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The hydrodynamic interaction between two bodies with rotational motion throughiseidrand incompressible fluid is
investigated theoretically. The dynamical behavior of an elliptiodgli moving around a fixed circular cylinder is described first
based on the dynamical equations of motion in the plane of motion. Inigea@abrdinate system moving with the stream, the
kinetic energy of the fluid is expressed as a function oftfifjeeeralized added masses due to the planar motion of the two
cylinders. By means of the generalized added masses, the planar ofaimalliptic cylinder around a fixed circular cylinder can
be computed without considering the flow field. The trajectories dfipticecylinder around a fixed circular cylinder in planar
motion are obtained and the effects of non-circularity, initial positind initial velocity on the interaction between two cylinders
are discussed. Similarly, the planar motion of a prolate spheroid arogptiere is investigated. The numerical results show
explicitly that the dynamical behaviors of the moving bodies with rotatron&ibn appear nonlinear. Their moving properties
exhibit significant difference from those in the particle dynamics.
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1. Introduction

Hydrodynamic interactions between two floating bodies, or betwedoatinfy body and a fixed body, have a
variety of applications in the offshore and polar engineering. For exampf@egence of an offshore structure affects
the motion of surrounding ice floes. On the other hand, the motian @i floe induces a hydrodynamic interaction
force on the offshore structure before an actual impacs talkee. In many practical cases, a common feature of the
flow is that the Reynolds number based on the charactesigécof the offshore structure is usually large, i.e., the
inertia effect becomes predominant in comparison with the visfet. Potential theory may then be employed to
calculate the interaction forces and to predict the trajestaf the moving body. As the ice floes move on the sea
surface, the motion may be regarded as planar.

The relative motion between two circular cylinders moving in amgnner in an unbounded fluid was first
investigated by Hicks (1879). He studied the velocity potedtialto the distribution of unit sources spread over each
surface, which was first assumed to be stationary, and then foenclocity potential due to the relative motion of
two circles by making the magnitude of each source proportiortAe normal motion of the surfaces. However, his
method may be too complicated for the study of two-dimensionabmutiolving a pair of arbitrarily shaped bodies.
Muller (1929) studied the uniform flow past two stationary cincaldinders and developed an infinite series solution
for the velocity potential by using the method of successnagés. Dalton and Helfinstine (1971) considered the
forces on more than two cylinders by using the method of succéssiges to express the complex potential in terms
of an infinite series of doublets. Huang and Yong (1995) presentegpaoxanate approach that transforms an
analytical solution for uniform flow past two circular cylindémgo a solution for uniform flow past two cylinders of
arbitrary shape. This approximate approach is a combination afntdgtical solution, which is obtained in bipolar
cylindrical coordinates, and the numerical pseudo-conformal transformation.

Hydrodynamic interaction between a pair of three-dimensional bod@sngnin a uniform flow has been
investigated by a number of researchers. Hicks (1880) and Herman (188ahdilyzed the kinetic energy of the fluid,
due to the motion of two spheres along the line joining their cgraad obtained analytical solutions of added masses
in terms of doublets interior to each body. Their expressions #iwustrengths and positions of the doublets were
alternatively reduced to a set of recurrence formulas, whichk swgtable for computation, as shown by Lamb (1932)
and Landweber in the book edited by Rouse (1976). However, no recurrena&ofor the derivatives of the added
masses with respect to the separation distance between ths ventegiven by these investigators. Mitra (1944) and
Shail (1962) also applied the method of successive potentidis Witichlet problem for two spheres in electrostatics
and obtained a set of unknown coefficients involved in the serieensiom of velocity potential by applying the
Neumann-Liouville iteration process. This analysis was extendeshbif (1962) to the hydrodynamic-interaction
problems for two spheres moving along the line of the centerse riotion of a solid body, influenced by
hydrodynamic interaction, was investigated by Lamb (1932), who dpplgrange's equations of motion in the
generalized coordinates and related the fluid inertia to the equafionstion by means of the kinetic energy of the
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fluid. Landweber and Shahshahan (1992) studied the centroidal motion of two cydindéve equal spheres. Their
paper was focused on how to increase the accuracy of numerical solutions when és@tmdiose to each other.

Kazi et al. (1998) conducted a series of experiments totigaess the hydrodynamic interaction between a fixed
circular cylinder and several floating cylinders of differsizes and shapes approaching centrally toward it. Six cases
were studied under the same flow conditions with one fixed cylindérs& floating cylinders of three geometric
shapes and six sizes. Their results showed the presencemilsive interaction force between the floating and the
fixed cylinders. However, the force on the fixed cylinder was sdraebelow the predicted values. Reasons for the
over-prediction of the theoretical model were attributed tovibeous effect. Wang and Wahab (1971) presented a
solution of the two-dimensional potential problem associated widma-submerged twin-cylinder performing small
vertical oscillations in a free surface. Results of theedddass and damping coefficients were presented as functions
of the oscillation frequency.

General obliqgue motion between two bodies is more complicated.s Ki&80) used the method of successive
images again and represented the added masses in terrssilfitgid and isolated dipoles. However, he was able to
calculate only a few images owing to the complexity of the calculation. Hed88m)(and Basset (1887) investigated
independently the same problem by the method of successive fstenfiaey took two sets of spherical polar
coordinates at the centers of each sphere and obtained gpriessions for the velocity potential due to the transverse
motion of two spheres. The added masses were determined by B&8859 up to the twelfth inverse power of the
distance between the centers of two spheres, although hifoitgradbcedure can be continued to any desired power.
Herman (1887) gave expressions of added masses up toi¢ketfifinverse power of the center distance. However,
he omitted a factor 2 in two of the three added-mass expressadttsough Herman (1887) stated that "by this method,
it is possible, with no more recondite work than simple difféaéonh, to approximate as closely as we please to the
value of the kinetic energy," the algebra involved in obtaihigber order terms than the fifteenth inverse power of the
center distance is very tedious. Herman's paper is by no mea#sy one to read. However, the expressions given
by Basset and Herman for the added masses are not aanwath when two spheres are very close to each other.
Moreover, no analytical expressions for the derivatives ofchduiesses with respect to the center distance due to the
transverse motion of two spheres were given by Basset (b88¥9rman (1887), which are necessary in determining
the moving trajectories of two spheres as well as the hydrodynamiaeitive forces acting on them.

Yamamoto (1976) derived an analytical expression for the flow aramddthe hydrodynamic forces on an
arbitrary number of cylinders in arbitrary motion based on thenpatdlow theory. As a numerical example, he
considered the relative motion of two circles and represented th@ecopotential field in terms of an infinite series of
doublets by applying Milne-Thomson's (1968) circle theorem. He @ddsived a formula for forces on each circle
based on the Blasius theorem. Thus, his solutions cannot belextenthree dimensions. Isaacson and Cheung
(1988) gave a two-dimensional formulation for the flow field aroundcanmass drifting in a current near a large
offshore structure, using the potential flow theory. The mestiohthe ice mass and current interactions were
represented by five unit potentials and the hydrodynamic forces were obtaitedBsrboulli equation. Isaacson and
Cheung (1988) assumed that the unit potentials were invariant with time. tAégpatial derivatives of added masses
were missing in their expressions for the forces.
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Figure 1. Trajectories of a moving cylinder around a
fixed cylinder (Guo and Chwang, 1991).
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Landweber et al. (1991) and Guo and Chwang (1991) studied the oblique impact of two cylinderigoinraflow.
Typical numerical results of Guo and Chwang (1991) are shown inlFig which a circular cylinder (body 1) of
radius a= 01 and densityp, = 091 moves around a fixed cylinder (body 2) of radius 1.0. The initial position
of body 1 is at(x,, yo), Where x, =-20. At y, = 01,03, etc., the trajectories of body 1 are plotted in Fig. 1 which
corresponds to the case of an ice particle moving in fresérwatl/e note from this figure that foy, = 0.1, body 1
will eventually impact body 2.
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Figure 2. Velocity components u and v of a moving cyliner
(Guo and Chwang, 1991).

For a variety of radius ratioa/b from 0.1 to 1.0 and a fixed density ratio 0.8%, #elocity components u and v
of the moving cylinder are shown in Fig. 2. Théiah condition used in the calculation ig, = -20, y, =05,

U, =10 and v, =00. This plot is consistent with the physical intetation. The velocity u is reduced as the

moving body approaches the fixed body, and aftsrtain position, it increases and reaches a mawivalue around
the top of the stationary cylinder. On the othandy the velocity v increases from zero to a marinualue in
approaching and decreases to zero after the cylipaleses over the fixed one. We also note from Fithat for
x/b<-25, velocity components for cylinders of differentliizare of the same value practically. It indicateat for
two bodies apart from each other by a large digtatie hydrodynamic interaction does not have #iegts on their
motion.

In three dimensions, the hydrodynamic interactietween two spheres can be handled in the same m@Gue
and Chwang, 1992), although the numerical commrtaiecomes quite complicated. Numerical resultsthen
trajectories and velocity components of a movinlgese in the vicinity of another sphere are veryilainto Fig. 1 and
Fig. 2, respectively, for two cylinders. The hydlyoamic interaction between a three-dimensionalybaiad an
infinitely long cylinder was investigated by Guoda@hwang (1993). The hydrodynamic interactionvad essels
moving at the same speed in nearfield was considaré’eung and Hwang (1977) applying the slendelytibeory in
potential flows. Theoretical predictions on swayck and yaw moment were generally high in comparisith
available experimental measurements. Fang and(K&86) studied the hydrodynamically coupled motiohgwo
ships advancing in oblique waves. More refereceshallenging ship-ship interaction problems caridund in the
ship hydrodynamics literature.

2. Interaction with rotation

For the oblique motion of non-circular bodies irotdimensions or non-spherical bodies in three d#iosis, the
moment acting on each body is no longer zero. &fbe, the effect of rotation becomes important &mel
translational motion is coupled with the rotatiomsle. Thus, the translational energy of a moviongybcan be
transformed into the rotational energy and vices&er Due to this coupling, the moving propertietheke bodies have
large differences from those in the particle dyr@mi Sun and Chwang (1999) investigated analyyich# general
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planar motion of an elliptic cylinder through arvigtid and incompressible fluid in the vicinity affixed circular
cylinder, which is much larger than the elliptidiogier. The velocity potential was derived by Sumd Chwang (1999)
using the successive image method and the pelnmbatethod. For an arbitrarily sized elliptic eyder, Sun and
Chwang (2001b) introduced a set of transformatminsarmonics to derive the complete complex patéstior the
elliptic and circular cylinder system by using thaccessive potential procedure, which is an exdaansf Milne-
Thomson’s (1968) circle theorem in two dimensioris.a relative coordinate system moving with thdarm stream,
the kinetic energy of the fluid was expressed amation of 15 generalized added masses due tplamar motion of
the two cylinders. By means of the generalizededdmhasses, the hydrodynamic interaction betweegllgatic
cylinder and a circular one in an ideal flow wasd#d.

ylk

Figure 3. A moving elliptic cylinder in a unifornofv around a fixed circular cylinder
(Sun and Chwang, 1999).

As shown in Fig. 3, relative to a moving frame eference(x,y) in which the fluid is at rest at infinity, the
elliptic cylinder with centerQ, located at(x;,y,) moves with a translational velocity,, whose components are
u;; and u,; in thex andy directions respectively, and an angular velodity us, , while the circular cylinder with
center O, located at(x,,y,) moves with velocityu, (u, =-u,) whose components am®, and u,, in thex
andy directions respectively, where, is the uniform stream velocity in the absoluterfeaof reference fixed in space.
The elliptic cylinder, whose semi-major and semioniaxes ar@ andb respectively, is inclined at an angte with

respect to the axis in the counter-clockwise direction. The safpan distance between the cylinder cent&®, is
denotes by,

s?= (Xz - Xl)z + (yz - y1)2 : L

If there is no external force acting on the eltiptylinder apart from the fluid pressure, the Lage equations of
motion for the elliptic cylinder are

dull:-i£+£ )
dt dt duy; g

1

du d ogr  Jr
a4 + 2 3
dt  dt i, A,

da dor  or
l_:___+_ , (4)
dt dt dw 26

where M, is the mass of body 1 (the elliptic cylinder), the moment of inertia per unit length of body d &nthe
kinetic energy of the fluid given by
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J 1 -
TZ‘%W’HdSﬁ :EAim’ﬂuiaujﬁa (i,j=123;a,6=12). (5)
B

In equation (5),0 denotes the fluid densityS; represents the surface of cylindgr and

Aigip =—Pi9isljpdS;  (nosumon f) (6)
is the generalized added mass tensor represertiagded masses. As shown by Landweber & Chwarg9|,19

AiGig =Aiga - (7)

Hence, the total number of independent added massesluced to 21. However, for the present probie
which us, =0, the total number of independent added massesrtisef reduced to 15. Detailed expressions of

equations (2) to (4) in terms of added masses geem by Sun and Chwang (1999).
Numerical results were given by Sun and Chwang1BPfor an elliptic cylinder moving around a fixedtcular

cylinder of radiuso in a uniform stream with velocityly = (L0). In the calculation, the origin of the absolute
coordinate system is located at the center ofixeel fcircular cylinderO,. The absolute velocity components of the
elliptic cylinder are u and v in the x and y diieas respectively,

U=u;,; +1, v=u,,. (8)

To obtain the trajectories of the moving elliptiglieder, the computation was started at the inifakition
X ==20ry, Y1 =Yy and 8=46,, and the initial velocityu =u,, v=0 and w=ay,.

3. A purédly drifting éliptic cylinder
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Figure 4. Planar motion of a purely drifting eligotylinder around a fixed circular cylinder
with 8, =90° (Sun and Chwang, 2001b).

For a purely drifting elliptic cylinderu, =1 and w, =0. Fig. 4 shows the trajectories and orientatiohs o

purely drifting elliptic cylinder for a given aspgemtio and a density ratio witd, =90°. We note from Fig. 4 that

rotation of the elliptic cylinder is induced by theesence of the fixed circular cylinder due to tthlative translation
and the non-uniformity of the flow field. As exped, when the elliptic cylinder approaches theutinccylinder, its
orientation angle changes rapidly. Fig. 5 shoves\ériation of the orientation angle of an elliptidinder in pure
drifting for three different aspect raties/b = 1.2, 2.0, and 4.0. We note from this figuret tthe aspect ratio of a
body affects strongly its rotation during driftinipe larger the aspect ratio, the greater the ti@miaf the orientation
angle. This is because a larger torque acts orltiptic cylinder of larger aspect ratio. Sun abdwang (2001b)
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also found that the trajectories of the center pigely drifting elliptic cylinder are insensitite the aspect ratio. The
reason is that there is no obvious relative motibthe elliptic cylinder to the flow in pure drifty. Moreover, it is
found that there is no difference between trajéesofor x/r, <-20. It means that the hydrodynamic interaction

becomes important only as the dimensionless sépaistances/ I, is less than 2.0.
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Figure 5. Orientation anglé of a purely drifting elliptic cylinder versus/r,
with g, =90° (Sun and Chwang, 2001b).

Figures 6 and 7 show two rotational patterns oéliiptic cylinder around a circular cylinder with, = 0° and
6, =90°, respectively. It is interesting to note from thgures that the rotation witl#, =0° is in the counter-
clockwise direction opposite to that wit}, =90°. These mean that the initial orientation anglarotlliptic cylinder
in pure drifting determines the development of rit¢ation. The figures also reveal that farr, <-20, the

orientation angles change very little. It agreés Wuo and Chwang's (1991) result that when the bodies are far
apart, they have little effect on each other’s pmti
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Figure 6. Orientation anglé of a drifting elliptic cylinder versusc/r,
with ug =1, @, =0 and 6, =0° (Sun and Chwang, 2001b).
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Figure 7. Orientation anglé of a drifting elliptic cylinder versus</r,
with uy =1, @, =0 and g, =90° (Sun and Chwang, 2001b).

4. A moving dliptic cylinder

As stated by Sun and Chwang (2001b), when thetielliglinder has an initial translational velocaynd an initial
rotational velocity, its subsequent motion dematss much more complicated features and some stitege
phenomena when compared with those for pure diiftiffigures 8 and 9 show the trajectories of tha@ereof an
elliptic cylinder around a fixed circular cylindand the orientation anglé versus the horizontal distance'r, with

Uy =2, ap=-1 and g, =90°. Itis noted from these two figures that whendiliigtic cylinder is far away from the
fixed one, its motion exhibits an oscillatory beloav It implies that the translation and rotatioina moving elliptic
cylinder are oscillatory in space. With its traatiginal energy being transformed into rotationad and vice versa, its
translational motion is coupled with the rotationak. It is also shown in these figures that \&itrger aspect ratio,
the period becomes shorter and the amplitude ofvéin@tion of the orientation anglé becomes smaller. The
periodicity changes as the elliptic cylinder issedo the circular cylinder. It is understood ttlase to a second body,
the moving pattern of the body will change. Funthare, it is noted from Fig. 8 that the trajectafyan elliptic
cylinder curves down when it approaches the 0 plane. This plot is consistent with the physicaérpretation.
When the elliptic cylinder moves over the circutglinder, the interaction force due to this typenadtion is attractive
and draws the elliptic cylinder toward the circudme (Guo & Chwang, 1991).
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Figure 8. Trajectories of a moving elliptic cylimdround a fixed circular cylinder with, =2, y,5/r, =11,
wy =-1 and g, =90° (Sun and Chwang, 2001b).
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Figure. 9. Orientation anglé of a moving elliptic cylinder versus/r,
with uy =2, y;0/1p =11, awy =-1 and g, =90 (Sun and Chwang, 2001b).

With the same initial conditions except fay, =1 and 6, =0°, Figures 10 and 11 show another motion pattern.

Note that the elliptic cylinder keeps rolling amgtifiating around the circular cylinder. When #iptic cylinder has
a large aspect ratio, the amplitude of its osaitatmotion becomes large; the centerline of itgettary becomes
curved off the fixed circular cylinder. As a resifl is easily running away from the fixed cylimdeithout collision.
On the other hand, it is observed from these tgaréis that the trajectories appear to be saw-paitteshape. It
verifies that the translation and rotation of a mgwelliptic cylinder are periodic in space. Thisenomenon occurs as
a combined effect of three factors: the non-cinclledy shape, the inertia force and the hydrodyoanieraction
between two bodies.
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Figure 10. Trajectories of a moving elliptic cylardaround a fixed circular cylinder
with uy =2, yi0/rg =11, ap =1 and §, =0° (Sun and Chwang, 2001b).
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Figure 11. Orientation anglé of a moving elliptic cylinder
versus x/ry with uy =2, y,0/ry =11, ay =1 and g, =0° (Sun and Chwang, 2001b).

Hydrodynamic interaction between three-dimensidnaalies with rotation is very complicated. Sun &fdvang
(2001a) investigated the planar motion of a slighistorted sphere around a fixed sphere in an umtexd fluid by a
perturbation approach. An approximate velocityeptal was derived in terms of sets of singulasitiy using the
successive potential method. Approximate analyscdutions of added masses in series form werairdt and
applied to determine the trajectories of the shgldistorted sphere around a fixed sphere. Therdayhamic
interaction between two bodies was computed basdteoLagrange equations of motion. It was foupdsbn and
Chwang (2001a) that the presence of a sphere gesena effect on the planar motion of the slighitorted sphere
and the initial configuration of the slightly disted sphere has a decisive influence on the dewelaop of its
subsequent rotational motion. Yang and Luh (198&d the Lagrange equations of motion to studyutisteady
ground effect on the motion of a body. They comeldiciumerical simulations for a prolate spheroidzimp in the
fore-and-aft direction at constant speed pasttayftz2und with a protrusion. Recently, exact anedytexpressions for
the velocity potentials of a prolate spheroid ttatirsg and rotating around a fixed sphere wereipnbthby Sun (1999).

5. Conclusions

The effect of hydrodynamic interaction on the motid a rotating body has been briefly discussetthénpresent
paper. The hydrodynamic interaction of two bodigthout rotation in two dimensions or three dimemnsi was
discussed first and followed by the general oblimation between two bodies with rotation. Finathe translational
and rotational motion of an elliptic cylinder aroua fixed circular cylinder and its three-dimensiboounterpart were
studied.
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