi Note that the isotherms are smoother than tfayse case without
any electric field applied.

Figure 4.5.6 shows the optimized electric poterdia figure 4.5.7 shows the convergence historyHerhybrid
optimizer.
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Figure 4.5.5. Natural convection with solidificatjgesults of analysis with
no electric field (left column) and results of opized electric boundary conditions
(right column) for Ra = 1.9xT0The parametesis measured counterclockwise along the
boundaries of the rectangular container startiomflower left corner.
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Figure 4.5.6. Solidification case: optimized elecpotential boundary conditions
atx = 0 with Ra = 1.9x1%and estimation of E at six points.
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Figure 4.5.7. Solidification case: convergencednjsfor Ra = 1.9x10
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