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In this paper a weak three-dimensionality of the flow around a sletieder is considered and the related model, the so-called
Ginzburg-Landau equation, is here obtained as an asymptotic solution of thes8Ezt@l Navier-Stokes equation. The derivation
is in line with existing slender bodies theories, as the Lifting Theory, for example, where the basic 2D flow, leading to
Landau’s equation, is influenced now by a “sidewash” that modifies bi-dimenkidhaloriginal flow through mass conservation.
The theory is asymptotically consistent and rests on an assumption thainhbldwicinity of the Hopf bifurcation (Re=45);
furthermore, it leads to a well-established way to determine noatlgrboth the Landau’s coefficieptand Ginzburg's coefficient
y. Arguments are given suggesting that this assumption should hold far beyorfuftdoption (Re >> Rg) and, with it, to
extend the Ginzburg-Landau equation almost to the border of the transition regreh0d8. In this work only the theoretical
development is addressed; numerical results will be presented ithadoring paper.

1. Introduction

Viscous flow around a 2D circular cylinder is known to produce spontarfemonic oscillations of the wake for
Reynolds number above a critical value,Re 45, the oscillating part of the pressure giving rise to an ¢wiom
transverse force on the cylinder that has importance in sesegaieering applications. It seems to be now well
established that this is essentially a stability problemHesre & Monkewitz (1990), and that the oscillatory wake
can be identified with Hopf birfucation in the language of the dynamic systemgy:ttigslidea was first advanced, in a
more operational way, by Bishop & Hassan (1964) and it has beeledexperimentally, among others, by Provansal
et. al. (1987) in their study in the vicinity of the critical Reynolds number.

Empirical evidences show that both the shedding frequency (Stnoubhdder) and the whole phenomenon of the
vortex induced vibration, at least in its more macroscopieapce, are essentially invariant with Reynolds number
up to the transition zone (Rel®). This observation has led some authors (lwan & Blevins (183i5gxample) to
propose (heuristigpghenomenological modelbased on Van der Pol equation, to predict the hydro-elastic inberacti
with results that are impressive given the somewhat looseé dynamic background on which they are based,;
interestingly enough, the predictions from such models are, in some aspects, betterchgreement with experiments
than the ones obtained from direct CFD computation. Being heusstihey are, however, they can be used only as
interpolators and hardly to extrapolate results to situations$ roeigond the empirical data on which they are based,;
furthermore, some hysteric behavior observed in the experimemstacovered by these models and, obviously, the
direct link with the Navier-Stokes equation is lacking in such approach.

The final purpose of the on-going research is to derive sd=#lastic oscillator model” directly from Navier-
Stokes equation, rendering it not only whole predictive but also mékpassible to be used in different situations
from the ones observed in the existing experimental facilitiggaiticular, the case where the incident current changes
both in direction and intensity along the cylinder span is partlgulelevant for offshore applications. Notice also that
the link with the more fundamental Navier-Stokes equation Heae an even greater motivation, since direct
computation with CFD did not produce yet a reliable result.

In the present paper only the first step towards this findligaadressed, namely, to derive the “fluid oscillator
model” by considering the cylinder fixed in the flow. The modetdpresented by the so-call&hzburg-Landau
Equation see (3.1a), first proposed by Albaréde et al (1990) in the contexWofith a basic difference, however, in
relation to the usual approach: now this equation is not fittednaeto the problem but it results from a consistent
asymptotic approximation of the 3D (discrete) Navier-Stokes tiEquéNSE). In particular, the coefficients of this
equation — thé.andau’s coefficienft and theGinzburg'’s coefficieny — are not inferred from the experiments but they
are directly computed by well established numerical procedhassd on the Finite Element Method (FEM) applied to
the 2D cross-flow problem: as usual in “slender bodies theodag”has thus an essentially 2D effort to compute a 3D
result.

The discrete FEM model is derived, as always, finite fluid regionR and one has certainly a difficulty to define
the “discrete fluid flow operator” in R due to the loosely knoant of the proper boundary condition at thelet of
R. By considering the flow equation in the wake it has been possiblgptess the “resistance” offered by the wake on
the flow within R, named here theake impedance; by an explicit expression that depends solely owéhacity and
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accelerationof the flow on theborderline that defines the interface between R and the wake. Thigaten is
elaborated elsewhere and it may have an importance that transcesyiscifie application aimed in this work.

The final discrete NSE emulates theontinuumNSE with alocal inertia, a convective inertiaand aviscous
dissipationthat incorporate the contributions from both fiméte fluid regionR, that is actually discretized, and the
wake This discrete set of equations are thus projected intsolkaeoidalandgradientsub-spaces and standard results
in Linear Algebra are used to show the inner consistency oé fhegections; in particular, the projection on the
solenoidal sub-spac¢hat determines the velocity field, leads to a normal quadratandig system to which the usual
asymptotic procedure can be applied, to determine fasidau’s Equationin the 2D context and after the 3D
Ginzburg-Landau Equation

As it is known, a myriad of interesting small scale fesgursome of them uncovered by a detailed numerical
analysis, appear concomitantly with ti®ss macroscopic orderdmbhavior of the wake that really matters in the study
of thehydro-elastic phenomendW1V): the purpose in this work it is not, thus, to presetaxanomy of the chaos but
rather to capture the underlying order. To achieve this gsaktaof “blindness” is needed, to avoid a too detailed
picture, and theasymptotic theoryis just a technical filter that provides it. This theorgtseon a well defined
assumptionsee (2.21), that can be directly verified by the numericalltse furthermore, although strictly justified
only in the vicinity of Hopf bifurcation (Re Re), it seems to hold in a much broader range of Reynolds numbers,
what makes possible to extend Ginzburg-Landau equation to this rangkentally, this yet speculative result can
furnish a theoretical background for the so-called “phenomenolagicdéls” that are in fact applied, with a relative
success in the prediction of VIV, in a range of Reynolds numbers far beyond thkitdogstion (Re >> Rg).

The paper is organized as follows: in section 2 the two-dimeakproblem is addressed, leadingLamdau’s
equation and in section 3 aveak three dimensionalitgf the flow is considered andinzburg-Landau equatiois
obtained. Some more technical results, including the derivatidineofwake impedance”, are derived elsewhere and
numerical results will be presented in a forthcoming paper.

2. Two-dimensional solution: Landau’s Equation

In this section théwo dimensionatross-flow around a cylinder is considered. Points in the sexg®on plane are
designated by the vectar= xi + yj, the fluid velocity by the vector field(x,t) = u,t)i + v(x,t)j, the pressure by the
function pk,t) while the differential operatdn is defined by the expressian=id/ox + jo/dy; these notations will be
kept all through the work, even in the next section where the three dimensioeaticomwill be addressed.

Let d = 1 be the typical dimension of the cylinder cross sectiondftieder diameter in the case of a circular
cylinder) and U = 1 be the incident velocity along the x-axidatiifinite; obviously, the non-dimensional frequency
wd/U coincides numerically witko and both forms will be used here, depending on the convenienceuithéehsity
will be also assumed unitarpg € 1) and thugt, = p,/pUd = 1/Re, whergl, is the fluid viscosity and Re the Reynolds
number.

It is desirable to work here with a velocity fialdx,t) that satisfie©vomogeneouboundary condition both at the
infinite and at theross sectiorwontour linedB. With this purpose in mind one introduces here an auxiliary vaetdr f
Uy(X) such that

0w, =0;
. uP(X)‘xDGB =0 (2.1a)
e limu (x) =i,

[x] o0

with the subsidiary condition that,(x) approaches its limit valuie“fast enough”, namelyuy(x) Oi for x| > &, for
example. In the case ofcacular cross section this field can be determined with the help afttbam function

lij(X) :—rsin9+a1§;:1—_?+aZDS:Tne;

alrl =a+La,/ri" =-a; (r,=%),

c

(2.1b)

whereug(x) Qi for x| > & with an error smaller than 0.025% for= 5. If the cross section is arbitrary this function
Uy(X) can be determined numerically, for instance, but once this is doneuhévaticity fieldur(x,t) can be written as

Ur (X, t) =u, (x) +u(x,t). (2.1c)

Introducing now the (volume) force vector
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f (X) :—(u D]])u +i|]2u , (226)
p p p Re P

the flow problem is reduced to determine the figla,t); px,t)} such that

ou 1

- 2 - .
— R—eD u +[(up DD)u +(u D]])up]+(u M)u+0p=Ff,(x); (2.20)
=0,
subjected to thhomogeneous boundary conditions
cux,t) . = lliltrlu(x, t)=0;
(2.2¢)

e lim p(x,t)=0.

X]— o0
The discrete version of (2.2) will be addressed.nex
2.1: Boundary conditions and “wake impedance”
In order to deal with (2.2) one must specify, foéall, afinite fluid regionR, as shown in Fig.(1), where the flow

variables will be discretized by Finite Element®uBdary conditions must be imposed on the bod&eof R: only
with them the‘fluid flow operator” can be properly defined within R.

OR.

u=0)
OR (u=0)
oR; (u=0) I
b 9B (u=0) ORw (U = Uw(y))
» U=1 (5 (R) S U, (Y) “WAKE”
b d=1 |
| B8R (U =0)
b | | OR.

=0

Figure 1.Finite fluid regionR @R =0BO0R0OR0R,) andwake
(ur(x,t) = up(x) + u(x,t); up(x) Ui for x| = b).

The boundaryR is made by the cross section contour éiBeby the “inlet”dR; at the vertical line x = b, by the
“lateral sides"dR, at y =+ b and by the “outletdR,, at x =I that defines the interface between R andnthke region
x> (R =0BOOROOROOR,). The velocity fieldu(x,t) is certainly null abB and ifb is large enoughb(= 5d) andl is
not much larger thah (I = 10d) it seems reasonable to assume tifatt) is also null abR[J0R;: the presence of the
cylinder should not perturb the incoming flow affisient distance both upwind and laterally. Théddaing essential
boundary conditions thus assumed on this parioéf:

u(x,t) =0. (2.3a)

X09BOOR; AR,

The same homogeneous boundary condition cannattbaded to the “outletdR,, unless the distandeis very
large (and so it must b®. In fact, the vorticity generated at the cylind@s out very slowly downstream, typically in
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a distance of orddr= Re for the largest wavelength, and sibdacreases roughly with”? the condition (2.3a) could
be pushed téR,, only if the finite region R becomes very latge

The velocity field abR,, should thus remain unspecified while the propemary condition at theutletof R will
be defined below in this section. If now ttignamic equationn (2.2b) is multiplied by airtual velocity du(x) that
satisfies, as usual, tlame essential boundary conditi¢3a), and theontinuity equatiorin (2.2b) is multiplied by
op(x) and both expressions are further integrated amdRobtains, after partial integration, that

JE dR*l{[(“p )u+ (4 )u, ]+ (DU 6v) | 0B

+{(um)u@u dR- [ pOBu)dR= [f, & Y8u dR+ 14, (Y)Bu,, (¥));

R

(2.3b)
-jap(m W)dR= 0.
R

In (2.3b) the notation {(,(y,t); duw(y)) = (u(l,y,1); du(l,y)); |y|< b} was used to define the velocity and the virtual
velocity overdR,, and 1{,(Y); duw(y)) is the“wake impedance; namely,

¢ 1 du 19v
I(u,,(y); du,,(y)) = jb K—p +%&jw [Bu,, (y){?ea_xjw [Bv,, (y)}dy, (2.3¢)

where, assuming continuityj)i{ stands for thetress field in the walat x =I: the“wake impedance’is thus thevirtual
powerdone by this stress field on thgtual velocitydu,,(y) and it represents the “resistance” offeredts/wake for
the flow within the finite fluid region R.

The wake regionis bounded on the left BR,, and by two semi-infinite linedR.,, as indicated in Fig.(1). Since
u(x,t) was assumed null at the lateral sid@sit is certainly consistent with this assumptiortakeu(x,t) = 0 ondR.,,
since the perturbation caused by the cylinder shbaleven smaller ovéR., than ovedR,. It turns out then that the
flow in the wake is forced solely by the filg(y,t) and thus

(2.43)

where the functional®y v([)] can be determined by solving the flow problenthia wake. If both the velocity and
virtual velocity {u,(y,t); duy(y)} at the outlet are discretized as

U (¥, )] _ Q[ [Uusc® ] [Yuien, O]
{5UW(Y) } - ;[{&ka }I +{6uw,k+Nw }J J th,w (y)’ (2.4b)

where {hw(y); k = 1,2,...,N;} are theinterpolation functiondor the velocity field restricted t8R,, and {Uu(t); dU,}
are the nodal values vector, it can be shown that

*I(u,,(y); 8u,(y)) =8U,, O(U,);

. (2.4¢)
\lU,)=-[M,U,+ ,0,N ,0,)0,],

the matrices ¥..; K.; Nw(Uy)} being computed from explicitly defingeburier serie$.

! This seems to be true even for a “small” Reynaidmber: for Re = 41 the wake has already begurstdlate
sinusoidallyfar downstreamsee Van Dyke (1982), plate 46. The existing nicakresults predict, as a rule, a critical
Reynolds number above 40 (Re45) although the expected value should be belamy €R35).

2 For theFourier seriesexpansion one must impose a finite breadth 2WHemwake, with 2W being arbitrarily large
(2W >>Db). It can be shown that the number of termsnnthese series increases both with W and Regailpj n O

O(WI(Re)"?).
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Within R the discrete velocity and pressure fiedds be expressed as

06 = 3 (U (0 + Uy (05) T, €

(2.5a)

Px, 0= P, (O, &),

with {h(x); k = 1,2,...,N} and {{(x); a = 1,2,...,e} being, respectively, the interpolatfugctions for the velocity and

pressure fields. The functions{R)} are necessarily continuous but thg(X)} may or may not be so; in reality, the
pressure field does work dnidu andit seems reasonable to choose thé€x§} in conformity with the discrete field

OBu obtained from the {{{x)}. Placing (2.5a) into the integrals that appea{2.3b) and defining the matrices

jg—‘t‘mu dR=38U' M [U; junﬂp[zﬁu dR=3U'M, U YU ;
R R

i[(upﬂ]])u +(um)u, |Bu dR+Rie£(DuDD Eu)+0MVID V) dR=8U' K , , U

(2.5b)
jp(D Bu)dR=8U' (R [P; jép@ W )dR=3P' [R'[U ;
R R
[,00Bu dR=8U"[F,,
R
thediscrete fornof the flow equation in weak form reads (see (2.3b) and (2.4c))
3U'fM, [0 +K .0 +N (U)U R B} =
=-3U, M, 0, +K ,, 0, N ,U,)0 }+3 B ; (2.50)

*R'U=0.

Observing that,,; dU,} are, in fact, the part ofy; dU} defined indR,,, one can take the “wake impedance” on the left

SU'PM W +K ;0 +NU)U R B} =& ' B ;
‘R'U=0,

(2.6)

The dynamic parcel®f (2.6), proportional toM; K,; N(U)}, come both from thdinite fluid regionR, where the
flow variables are discretized, and theke regiondownstreamM is thelocal inertia matrix K, represents, as
indicated in (2.5b), the influence of thiescous stresand theconvective acceleratiodue to theauxiliary field uy(x)
and N(U) is theconvective inertia forceThe parcels {R'U; RP} are due tomass conservatioand the related
constraint forcg(pressure) defined in the finite region R: the matrR represents the (discretgfjadient operatorand
R' the (discretedlivergence operatorObviously, mass is already conserved in the “wake solution”)(2dd this
constraint should not appear again at (2.6).

The (discreteNavier-Stokes equatiqi2.6) emulates thus the structure of the original equation)(arbit will be
analyzed next: in this discrete form thrathematical analysis much simpler, once is based only on some general
results in Linear Algebra, and, furthermore, its outcome hasparational appeal given its direct link to the final
numerical results.

2.2: The solenoidal and gradient sub-spaces

Let Wy be the 2N-dimensional linear space of tligcretevelocity vectorU and L be the e-dimensional linear
space of theliscretepressure vectoP; in both spaces it will be assumed the staniarer product<U;V> = U'V and
the relatedhorm |U|f = <U;U> = U'.

Let also {I, G} be the s-dimensional and r-dimensiosab-spaces of \/defined by the relations
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J={vOow, R'vV =00L};
G, ={VOW,:V=Rp;e0L}.

(2.7a)

Elements of Gare “gradients” of “scalar fieldsj O L. and for this reason,& called thégradient sub-space’of
Wy; notice that Gis generated by the linear combinations of the column vecfoR. &lements of Jhave null
divergence and sq i called the'solenoidal sub-space”by definition, their elements are orthogonal to the column
vectors ofR and thus JJis theorthogonal complemermtf G or (r + s = 2N)

W, =J,0G,, (2.7b)

see Ladyzenskaja (1969).
One introduces here the operators
sA=R'[R:L, > L

(2.8)
‘O=RMR:W, - W,,

whereA is the (discrete).aplacian operatorand 00 will be named thé'conjugated Laplacian” Both A andO are
represented bgymmetric, positive semi-definite sparse matritlks “sparseness” being a consequence of the “local
character” of the Finite Element discretization.

By definitionR'Y =0if V O Jand sadV =0 or X O Null (O). In reality, it can be shown that=INull (0). Let
{Tq a =1,2,..,s} be arothonormal basiof Null (O) = X and {G;; j = 1,2,...,r} be theorthonormal eigenvectors
corresponding to theositive spectrur{k; >0; j = 1,2,...,r} ofO, namely:

[0,=0,0=12,..,s;

| (2.9a)
o [Gj = KjGj; 1=12,...,r

Obviously {G1; Gy; ...; G} is a basis of Gwhile {Ty; T,; ...;T¢ is a basis of J assuming that 0 K; < K, < ... <
K; consider the matrix

O,=1-—0. (2.9b)

Certainly[; is asymmetric, positive semi-definite sparse matiith a spectrum in the interval [0;1]; furthermore
0,07, =T,, (2.9¢)

a relation that can be used to determinerimonormal basi®f thesolenoidal sub-spade

The Laplacian operatorA may have a non-empty null sub-spabdkil( (A) # O0) but it certainly has @ositive
spectrumin fact, if

.G, -l Rrm, (2.10a)

]
¥
then one can easily check tﬂhéj ||IF 1 with

‘A6, =G, (2.10b)

Observing now the conjugated relation

% The ARPACK algorithm is specially suited to deal with aigeue problems of a larggarsematrices, see Lehoucq
& Sorensen & Yang(1997).
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G -_1tRr 6, (2.10¢)

]
VK

the following result can be derived: the positigeatrum ofA must coincide, necessarily, with the positive spec
{kj >0; j=1,2,....,r} of 0. In fact, ifk # K; were apositiveeigenvalue oA with eigenvectoéthenG =RI[G should be
an eigenvector dil with the same eigenvalueand s U {k; >0; j = 1,2,...,r} once, by definition, this is tiset ofall

positive eigenvalues d@fl. The operators4;} establish, thus, a duality between the sub-srép@ Le, generated by
the vectorgG; G,...;G } , and the gradient sub-spacel[@Wy: if ¢ 06, thenR$ O G, and ifV O G, thenR'Y 0G ;

the sub-spachull (4) is the orthogonal complement &, and so

L, =Null(A)OG,;
W, =Null(@)OG,.

(2.11a)

Let {Sy; a = 1,2,...,e-r} be an orthonormal basis Nfilll (A), named thée'spurious pressure modesin the
specialized literature, see Gunzburger (1985); satigfy the relations

*Al5, =0a=12,..,e | (2.11b)

and, as it will be seen in the next item, theseesqalay in the discrete problem the same role dléyetheconstant
pressure fieldn the continuum problem, namely: they do notriiete with the dynamics of the flow. In accordance
with (2.9b) one introduces here the matrix

A= -LA, (2.110)
K

r

where, againd; is asymmetric, positive semi-definite sparse matith spectrum in the interval [0;1]; this matrixliw
be used in the next item in the context ofRieésson’s equatiofor the (discrete) pressure field.

It seems worthwhile to finish this section with @ne technical remark about the Finite Element diszation,
related to the so called “div-stability conditiofiCadyzhenskaya — Babuska — Brezzi condition). Thiatps that for
some classes of Finite Elements (FE) the smaligstealuek; becomes “too small” as the mesh dizgoes to zero,
indicating that elements of thgradient sub-spac&; tend to “slip” into thesolenoidal sub-spac& ash — 0. In this
case the solenoidal sub-spagbetomes “too rarefied” once at least some of thensidal fields are, in fact, “slipping
modes” of G this problem is particularly acute for the singl€E discretization, where the velocity field irselbr
piecewise continuous and the pressure is constaptich element, see Gunzburger (1985) and Battgs) 1for
example. However, as shown in Aranha (2003), if dotual solenoidal sub-spacedslargedby these “slipping
modes” in a way dictated by the “div-stability cdimah” this problem can be overcome without impagrithe standard
Finite Element convergence rate. In the presentegbrsome of the eigenvalues-eigenmodes jra@ naturally
computed in the effort to determine the badig; {o = 1,2,...,s} of Jand this “enlarging” process can then be worked
out easily; or, in short, questions related to“the-stability condition” are of no special concednere.

2.3: The solenoidal velocity field and poisson’s eqtion

The solution of the (discret®avier-Stokes equatiof2.6) will be dealt in two stages: first, the @aijon of (2.6)
into J will result in a standard nonlinear differentiajuation for thevelocity, second, Poisson’s equation for the
pressurewill be derived by projecting (2.6) into,Gr'he simple structure of the dynamic equationsialldws one to
developstandard asymptotic analydisr the underlying nonlinear system and to obtiairthis way,Landau’s equation
in the vicinity of theHopf bifurcation in the other side, it is possible to show, witk help of item (2.2), th&oisson’s
equationhas a solution and that this solutiofiugsique”. With this purpose in mind one introduces the iagr
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T =[T;T,...;T )
M, =T'M 0 ;
°Kp’S:Tt K p[[l ; (2.12a)
*N,(@)=T'IN(T§) T;
. Fp'S =T' I]EFp,
whereR'T =0 sinceT, 0 J; also, given arbitrary s-dimensional vectongt);dq} one has

Ut = UM)=TIg(t);
sUDJ, = dU=T.

(2.12b)

The virtual velocitydU O Wy in (2.6) belongs either tq dr to G; assuming firsdU = Tldg O J and recalling that
T'R = (R'T)" = 0' one obtains, with the help of (2.12b), the follogiequation for the variabigt) (see (2.12a)):

M.[d+K g +N Q)g =F . (2.13)

The asymptotic solution of (2.13), leadingltandau’s equationwill be addressed in item (2.5). Introducing the
dynamic force vectdisee (2.6))

*Fo()=MU+K ;U +NU)0 —F OW,, (2.14a)
one can writaPp(t) in the form ({To} O{ Gj} is anorthonormal basisf Wy)
Fo(t) =2 f4a) T+ 21 (1) G
a=1 =1
foa(®) = (F o) To)ifo (1) =(F o(1);G ).

By placing nowdU = R@¢ O G; in (2.6) one obtains, with the help of (2.8) and (2.10a), the folloRimigson’s
equationfor the pressur

(2.14b)

AP =R'[F, (1) = > f, (1),/k; G, OG,, (2.140)
j=L

sinceR'M, =0 (Tq O ). ButP O Leand {S; a = 1,2,...e-rf{ éj;j =1,2,..,1} is an orthonormal basiof L

expressind® in this basis and using (2.10b) it is easy to check that the general solution of (2givk) isy (recall that
A%, =0)

fd]()

P= Zau[5+zf

P

where faq; o = 1,2,...,e-r} are arbitrary coefficients. Thgpurious mode”P, = Za,[3, plays here the same role played
by theconstant pressure fielidh the continuum problem: in faéts (discrete) gradienRPs — and it is in this way that
the pressure appears in the discrete flow equation (&@)uHl sinceAPs = 0 (recall thatAl$, = 0) and

IRP, [f= P! [R'[RCP,= P.AAP = O. (2.15a)

The solutiorP of thePoisson’s equatiors thus‘uniquely” defined by the expression



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Now R@c. 03, 2004, Invited Lecture — CIT04-IL09

fq,;(1)

-P(t):i T

G i (2.15b)

and it is important to point out thB(t) can be also obtained bgpeated multiplicationsf thesparsematrix As; in fact,
from (2.11c) it follows that

AG,=gG;; g =1-K /K,

J
and from the convergence of theometric serie&(g)" = 1/(1-¢;) one obtains
1 00
*P(t) == AT R'[F (1) (2.15¢)
r n=0

The series (2.15c) has an “almost geometric structure” tanconvergence can be thus accelerate®lignks
Transformationsee Bender & Orszag (1978).

2.4: The steady state solution (L)

Let ge, be thesteady solutiomf (2.13), namely

.Kp,slﬁ e,p+N 5(q e,glﬁ e,p:F p’ (2.16a)

where bothK, s andF, s are functions of the Reynolds numbkr, ¢ = K, {Re); Fp s = Fp {Re)) and so it is the steady
solution: gep, = ge {Re). If (2.16a) is differentiated with respect to Re and th&ixKs = K((qe o is defined by the

identity (f' stands for the derivative with respect to Re)
‘K@@ =K G ;N @' g 4N @ g . (2.16b)

one obtains foq;p the followingnonlinear(Ks = K {(qe o) differential equation:

.Ks |ﬂ'e,p-'-K ’p,sla e,p:F ’p,' (2.16¢)
The solution of (2.16c) obviousixistsand it isuniqueas long as
detK @, # 0. (2.16d)

and if this latter condition is fulfilled one is able, by integrgt{2.16c), to march the root of (2.16a) as the Reynolds
number increases: equations (2.16c¢,a) defipeedictor-corrector methodo determine the steady solution. In the
other hand, iletK (g, ) = 0 one would have a classgurcation of the equilibriumthesteady solutiorwould then be
marched out in Re by defining a proper (“statically stable”hdhaafter the bifurcation. As it will be seen in the next
item, theunderlying assumptiotvehind theasymptotic theoryto be developed in this work implies in a condition
strongerthan (2.16d): within this context it can be taken here tetgaly solutiorxists and it is uniquely defined.

If {xq k=1,2,...,N} are the nodes of the Finite Element mesh them gimg continuous fieldi(x,t), the“nodal
interpolate” up(x,t) is defined by the expression

u, (x,t) :Zhj:(u(xk,t)i + Vv, t) ) Ch & ):Zh_l:( U, (1) + U,y () )ThX ). (2.17a)

and, within the context of the discrete model, one can ignore tleeedi€e between(x,t) and its “nodal interpolate”
un(x,t): there is thus a one-to-one relation between the digid) and the'nodal values vector’U(t) (u(x,t) = U(t)). If

now U, is the “nodal values vector” of the auxiliary fielg(x) (us(x) = Up), thesteady solutiom(x) = Ue is defined by
the expression
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.Ue :Up+TmIe,p’ (2.17b)
and theglobal solutionur(x,t) = U+(t) can be thus written as
U () =U, +U (1) ;U ()=TmE,(t). (2.17¢)

Keeping in mind these definitions and introducing also the figld,t) = U(t), it is an easy task to show that the
matrix K s can be expressed in the form (see (2.5b))

. 1 _s)t |
l[(uegﬂ)qu,(uom)ue]@u dR+Re_F[(Du0|]]:| Eu)+Jv,MEVv) dR=3U' K U, - 2170
K,=T'K 0.

The parcel [M)u, + (U,[M)u, ] of the convective acceleratiomtroduces, as usual,ren-symmetryn K¢ that
plays a role irstability theoryto be addressed next.

2.5: Hopf bifurcation and asymptotic solution of fluid equation
The differential equation for theerturbationU,(t) = T[d.(t) on thesteady solutiorJ. can be easily derived by

using the definitiorg(t) = gep + do(t) in (2.13); one obtains then, with the help of (2.16a) hthmogeneous nonlinear
equation

M.[§,+K .4 ,*N § ) ,=0, (2.18a)

the non-symmetriegnatrixK s being defined in item (2.4). The eigenvalueKgfare thus complex, in general, and they
will be defined as follows:

{)\1 =0+iw;A,=0-iw )\3=03+iw3'...;)\s=cs+iw};

(2.18c)
020,2...20,.
The first mode, the one that becomes first unstable sizos, is of the form
«q,(t) =eME, (2.19a)
where the modE& is such that ((*) stands for the complex conjugate)
*(AM.+K )E =0;
( e y (2.19b)
«(E') M [E =1.
Notice thatA;(Re) =o(Re) + w(Re) where, from (2.19b), it follows that
so(Re)=-%E YK +K|)E =-% B~ K I(E )
(Re)=-%€ ) ({K +K\)E == B )ik « ' )WE) ) .10

si(Re)=-%E J K, -K\)E =-%{ B YK K ') B )

Relation (2.19¢) can be used in conjunction to (2.17d) to provide mpfieierxpression for §(Re); w(Re)};
indeed, ife(x) = T[E one obtains
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0 0 "
'O(Re)_—1/4|:Lé é({ & +a—e j+ 4 (x{ y[e+a;D%+ %, (xi g e+ @ﬁ} dR
b (Re)

(L2l 7k o) om(OL L1 oR;

-iw(Re):—l/zf{ueQ({ae Ze J w )(ae Z;?D%Jrzg(g(eey Q@‘)}

(2.20a)

whereye(x) = ¥20vJ/0x + duddy) is theshear rate of deformatioaf thesteady solutiomg(x) and Q(x) = ¥20vd/0x —
dugay) its vorticity.

The above expression suggests to wo(Re) aso(Re) =a;(Re) — by(Re)/Re, withby(Re) > 0. TheStrouhal
numberS(Ref Dw(Re)/2tis known to change weakly with Re and from the structure of (Rdt@ashould expect that
both {a;(Re); by(Re)} also do; if now one writesa{(Re) =a(Re)S(Re)bi(Re) =b(Re)a(Re)S(Re)} and assumes that
{ao; S; bo} are typical values of thslowing varyingunctions a(Re); S(Re)p(Re)} one obtains

. _ b(Re) b | 2.20b
o(Re) a(Re)]S(RE{) 3 Ro }D@Dd{ 4. Re} ( )

an expression that has some empirical support, as discusgetif2i6) below. It follows thati(Re) is (roughly)
monotonically increasing with Re, wheoéRe) < 0 for Re $, = Re; ando(Re) > 0 for Re b, = Re,. The value of
Re, inferred from numerical simulations seems to coalesce aroun®e}5=(45) although there are experimental
evidences showing that this threshold value is a bit smallgr¥R8). Obviously, for Re below Rehesteady solution
is stable(o(Re) < 0) while it becomesnstablefor Re > Reg (0(Re) < 0); furthermorep(Re,) # 0 and one has thus a
typical Hopf bifurcation

For Re above Rebut close to it one has 0c¢Re) << 1, sincer(Re;) = 0; furthermore, the experiments suggest —
and the numerical results confirm — tieaty one modés unstablein this range of Reynolds numbeg; € 0; 23). The
asymptotic solutioto be developed is based on the followarsgumption

)0 <o(Re)<< 1, w(Re)d O 2.21)
i)o,(Re)< 0 forj=3,...,s, '
that should be strictly satisfied in the vicinitytébpf bifurcation notice that (2.21) implies, necessarily, thaf{(Re)#
0; Aj(Re)# 0}, since {w(Re)# 0; gj(Re) < 0}, and saletK {(Re)# 0.

Theadjoint eigenvalue probleifiK s— K<) plays a role, as it will be seen, in the derivation of the asymptotic theory.
This problem has the same eigenvalues (2.18c) but the eigemsvecto distinct; in particular, to the “unstable”
eigenvalué\; it is associated thadjoint unstable modg, where

‘(MM +K B ,=0. (2.22a)

From (2.21) it follows that the “unstable” eigenvalie= o + iw is asingle rootof the relateccharacteristic
equation if it were not, some of thi would be equal td, and the condition (ii) in (2.21) would be not fulfilled. Under
the condition thak, is asingle rootit is possible to show that

*E, M [E #0, (2.22b)
and thusE, can be normalized by the condition

*E. M [E =1, (2.22c)
a relation that it will be used below in this senti .

The argument now is classic and it will be justtsked here: for 0 ©(Re) << 1 the amplitude A@* of the

unstable mod& = Ex + iE, increases (initially) exponentially with time (A@ €”; dA/dt =cA) and the solution of the
dynamic system (2.18a) is attracted, siop& O for j= 3, to the (unstable) two dimensional manifold tmgo the

* The actuaBtrouhal frequencyogRe) differs slightly fromw(Re), see (2.23b).
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plane generated b{fg; E|}; the exponential growth in this manifold is haltey thenonlinear termand expanding
N(q0)Go in power series in the amplitude only the cubiotep|A(t)PA(t) €' can match the termA(t) € that causes
the exponential growth. The equation for the amg#tA(t) — namelyl.andau’s equatior- is thus given by

C;?_GA+H|A|2A=0; M=y + il (2.23a)

the steady solutiorifnit cycle Aexp(iwd) being given by

.Ac = 11
Hr (2.23b)

o =0-Pg

Hr

The formal asymptotic solution of the (discreigvier-Stokesquation will be derived next. In fact, writingeth
solution of (2.13) in the form

.q(t) = Qe,p +q o(t) ' (224a)

with the perturbationq(t) satisfying (2.18a), one must have, to leadingeg thatq(t) O [A(Y)[E + (*)], since the
solution of (2.18a) should follow, at least inilyalthe unstable mode. The amplitude A(t), however, is such that (see
(2.23))

«A(t) 0O(0"?) <<1;
L dA
dt

(2.24b)

OO(cA),

and expanding,(t) in thesmall parameteA(t) 0 O(G*?) one obtains, with an error in (2.24a) of the f¢im+ O@©?)],
that

*0o(0) =[ A EE ™ + () [+[ A P Do+ (A0 (A 87 + () |+

0" o) (2.25a)
4 IADG] AN, D& + R (A, D8 + (%)+ 06° ).

0(0.3/2)

The nonlinear term in (2.18a) can, accordinglywbigen as
“NL(@0) B, =[N ot (N L& + () |+ N (8% +N JE“ + (%)]+ 0@ ), (2.250)
with

*N,, =N (E)[E +N(E)E;

*N,, =N(E) E;

*N3; =N(E)IA 0+ N (A E+N (A JE +N (E)A 5
*Na3 =N(E) A 5+ N (A L) [E .

(2.25¢)

Placing (2.25) into (2.18a) one obtaiAs € 0 + iw)

® It has been implicitly assumed here that one hasiper-critical Hopf bifurcationwith Pz = Realu > 0. This
assumption has aexperimentalsupport, see Provansal & Mathis & Boyer (1987) and LewekeddPsal (1994)
among others, and it has been also verifiethericallyby Noack & Eckelmann (1994). Some preliminary numerical
computation, to be published soon, corroborates this result.
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dA 2 it
E—O’A M E+|APA(N+(AM +K JIA ) €4 +
+HAF[K DA 5+ N oo + A%[(2iM +K JA ,#N L] + (2.26a)
+A%[ (3iwM +K ) A 3+ N 5 ]e** + 0= 0,

where the term %M(OM dA3)€“ 00(0®?) has been added just for convenience; if ndws{A2z Ass} are solutions of
the (on-singular) linear systems

KA+ N =0
*(2iM  +K ) ,,+N ,,=0; (2.26b)
* (3iM  +K )N 53+ N 4,=0,

(2.26a) reduces to
P A M E+|AP AN, +(AM +K YA ,)=0. (2.26¢)

Multiplying (2.26¢) on the left by thadjoint unstable modg&, and using (2.22a,d)andau’s equation{2.23a) is
obtained with

u=E!N,,. (2.27)
Summarizing: solving the eigenvalues problems (2.19b) and (2.22a,&dfees{N,q; N,,} can be computed from
(2.25c¢) and the solution?\fo; Aoo} of the linear systems (2.26b) can be determined; with ttenveéctomNs; can be

obtained from (2.25c) aridandau’s coefficien is thus given by (2.27).
Writing nowNs; in the form

N,, =uM [E +N(§1)u;

(2.28a)
E. IN$), =0,
and placing (2.28a) into (2.26¢) one obtains, with the help of (2.23a), the equality
8q' J(AM+K A, +NG [=0all 5q0J, (2.28b)
Introducing the (s- 2)-dimensional sub-spaces;{J,} of Js by the definitions
«J; :{qD g, [E= C} =g, =5, X;
. (2.28c)
*Jan :{an Q[ = q =0 5=S gkx,
with X being an arbitrary (s 2)-dimensional vector, and the matrices
‘Mg :Stau M [3;
(2.28d)

*Ken :StaD K S,

the vector\s; can be obtained from the solution of therf singulaf) linear system

® Notice that (2.21) rules out {0; @j 3iw} as possible eigenvalues Kf, onceg; < 0 for j= 3 andw # 0; the matrices
{Ks (2ioM ¢ + K); (3ioM ¢ + K g)}in (2.26b) are thus non-singular.
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'()‘1M o0 tK -su)E 31+Sta:1 D&I(as)ﬂ =0;

(2.28¢€)
* Ay =5, 0K,
Reverting to the “nodal values vectd(t) = T (0., + do(t)), see (2.1c), (2.17), one has
U1 =U,, A E B + () [ +[|AQF By + (A DA, 8+ () |+
0(a"'?) 0O(0) (2.29a)
A ADT AR, D08 + A (A D8+ ())+ Qo?),
0(c*'?)
with
U EuA i A oA s 5o =THG GEA A A A ko (2.290)
and placing (2.29a) into (2.14a) one obtains
"Fo () =F oo +[ A IF ;[ + () [+[ | A P B0 +(A(O) F ™ + () |+
oE) | olo) (2.30a)
4 AT ATF 5, 08 + R (t)F 5,08 + (*j + 062 ),
0(0.3/2)
with (see (2.17d) and (2.23a) with= 0 + iw)
Fp=K, W, +NU . JU _ ~-F
‘F,=(AM+K)E ;
*Fo=KMyuutNyy (2.30b)

*F,, =(2iM +K )M, y+ N,
.FSl:()\lM +K )mSl,U_p‘M B (+N g
*F g =(3ioM +K )N 535, + N 5

where {NZO,U; N22,U; Nglyu; Nggvu} are defined as in (225C) With'\l{k—»NjkYU; E—»EU; AZO—'AZO,U; A22—>A22,U}-
Considering now the solutions of tReisson’s equationéee (2.14c))

AP, =R'[F;;(jk) ={(00); (11);(20);(22); (31);(33). (2.30¢)
the (discretepressure fields given by P, = Py is the pressure relatedug(x) < Ue)

“P(t) = P, +[ A1) [P, 1% + () [+[ | A(t) P TP+ (A%(1) TR, + () |+

0(a"'?) 0(0) (2.30d)
1AM AP, D& + R (1P, 08 + (]+ 06° ),

0(0.3/2)

with the same error factor [1 + 6] of the velocity field approximation.

" Recall that (2.21) implies that is asingle rootof the characteristic polynomial & and so the matrix;Ms + K,
restricted to the sub-space orthogonal to the eigenvedEs}, must be non-singular.
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Expressions (2.29a) and (2.30d) synthesize the asymptotic solutibe @fiscreteNavier-Stokes equatian the
vicinity of Hopf bifurcation(Re= Rey); in the next item, the possibility to extend this solutiothie range Re >> Re
is discussed.

2.6: Extension of Landau’s Equation beyond hopf bifurcation

The asymptotic solutiomf the (discrete)Navier-Stokesvas derived assuming (2.21), two conditions that hold in
the vicinity of theHopf bifurcationbut not necessarily only there. The purpose here is toaggtenents that suggest
that (2.21) — and, with it, the given asymptotic solution — can teneded far beyon#iopf bifurcation that is, to the
range Re >> Re

In fact, numerical results by Noack & Eckelmann (1994) indida& ¢2.21) remains essentially correct in the
range Rg 045 < Re < 300 and Henderson (1997), after a detailed numendal affirms that up to Re = 1000 no
other bifurcation, besides the one at,Rmuld be observed in tieo dimensional modgbr, in other words, thatgf <
0; j= 3} in this range.

From the experimental side, Provansal & Mathis & Boyer (19&vE lobserved that the inferred valueo@iRe)
could be fitted to the expression

«o(Re)= o(ze)d N 0.2({ Liegj, (2.31)

while Leweke & Provansal assumed (2.31) in the rangelR& < Re < 300.

As already discussed, the empirical relation (2.31) seems ®adé&ot on the more basic set of equations that
describe the fluid flow, since a similar expression can be deexactly, see (2.20b); furthermore, it indicates that
o(Re) can be considered a “small parameter” of order 0.2@gs). All together, these evidences suggest that (2.21)
could be pushed at least up toR2000 since, following Henderson, no other bifurcation (in 2D) could be found in this
range while (2.31), together with (2.20b), seems to indicatey{Ra) remains in fact “small” as asserted in (2.21).

Experimental results on VIV are mostly in the rangg<4®e < 106, see Khalak & Wiliamson (1996), and they do
not seem to depend very much on Re. The observed harmonic patteny iseat and this, undoubtedly, was the
motivation behind a bold assumption introduced by Bishop & Hassan (19@ékstobe the flow around a circular
cylinder: they proposed to represent the flow byoaa degree of freedofwake oscillator model” based on Van der
Pol equation that leads, for a small enoaglo Landau’s equatior2.23a); this idea was further developed and it is the
basis of the so-callgghenomenological modelsed to predict VIV, see lwan & Blevins (1975). In despite ofdbse
link with the more basic flow equation the predictions from these modelssbaneaccuracy, showing that drelered
oscillatory behaviorin the wake can be apparently described by means oh@anlegree of freedom systestated to
theunstable modef the problem. Themallnesof g, a common feature in all “wake oscillator models”, coupled to the
flow representation bgnly one unstable modean be translated in the following words: the basic assumption (2.21) is,
apparently, correct in the range**0Re < 10 of Reynolds numbers of the VIV experiments. However, frors R€"
until the transition regionRe = 1¢° nothing very much different occurs and one can possibly push (2.2b)thp t
transition regionRe= 1. For Re > 10the boundary layer is fully turbulent but a (relatively) vasfined Strouhal
frequency can be detected again: in line with the overall taken here, one speculates that the same conditions (2.21)
can hold if one searches for the stability of tinee averaged(turbulenf) symmetric solutiorof the flow around the
circular cylinder.

These extensions should be obviously confirmed numerically but certamlpresent theory has a range of
application much broader than foreseen a priori; more than that, (2.21) caedlie dstermine precisely this range.

3. Weak three-dimensionality: Ginzburg-Landau Equation

The perturbationu,(x,t) on the 2D steady solutiam(x) is, to leading order, given hy,(x,t) O A(t)[E(x) where
e(x) = TE is theunstable modand A(t) itscomplex amplitudeA(t) = |JA(t)|[Exp@(t)). It is known for a long time —
see, for instance, Toebes (1969) — that the vorticesiotshed in phase along the span of a fixed cylinder, and in fact
thecorrelationamong the vortices emitted in distinct sections tends to zero “véty, fasalength of order of 1@ The
phased should then change in thengitudinal z-direction and so it does the amplitude A and the perturbag{zrt);
or {A = A(z,t); U, = Uy(x,z,t)}, wherex = xi +Vj continues to represent the position vector in the cross section plane and

8 Boundary layer turbulencis likely due to theeconcomitantnstabilities of severalymmetric modesis elaborated in a
forthcoming paper; it will be also discussed there a possible scenatie fiartsition regionl®® < Re < 16.

“\ery fast” in the relation to the longitudinal length of the slender cylinder; in‘feety slowly” in the natural length
scaled of the cross flow problem.
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Uo(X,Z,t) = w(X,z,t) + v(x,z,t)j the perturbed velocity field in this plane at the z-level. [Bingitudinal componendf
the perturbedvelocity field will be designated by (x,z,t).

The variation of A(z,t) in théongitudinal z-direction should be expressed byesen derivativevith respect te,
since there is no preferred direction, and observing thatisheus diffusiorin this direction, given by (1/Réu./0z°,
implies to leading order in a term proportional &@&/9z%, the following 3D correction is proposed for Landau’s
equation (2.23a):

° aA - - 62A 2 = 3.1a
5 oA y622 +u|AIFA=0 (3.1a)
This is theGinzburg-Landau Equatio(GLE), first proposed by Ginzburg more than fifty years ago irstoidy on
superconductivity, see Ginzburg & Landau (1950); notice that,riergé bothLandau’s coefficientt andGinzburg’s
coefficienty are complex numbersp{= pr + il; Y = Yr + ivi}. Assuming, as beforey << 1 (see (2.21)) and recalling
that ADO(c"?), a proper balance of the terms in (3.1a) indicates théeniyéh scald, for the longitudinal variation of
A(z,t) must be such that

d
ol, DO{} >>d

Jo (3.1b)
or, in short: (3.1a) deals withveeak three-dimensional variati@f the flow field. As it is discussed in the last item of
the present section, GLE can be easily extended to the case where lyeitntietryand thencident flowchange in the
longitudinal direction if the rate of change is weaker than (3.1b).

In what follows, (3.1a) will be obtained as a consistent asymgpfecoximation of the NSE and, in deriving it, a

procedure to determin@inzburg’s coefficieny will be defined.

3.1: Asymptotic approximation for 3D field equation
Let ugq)(X,z,t) =udX) + [us(X,z,t) + w(x,z,tk] be the 3D velocity field for the flow around a slender cylmaéth

Ue(X) being the 2Dsteady solutiorand L(x,z,t) + w(x,z,t)k] the perturbationon it; if, as defined in section (2)} =
i0/0x +jdldy, the 3D NSE for theerturbation[u,(X,z,t) + wy(x,z,t)K] is given by

ou 1, 1 0% du
e —+(u M)u, +(u Mu . +(u 0)u ——0% +0Op =— 0 —w a-
Ot(e)°(°)e(°)°Re " P o= Red 2 °d z
0(c*'?) O(ow,)
2 3.2a
-a(\;v°+(ue|]]])wo—éDZWD:—ZP°—(UOED)WO—WOO(;’V°+;aavgc’; (3.22)
‘ : e S
O(w,) O(0) ° o(a"2w2) O(ow,)
o|:||_—m0__ a;\lo '
z
0(a*'?w,)

where (3.1b) was used to estimate the order of magnitude afdbgvative and §,; p,} 0 O(c"?), see section (2).
From the w-equation one obtains, at once, that

*w, JO(0). (3.2b)

showing that théongitudinal perturbed velocityy, is, as expected, of smaller order thanpkgurbed cross-flowu,.
Furthermore, if terms of order® are disregarded, as before, it is possible to check from @&ajhe longitudinal
velocity w, does nofaffect the (dynamicli,-equation: the longitudinal flow affects the 2D solutigronly through the
mass conservation equationith a term of order @), the same order of magnitude of the longitudinal diffusion in
the u,-equation. One is left, thus, with the equation
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ou 1, 1 0%
e—+(u.M)u, +(u.M)u _+(u Mu ——0%U +0p =——2;
at ( e ) (o] ( [o] ) e ( o] ) [o] Re [o] pO Reai

%/_J
0(c%?)
e Moy (u, m)w, -+ ow, = - %P, (3.20)
ot Re Q;
o(o) 0(o)
0m, __ 0w, ’
0z
0(03/2)

that defines, with an error factor [1 +d3)], anasymptotic approximatiofor Uaf(X,Z,1).

Equation (3.2c) is, in some sense, standard in existing “slender bloe@ges”: the 2D structure, represented by
the dynamicu,-equation, is not spoiled by thengitudinal velocityw,, the influence of this parcel appearing only in an
oblique way in the problem. In fact, a “spontaneous” 3D perturbationeoartiss-flow introduces a pressure gradient
that forces a longitudinal flow ysand only then, through mass conservation, the 3D perturbation feedthbaziR
original equation: as in the well knowifting Line Theory the three-dimensionality, represented by“8idewash”

w,, affects essentially thkinematicsof the 2D flow. Furthermore, the pressure gradient, and so ithewash”, is
proportional todA/0z and therilm, O 8*°A/dz* this correction on the cross-flow is added to the straiijfitsion term
proportional tad’u,/0z%, to produce th&inzburg coefficieny = yg + iyi. The influence of thésidewash” on the final
equation is thus twofold: first, it gives rise téoagitudinal diffusion proportional td1%w,, that together with theross-
flow diffusiond®u,/0z* determinesyr; second, the longitudinal flow gntroduces a kind dfcompressibility” for the
cross-flow u, (0@, O 8°A/0z°) and an“acoustic wave equation’must be expected then, described here by the
“longitudinal wave operator’0A/dt — iyi0°’A/dz = 0 with a dispersion relatiow + yk* = 0. If the nonlinear term
il|AFA is added to this wave operator one obtainsctitic Schrédinger equatiodA/dt +y0°A/0z — w|AFA = 0, a
conspicuous presence in the studynofilinear dispersive wave systemsge Whitham (1974). In what follows the
discrete solution of (3.2c¢) will be defined and discussed.

3.2: The “sidewash” and mass conservation

One starts by considering thg-aquation, forced by the termdp/0z; to leading order one has (see (2.30d) using
P11(X) = P11)

_0p, _ _ aiA otk 312
P - [pn(x)azé +(>}+0(o )

and thus writing w(x,z,t) in the form
A
-Wo(x,z,t)z{wll(x)%— e + (*)] (3.3a)
Z
the following equation for yy(x) can be obtainé8
. 1, _
"(*an(x) +(ueDD)W 11(X) _R_eD w 1£X) =-p 1£X) ' (3.3b)
Taking the same mesh used to discretize both the velocity and predsigrinfgection (2), namely, assuming

N
wy,(x) =Y W,y Th(x); Wy, ={ Wy, };
= (3.3¢)

P (X) = i Pig Oy &); P11={ Pm} '

19 For simplicity, homogeneous boundary conditii assumed 0dR. Others boundary conditions could be used
instead but this simple one is reasonable and easier from a more tephimtaf view.
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and introducing the matrices k; Ry} by the expressions

[wy,() BWE)dR =W I W, ; [ p, & )Bwk )dR=3N 'R, B,

(3.3d)
] [(ue ) w00 () + = W () m(éw(x))}dR = BW' R W,
e
R
the following algebraic equation is obtained for the “nodal values vedter”
‘(iom+k)w, =R, P, (3.42)

the non-singularity of (3.4a) being granted by the fact thatigdingalues ¥;; j = 1,2,..,N} of the matrixk have
necessaril{} negative real partsind sof; # iw all j}. The continuity equatiorin its weak form reads

0°A _
[8p00)| O, +| Wy, () =5 € + (%) | dR= 0
R 0z
and the discrete form of this equation is given by
2
‘RUU, = —[Rtw w\/n[%;i‘é“ + (*)J. (3.4b)
z

If (3.4b) is multiplied on the left bR and the definition of théconjugated Laplacian’0 = RR' is used, one
obtains forU,(t) the equation

2
-0, Z_(R meN m/\/n)l:'(’-;Tééwt + (*)]’ (3.5a)
whose general solution can be written as (recalltld{[]) = J)
2
-Uo(t)sz{O(z,t){C%é“ + (*)] (3.5b)

with CO G; being theunique(within G;) solutionof
+OC =ROR;, W,,)0G,. (3.5¢)

Notice thatC can be defined by the sum of the series (see (2.9b))
-c=i2|:|;[|REaR‘W W,,) (3.5d)
r n=0

where (3.5d) has again an “almost geometric structure” andoitsergence can be thus accelerated by Shanks
Transformation, see (2.15c).

3.3: The Ginzburg-Landau Equation (GLE)

The discrete form of the,-equation in (3.2c) is given by

2
SU'EM U, +K U ,+NU )U ,R B} :&J‘EE MOIE a?e“*w(*)j (3.62)

1
Re

" The parcel proportional ta. in (3.3d) leads to an anti-symmetric matrix while the one proportional ®I&#ls to a
symmetric positive definite matrix. From this it follows at once Bedilx < 0 if (xm + k)X = 0.
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where the leading order term
U,(z,t)=[ TE A(z,1)" + (*) | D0@"?) (3.6b)

was used in the right side of (3.2c). Placing now (3.5b) into (3.6a) one obtainst@éeting into the solenoidal sub-
space, the equation

M.[G,+K g o‘[(c oM SEJOZAGMH*)}N g9 0,

Re 07 (3.6¢)
C.=T'lfioM +K )T,
whoseasymptotic solutioif2.25a) has an amplitude A(z,t) that satisfies the GLE (3.1a) with
. ¢ 1
.y:yR+|yI:Ea|]:s+_’ (3.7)

Re

sinceE,; M [E = 1. The remaining terms for the velocity and pressure fie&lgiaen by (2.29a);(2.30b,c,d), adding the
pressure parcels proportionald@\/0z°. The attention will be turned next to a more detailed analysis of GLE.

3.4: GLE: boundary conditions and wave-like limit cycles
If the cylinder’s span is defined in the intervdk z < | boundary conditions must be imposed at the cylinder ends

z =1, one in each extremity. Using again the notatie®)}{= TE; wi(X) = W1} the velocity field can be written, to
leading order, in the form

Upy (X, Z, 1) = U (X)+ A(Z,t)E(X)+6A(Z,t)DM1 OOk | &+ (%) (3.82)
Uy (X,z,t) 62
W, (X,2Z,t)

and two conditions can be naturally imposed on A(z,t), namely:

. 0A _ ) -0
I)E(il’t) =0 = w,(x;H,t)=0; (3.8)

ii) A(#,t) =0 < u (x;+,t)=0.

Boundary condition (i) is apparently more appropriated for the caseewhe cylinder ends either at tfee-
surfacein a water channel or else if thend-cylinder technique® is used at its bottom end: in these situations one
expects that the perturbation on the 2D steady solution should beay,bgofminated by the cross-floug(x,z,t).
Boundary condition (ii) is more awkward to be interpreted though it seems to be adeqegresent a cylinder ending
in the interior of the fluid where then the flow perturbation,,z,t) in the longitudinal direction should be stronger
than the perturbed cross-flowy(x,z,t) near this “free end”. Possibly linear combinations of (3i8b)uding periodic
boundary conditionssee (3.13b) below, could also be imposed.

The GLE (3.1a) depends on three coefficients,i{ = Ur + il; Y =Yg + iy}, and it is important to understand how
the qualitative behavior of them affects the solution. Thepa@metersd; pg; Yz} should be all positivec > 0 is a
negative dissipatiothat causes the instabilityz > 0 is anon-linear diffusiondue to the 2D cross flow angd > 0 is
essentially dinear viscous diffusiorcaused both by the viscous stress 1/Ref) of the longitudinal velocity in the
cross-section plane and by the cross-flow viscous stressoluR@#); notice that the inequalityr > O — the super-
criticality of the Hopf bifurcation — was discussed in sectignw@ile the relationygz > 0 can be inferred from the
Principle of the Virtual Power.

The GLE (3.1a) has wave-like solutions of the form

12 Namely, a larger cylinder is smoothly fitted to tiwtom endincreasing locally theross-flowand creating a bottom
end condition similar to the one found at the free surface; see KhalaKi&igon (1996)
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A (z,1) = R, [@*eo)

—k2y 2 (3.9a)
Ry=( T | =iy o
Hr
the stability condition of these wave-like solutions being given by the condition
{(Y *+HeYr) >0iR, >R (0,1} (3.90)

Notice that besides a restriction on the coupled effecliggfersion(uyy) anddiffusion (Uryr), condition (3.13)
offers also a restriction on the wave amplitugetRis amplitude should be, in genetaftger than a lower bound R =
Ro..(o,y,1) for, otherwise, the wave solution (3.2) is possibly within réqaulsion basirof the unstablenull solution
A(z,1) = 0. In the other hand, the existence ebatinuumof stable solutiong3.9c) in the range R < Ry < (o/ug)? (or
in the range & |k| < ko) seems to be in line with the diversity of shedding modeliy(ee, parallel, etc) found in the
experiments with fixed cylinders, see Khalak & Williamson (1996)tide, in particular, that (3.9¢c) satisfies the
following boundary conditions at the cylinder endsz |+

(Zg(il,t)—ikoA(il,t) =0, (3.9¢)

that reduces to the condition (i) in (3.8b) wherrkO (2D solution): as a matter of fact, ttremd-cylinder technique”
was introduced just to create conditions to favor gamallel sheddingon a cylinder in a water channel, see again
Khalak & Williamson (1996), since it forces, apparently, the canddA/0z = 0 at the bottom end. Obviously, more
assertive statements about some features of the soluéinrenty be done by direct numerical simulation of (3.1a) but
it is felt that this simple stability analysis helps to focus satevant issues.

3.5: Spanwise variation of geometry and current

So far the analyzes was restricted to the simpléorm flowalong acylinder — being more precise, all empirical
and numerical evidences commented here are related specificily flow arouncircular cylinders — although one
should be concerned, from a more practical point of view, with prablehere the cross section geometry and the
incident current changes along the span, both in intensity andeitiolir. Relevant examples are the flow around a
tapered cylinderused to emulate a current variation along the span, the flow aratircilar cylinder with strakes
very important from a practical point of view, or else the cbanfgtheof the incident flow directiomlong depth, a
situation usually encountered in Ocean Engineering. In all thesepksatheunstable moddsy changesin the z-
direction and so it does the sectional pressure figldthat forces the longitudinal flow J,z,t), see (2.30b,c,d);
writing, as before, i(x,z) = P14(z), one has thalp;,/0z 0 O(pui/lg0), wherely is the length scale for the longitudinal
variation of both the geometry and the current, and the questiantends to answer is the following: how small can
belycin order the GLE (3.1a) remains valid, with the same error faftbre form [1 + O¢?)], even in the presence of
these variations? Obviously, the basic parameters should thegecfveeakly) with z — namelygd = w(z); 0 = o(2); 1
= U(2); Y =¥(2)} — but the structure of (3.1a) would remain the same and so the 2&sixms used to compute them.

To answer such question one must recall that the three-dimditgiarees forced by the pressure gradient that, to
leading order, is given by

gg(x,z,t){(‘;‘z‘ e A s <*>}+ 0@”*), (6.14)

and observing that to retain tfieal error O¢?) only the term of order @] must be kept in (3.14a), the variation
dp11/0z could be ignored if it is of order 6) or smaller: in this case the termidp,./dz would be of order @&?) or
smaller, since A10(c*?), and the variation of thgeometryand/or thencident flow directionwould appear at most at
the order Q%) and can, thus, be disregarded. It turns out that (3.1a) remaiestcevith the sectional parameters
{w(2); 0(2); u(z); Y(z)}, whenever théength scald,  is so large thaid,/0z 0O(pud/lg.9)

i 0@ -1 2 o(d]- (3.14b)
0z ¢ o
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As seen in (2.31), empirical evidences suggestdha.20 and sdy. > O(5d), the fastest change in z-direction
within the context of GLE being defined by the relatigsr 5d. It is a matter of curiosity to observe thdtis a typical
length scale for most of the “suppressions devices” useditigate (or eliminate) VIV; for instance, this igypical
value for thehelicoidal pitch of the strakesr for thewavelength of the wavy cylindanalyzed by Bearman (2000).

4. Conclusion

In the present paper a consistent asymptotic approximation félotheround a slender cylinder was developed,
leading to the Ginzburg-Landau equation. The theory is based @ssamptionconcerning theébehavior of the
eigenvaluegelated to a 2D perturbation on the steady 2D solutigx); it states that there existgly oneunstable
mode with eigenvaluk; = ¢ + iw and, furthermore, thatd# 0; 0 <o << 1}, see (2.21).

Both conditions are satisfied in the vicinity of the Hopf biftima at Re=~ Re, (045 but to obtain the desired
approximation some more technical results were needed. FirStydke impedance'was introduced, by considering
properly the flow in the wake and determining then how the wadggsts” to the flow within thénite fluid regionthat
is actually discretized; second, by projecting the disctete équations into theolenoidalandgradientsub-spaces it
has been possible, using some standard results in Linear Algelsfzow not only the inner consistency of the model
but also to obtain the coefficients of the Ginzburg-Landau equatigrarticular, thesinzburg coefficieny = yr + iy,
was analyzed, where thidiffusive feature” of the real pariz was elaborated and also thwave feature” of y, was
established, once it is related to titempressibility” of the cross-flow, namely, to tiveork doneby thecross-flow
pressurdield on thedivergence of the cross-flow velocity field

The final goal of the on-going research is to address the Y8klgm, of considerable importance in some Ocean
Engineering applications, mainly in the analysis of the “risefsl floating production system. This problem has been
tentatively addressed, with a relative success, by the smtplienomenological models’where the flow is simply
described by &an der Pol oscillatomwith coefficients inferred from some experimental resulte 3ituation here is
not very much different, at least from the operational poinieaf, to the usual approach related to Ginzburg-Landau
equation (GLE), once this “model” is fitted externally to the problem and ttHiéctets are then inferred also by some
experimental (or numerical) results. But there is a conaggtfference, at least in its origin, in both approaches: GLE
was thought to be valid only in the vicinity of R&@lthough it has been used far beyond it, at least up to the rarge Re
300) while the Van der Pol model was aimed, from its very firstivation, to deal with the experiments on VIV,
where 16 < Re < 10 roughly speaking. Observing that the Van der Pol model assumeisjtigghat only one mode
is unstablewith a “negative dampingd << 1, one may be tempted to conclude, based on the relatively goodipeedic
ability of thesé'‘phenomenological modelsédnd also on the already proposed extensions of GLE to the rargglRe
that the underlying assumption of the present asymptotic themdg, in fact, in a much broader range of Reynolds
numbers than foreseen a priori.

This conjecture can be raised to the statustofpmthesisn the mathematical development and, with it, to extend
consistently the GLE to the “whole” range of Re; afterwards, by looking to thal mumerical results one can confirm
(or not) this hypothesis. The present theory does not seem to be ,ahoddsvith tradition in physical science: indeed,
given a set of a somewhat disperse results and observatioofsthain related however to the conspicuossillatory
behaviorof the phenomenon, they can be gathered by means of an assumptioesizgdtby (2.21), that places all
them in an unique framework, namely, the GLE iwale range” of Reynolds humbers. Furthermore, as stated above,
this theory brings in its lay out the possibility toreéuted once the basic assumption can be checked directly by means
of (numerical) experiments; or, from a more practical pdinti@w, it allows one to determine precisely how “wide”
can be the range of Reynolds numbers covered by it.

The route to be followed next, in this on-going research, is thus filsg to obtain numerical results that could
possibly confirm assumption (2.21) in a certain range of Re; seconttdim an extension of the GLE equation that
can deal also with an oscillating cylinder; third, to compare the VIV piedicobtained from this extended model with
the existing experimental results. The hope is that they will geosdnsistent results but, anyway, one has here at least
a consistent theory in a relatively large vicinity of R&hat may have an interest in itself.
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