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The hydrodynamic interaction between two bodies with rotational motion through an inviscid and incompressible fluid is 
investigated theoretically.  The dynamical behavior of an elliptic cylinder moving around a fixed circular cylinder is described first 
based on the dynamical equations of motion in the plane of motion.  In a relative coordinate system moving with the stream, the 
kinetic energy of the fluid is expressed as a function of fifteen generalized added masses due to the planar motion of the two 
cylinders.  By means of the generalized added masses, the planar motion of an elliptic cylinder around a fixed circular cylinder can 
be computed without considering the flow field.  The trajectories of an elliptic cylinder around a fixed circular cylinder in planar 
motion are obtained and the effects of non-circularity, initial position and initial velocity on the interaction between two cylinders 
are discussed.  Similarly, the planar motion of a prolate spheroid around a sphere is investigated.  The numerical results show 
explicitly that the dynamical behaviors of the moving bodies with rotational motion appear nonlinear.  Their moving properties 
exhibit significant difference from those in the particle dynamics. 
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1. Introduction 
 

Hydrodynamic interactions between two floating bodies, or between a floating body and a fixed body, have a 
variety of applications in the offshore and polar engineering.  For example, the presence of an offshore structure affects 
the motion of surrounding ice floes.  On the other hand, the motion of an ice floe induces a hydrodynamic interaction 
force on the offshore structure before an actual impact takes place.  In many practical cases, a common feature of the 
flow is that the Reynolds number based on the characteristic size of the offshore structure is usually large, i.e., the 
inertia effect becomes predominant in comparison with the viscous effect.  Potential theory may then be employed to 
calculate the interaction forces and to predict the trajectories of the moving body.  As the ice floes move on the sea 
surface, the motion may be regarded as planar. 

The relative motion between two circular cylinders moving in any manner in an unbounded fluid was first 
investigated by Hicks (1879).  He studied the velocity potential due to the distribution of unit sources spread over each 
surface, which was first assumed to be stationary, and then found the velocity potential due to the relative motion of 
two circles by making the magnitude of each source proportional to the normal motion of the surfaces.  However, his 
method may be too complicated for the study of two-dimensional motion involving a pair of arbitrarily shaped bodies. 
Müller (1929) studied the uniform flow past two stationary circular cylinders and developed an infinite series solution 
for the velocity potential by using the method of successive images.  Dalton and Helfinstine (1971) considered the 
forces on more than two cylinders by using the method of successive images to express the complex potential in terms 
of an infinite series of doublets.  Huang and Yong (1995) presented an approximate approach that transforms an 
analytical solution for uniform flow past two circular cylinders into a solution for uniform flow past two cylinders of 
arbitrary shape.  This approximate approach is a combination of the analytical solution, which is obtained in bipolar 
cylindrical coordinates, and the numerical pseudo-conformal transformation. 

Hydrodynamic interaction between a pair of three-dimensional bodies moving in a uniform flow has been 
investigated by a number of researchers.  Hicks (1880) and Herman (1887) first analyzed the kinetic energy of the fluid, 
due to the motion of two spheres along the line joining their centers, and obtained analytical solutions of added masses 
in terms of doublets interior to each body.  Their expressions about the strengths and positions of the doublets were 
alternatively reduced to a set of recurrence formulas, which were suitable for computation, as shown by Lamb (1932) 
and Landweber in the book edited by Rouse (1976).  However, no recurrence formulas for the derivatives of the added 
masses with respect to the separation distance between the centers were given by these investigators.  Mitra (1944) and 
Shail (1962) also applied the method of successive potentials to the Dirichlet problem for two spheres in electrostatics 
and obtained a set of unknown coefficients involved in the series expansion of velocity potential by applying the 
Neumann-Liouville iteration process.  This analysis was extended by Shail (1962) to the hydrodynamic-interaction 
problems for two spheres moving along the line of the centers.  The motion of a solid body, influenced by 
hydrodynamic interaction, was investigated by Lamb (1932), who applied Lagrange's equations of motion in the 
generalized coordinates and related the fluid inertia to the equations of motion by means of the kinetic energy of the 
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fluid.  Landweber and Shahshahan (1992) studied the centroidal motion of two cylinders and two equal spheres.  Their 
paper was focused on how to increase the accuracy of numerical solutions when two bodies are close to each other. 

Kazi et al. (1998) conducted a series of experiments to investigate the hydrodynamic interaction between a fixed 
circular cylinder and several floating cylinders of different sizes and shapes approaching centrally toward it.  Six cases 
were studied under the same flow conditions with one fixed cylinder and six floating cylinders of three geometric 
shapes and six sizes.  Their results showed the presence of a repulsive interaction force between the floating and the 
fixed cylinders.  However, the force on the fixed cylinder was somewhat below the predicted values.  Reasons for the 
over-prediction of the theoretical model were attributed to the viscous effect.  Wang and Wahab (1971) presented a 
solution of the two-dimensional potential problem associated with a semi-submerged twin-cylinder performing small 
vertical oscillations in a free surface.  Results of the added-mass and damping coefficients were presented as functions 
of the oscillation frequency. 

General oblique motion between two bodies is more complicated.  Hicks (1880) used the method of successive 
images again and represented the added masses in terms of distributed and isolated dipoles.  However, he was able to 
calculate only a few images owing to the complexity of the calculation.  Herman (1887) and Basset (1887) investigated 
independently the same problem by the method of successive potentials.  They took two sets of spherical polar 
coordinates at the centers of each sphere and obtained series expressions for the velocity potential due to the transverse 
motion of two spheres.  The added masses were determined by Basset (1887) up to the twelfth inverse power of the 
distance between the centers of two spheres, although his iteration procedure can be continued to any desired power.  
Herman (1887) gave expressions of added masses up to the fifteenth inverse power of the center distance.  However, 
he omitted a factor 2 in two of the three added-mass expressions.  Although Herman (1887) stated that "by this method, 
it is possible, with no more recondite work than simple differentiation, to approximate as closely as we please to the 
value of the kinetic energy," the algebra involved in obtaining higher order terms than the fifteenth inverse power of the 
center distance is very tedious.  Herman's paper is by no means an easy one to read.  However, the expressions given 
by Basset and Herman for the added masses are not accurate enough when two spheres are very close to each other.  
Moreover, no analytical expressions for the derivatives of added masses with respect to the center distance due to the 
transverse motion of two spheres were given by Basset (1887) or Herman (1887), which are necessary in determining 
the moving trajectories of two spheres as well as the hydrodynamic-interaction forces acting on them. 

Yamamoto (1976) derived an analytical expression for the flow around and the hydrodynamic forces on an 
arbitrary number of cylinders in arbitrary motion based on the potential flow theory.  As a numerical example, he 
considered the relative motion of two circles and represented the complex potential field in terms of an infinite series of 
doublets by applying Milne-Thomson’s (1968) circle theorem.  He also derived a formula for forces on each circle 
based on the Blasius theorem.  Thus, his solutions cannot be extended to three dimensions.  Isaacson and Cheung 
(1988) gave a two-dimensional formulation for the flow field around an ice mass drifting in a current near a large 
offshore structure, using the potential flow theory.  The motions of the ice mass and current interactions were 
represented by five unit potentials and the hydrodynamic forces were obtained by the Bernoulli equation.  Isaacson and 
Cheung (1988) assumed that the unit potentials were invariant with time.  Thus, the spatial derivatives of added masses 
were missing in their expressions for the forces. 
 

 
 

Figure 1. Trajectories of a moving cylinder around a  
fixed cylinder (Guo and Chwang, 1991). 
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Landweber et al. (1991) and Guo and Chwang (1991) studied the oblique impact of two cylinders in a uniform flow.  
Typical numerical results of Guo and Chwang (1991) are shown in Fig. 1, in which a circular cylinder (body 1) of 
radius 1.0=a  and density 91.0=aρ  moves around a fixed cylinder (body 2) of radius 0.1=b .  The initial position 

of body 1 is at ),( 00 yx , where 200 −=x .  At 3.0 ,1.00 =y , etc., the trajectories of body 1 are plotted in Fig. 1 which 

corresponds to the case of an ice particle moving in fresh water.  We note from this figure that for 1.00 =y , body 1 
will eventually impact body 2. 
 

   
 

Figure 2. Velocity components u and v of a moving cyliner  
(Guo and Chwang, 1991). 

 
For a variety of radius ratios ba /  from 0.1 to 1.0 and a fixed density ratio 0.89, the velocity components u and v 

of the moving cylinder are shown in Fig. 2.  The initial condition used in the calculation is 200 −=x , 5.00 =y , 

0.10 =u  and 0.00 =v .  This plot is consistent with the physical interpretation.  The velocity u is reduced as the 
moving body approaches the fixed body, and after a certain position, it increases and reaches a maximum value around 
the top of the stationary cylinder.  On the other hand, the velocity v increases from zero to a maximum value in 
approaching and decreases to zero after the cylinder passes over the fixed one.  We also note from Fig. 2 that for 

5.2/ −<bx , velocity components for cylinders of different radii are of the same value practically.  It indicates that for 
two bodies apart from each other by a large distance, the hydrodynamic interaction does not have any effects on their 
motion. 

In three dimensions, the hydrodynamic interaction between two spheres can be handled in the same manner (Guo 
and Chwang, 1992), although the numerical computation becomes quite complicated.  Numerical results on the 
trajectories and velocity components of a moving sphere in the vicinity of another sphere are very similar to Fig. 1 and 
Fig. 2, respectively, for two cylinders.  The hydrodynamic interaction between a three-dimensional body and an 
infinitely long cylinder was investigated by Guo and Chwang (1993).  The hydrodynamic interaction of two vessels 
moving at the same speed in nearfield was considered by Yeung and Hwang (1977) applying the slender-body theory in 
potential flows.  Theoretical predictions on sway force and yaw moment were generally high in comparison with 
available experimental measurements.  Fang and Kim (1986) studied the hydrodynamically coupled motions of two 
ships advancing in oblique waves.  More references on challenging ship-ship interaction problems can be found in the 
ship hydrodynamics literature. 
 
2. Interaction with rotation 
 

For the oblique motion of non-circular bodies in two dimensions or non-spherical bodies in three dimensions, the 
moment acting on each body is no longer zero.  Therefore, the effect of rotation becomes important and the 
translational motion is coupled with the rotational one.  Thus, the translational energy of a moving body can be 
transformed into the rotational energy and vice versa.  Due to this coupling, the moving properties of these bodies have 
large differences from those in the particle dynamics.  Sun and Chwang (1999) investigated analytically the general 
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planar motion of an elliptic cylinder through an inviscid and incompressible fluid in the vicinity of a fixed circular 
cylinder, which is much larger than the elliptic cylinder.  The velocity potential was derived by Sun and Chwang (1999) 
using the successive image method and the perturbation method.  For an arbitrarily sized elliptic cylinder, Sun and 
Chwang (2001b) introduced a set of transformations of harmonics to derive the complete complex potentials for the 
elliptic and circular cylinder system by using the successive potential procedure, which is an extension of Milne-
Thomson’s (1968) circle theorem in two dimensions.  In a relative coordinate system moving with the uniform stream, 
the kinetic energy of the fluid was expressed as a function of 15 generalized added masses due to the planar motion of 
the two cylinders.  By means of the generalized added masses, the hydrodynamic interaction between an elliptic 
cylinder and a circular one in an ideal flow was studied. 

 

 
 

Figure 3. A moving elliptic cylinder in a uniform flow around a fixed circular cylinder 
(Sun and Chwang, 1999). 

 
As shown in Fig. 3, relative to a moving frame of reference ),( yx  in which the fluid is at rest at infinity, the 

elliptic cylinder with center 1O  located at ),( 11 yx  moves with a translational velocity 1u , whose components are 

11u  and 21u  in the x and y directions respectively, and an angular velocity 31u=ω  , while the circular cylinder with 

center O2  located at ),( 22 yx  moves with velocity 2u  )( 02 u−=u  whose components are 12u  and 22u  in the x 

and y directions respectively, where 0u  is the uniform stream velocity in the absolute frame of reference fixed in space.  

The elliptic cylinder, whose semi-major and semi-minor axes are a and b respectively, is inclined at an angle θ  with 
respect to the x axis in the counter-clockwise direction.  The separation distance between the cylinder centers 21OO  is 
denotes by s, 
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If there is no external force acting on the elliptic cylinder apart from the fluid pressure, the Lagrange equations of 

motion for the elliptic cylinder are 
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where 1M  is the mass of body 1 (the elliptic cylinder), 1J  the moment of inertia per unit length of body 1 and T the 
kinetic energy of the fluid given by 
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In equation (5), ρ  denotes the fluid density, βS  represents the surface of cylinder β  and 

 
)on  sum (no      A jiji βϕρ ββαβα dSl∫−=  (6) 

 
is the generalized added mass tensor representing 36 added masses.  As shown by Landweber & Chwang (1989), 
 

αββα ijji AA =  . (7) 

 
Hence, the total number of independent added masses is reduced to 21.  However, for the present problem in 

which 032 =u , the total number of independent added masses is further reduced to 15.  Detailed expressions of 
equations (2) to (4) in terms of added masses were given by Sun and Chwang (1999). 

Numerical results were given by Sun and Chwang (2001b) for an elliptic cylinder moving around a fixed circular 

cylinder of radius r0  in a uniform stream with velocity )0,1(0 =u .  In the calculation, the origin of the absolute 

coordinate system is located at the center of the fixed circular cylinder 2O .  The absolute velocity components of the 
elliptic cylinder are u and v in the x and y directions respectively, 
 

111 += uu , 21uv = . (8) 

 
To obtain the trajectories of the moving elliptic cylinder, the computation was started at the initial position 

01 20rx −= , 101 yy =  and 0θθ = , and the initial velocity 0uu = , 0=v  and 0ωω = . 
 
3. A purely drifting elliptic cylinder 
 

 
 

Figure 4. Planar motion of a purely drifting elliptic cylinder around a fixed circular cylinder  
with °= 900θ  (Sun and Chwang, 2001b). 

 
For a purely drifting elliptic cylinder, 10 =u  and 00 =ω .  Fig. 4 shows the trajectories and orientations of a 

purely drifting elliptic cylinder for a given aspect ratio and a density ratio with o900 =θ .  We note from Fig. 4 that 
rotation of the elliptic cylinder is induced by the presence of the fixed circular cylinder due to the relative translation 
and the non-uniformity of the flow field.  As expected, when the elliptic cylinder approaches the circular cylinder, its 
orientation angle changes rapidly.  Fig. 5 shows the variation of the orientation angle of an elliptic cylinder in pure 
drifting for three different aspect ratios ba /  = 1.2, 2.0, and 4.0.  We note from this figure that the aspect ratio of a 
body affects strongly its rotation during drifting, the larger the aspect ratio, the greater the variation of the orientation 
angle.  This is because a larger torque acts on the elliptic cylinder of larger aspect ratio.  Sun and Chwang (2001b) 
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also found that the trajectories of the center of a purely drifting elliptic cylinder are insensitive to the aspect ratio.  The 
reason is that there is no obvious relative motion of the elliptic cylinder to the flow in pure drifting.  Moreover, it is 
found that there is no difference between trajectories for 0.2/ 0 −<rx .  It means that the hydrodynamic interaction 

becomes important only as the dimensionless separation distance s/r0  is less than 2.0. 
 

 
 

Figure 5. Orientation angle θ  of a purely drifting elliptic cylinder versus 0/ rx   

with °= 900θ  (Sun and Chwang, 2001b). 
 

Figures 6 and 7 show two rotational patterns of an elliptic cylinder around a circular cylinder with °= 00θ  and 

°= 900θ , respectively.  It is interesting to note from the figures that the rotation with °= 00θ  is in the counter-

clockwise direction opposite to that with °= 900θ .  These mean that the initial orientation angle of an elliptic cylinder 

in pure drifting determines the development of its rotation.  The figures also reveal that for 0.2/ 0 −<rx , the 
orientation angles change very little.  It agrees with Guo and Chwang’s (1991) result that when the two bodies are far 
apart, they have little effect on each other’s motion. 
 

 
 

Figure 6. Orientation angle θ  of a drifting elliptic cylinder versus 0/ rx   

with 10 =u , 00 =ω  and °= 00θ  (Sun and Chwang, 2001b). 
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Figure 7. Orientation angle θ  of a drifting elliptic cylinder versus 0/ rx   

with 10 =u , 00 =ω  and °= 900θ  (Sun and Chwang, 2001b). 
 
4. A moving elliptic cylinder 
 

As stated by Sun and Chwang (2001b), when the elliptic cylinder has an initial translational velocity and an initial 
rotational velocity, its subsequent motion demonstrates much more complicated features and some interesting 
phenomena when compared with those for pure drifting.  Figures 8 and 9 show the trajectories of the center of an 
elliptic cylinder around a fixed circular cylinder and the orientation angle θ  versus the horizontal distance 0/ rx  with 

20 =u , 10 −=ω  and °= 900θ .  It is noted from these two figures that when the elliptic cylinder is far away from the 
fixed one, its motion exhibits an oscillatory behavior.  It implies that the translation and rotation of a moving elliptic 
cylinder are oscillatory in space.  With its translational energy being transformed into rotational one and vice versa, its 
translational motion is coupled with the rotational one.  It is also shown in these figures that with a larger aspect ratio, 
the period becomes shorter and the amplitude of the variation of the orientation angle θ  becomes smaller.  The 
periodicity changes as the elliptic cylinder is close to the circular cylinder.  It is understood that close to a second body, 
the moving pattern of the body will change.  Furthermore, it is noted from Fig. 8 that the trajectory of an elliptic 
cylinder curves down when it approaches the 0=x  plane.  This plot is consistent with the physical interpretation.  
When the elliptic cylinder moves over the circular cylinder, the interaction force due to this type of motion is attractive 
and draws the elliptic cylinder toward the circular one (Guo & Chwang, 1991). 
 

 
 

Figure 8. Trajectories of a moving elliptic cylinder around a fixed circular cylinder with 20 =u , 1.1/ 010 =ry , 

10 −=ω  and °= 900θ  (Sun and Chwang, 2001b). 
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Figure. 9. Orientation angle θ  of a moving elliptic cylinder versus 0/ rx   

with 20 =u , 1.1/ 010 =ry , 10 −=ω  and °= 900θ  (Sun and Chwang, 2001b). 
 

With the same initial conditions except for 10 =ω  and °= 00θ , Figures 10 and 11 show another motion pattern.  
Note that the elliptic cylinder keeps rolling and oscillating around the circular cylinder.  When the elliptic cylinder has 
a large aspect ratio, the amplitude of its oscillating motion becomes large; the centerline of its trajectory becomes 
curved off the fixed circular cylinder.  As a result, it is easily running away from the fixed cylinder without collision.  
On the other hand, it is observed from these two figures that the trajectories appear to be saw-pattern in shape.  It 
verifies that the translation and rotation of a moving elliptic cylinder are periodic in space.  This phenomenon occurs as 
a combined effect of three factors: the non-circular body shape, the inertia force and the hydrodynamic interaction 
between two bodies. 

 

 
 

Figure 10. Trajectories of a moving elliptic cylinder around a fixed circular cylinder 
with 20 =u , 1.1/ 010 =ry , 10 =ω  and °= 00θ  (Sun and Chwang, 2001b). 

 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004, Invited Lecture – CIT04-IL05 
 

 
 

Figure 11. Orientation angle θ  of a moving elliptic cylinder 
versus 0/ rx  with 20 =u , 1.1/ 010 =ry , 10 =ω  and °= 00θ  (Sun and Chwang, 2001b). 

 
Hydrodynamic interaction between three-dimensional bodies with rotation is very complicated.  Sun and Chwang 

(2001a) investigated the planar motion of a slightly distorted sphere around a fixed sphere in an unbounded fluid by a 
perturbation approach.  An approximate velocity potential was derived in terms of sets of singularities by using the 
successive potential method.  Approximate analytical solutions of added masses in series form were obtained and 
applied to determine the trajectories of the slightly distorted sphere around a fixed sphere.  The hydrodynamic 
interaction between two bodies was computed based on the Lagrange equations of motion.  It was found by Sun and 
Chwang (2001a) that the presence of a sphere generates an effect on the planar motion of the slightly distorted sphere 
and the initial configuration of the slightly distorted sphere has a decisive influence on the development of its 
subsequent rotational motion.  Yang and Luh (1998) used the Lagrange equations of motion to study the unsteady 
ground effect on the motion of a body.  They conducted numerical simulations for a prolate spheroid moving in the 
fore-and-aft direction at constant speed past a flat ground with a protrusion.  Recently, exact analytical expressions for 
the velocity potentials of a prolate spheroid translating and rotating around a fixed sphere were obtained by Sun (1999). 
 
5. Conclusions 
 

The effect of hydrodynamic interaction on the motion of a rotating body has been briefly  discussed in the present 
paper.  The hydrodynamic interaction of two bodies without rotation in two dimensions or three dimensions was 
discussed first and followed by the general oblique motion between two bodies with rotation.  Finally, the translational 
and rotational motion of an elliptic cylinder around a fixed circular cylinder and its three-dimensional counterpart were 
studied. 
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