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The purpose of this paper is to explain the attractive applicabilitheohdvanced vortex element methods and their contribution to
the beginning of the new generation of CFD, with introduction of epoch-makingatapii of the methods to simulation of
unsteady flows around bluff bodies and virtual operation of fluid machinery.ortexwnethods have been developed and applied
for analysis of complex, unsteady and vortical flows in relation to prabierma wide range of industries, because they consist of
simple algorithm based on physics of flow. Nowadays, applicabilibeofdrtex element methods to various engineering problems
has been developed and improved dramatically and it has become encouraginglyatiéiae t/ortex methods have so much
interesting features that they provide easy-to-handle and completelfregitlagrangian calculation of unsteady and vortical flows
without use of any RANS type turbulent models. In this paper, the matisatkground and numerical procedure of a vortex
method developed by the group of the present author are briefly explaingdparsdof calculated flows around bluff bodies, an
oscillating airfoil, a swimming fish, virtual operation of fluid mawntiy (pumps and water turbines) are introduced.
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1. Introduction

Although the recent progress of computational fluid dynamicaiite gapid, the numerical analysis of a higher
Reynolds number flow seems still not so easy, from the viewpormgiheering applications. The applicability of the
conventional turbulence models of time-mean type seems questionablesasrfsteady separated flows are concerned.
And the large eddy simulation of Eulerian type inevitably meetsial difficulties in its application to flows of higher
Reynolds number, because the scheme essentially needs fingogatiéain reasonable resolution of turbulence
structures.

On the other hand, the vortex methods have been developed and appéedlysis of complex, unsteady and
vortical flows in relation to problems in a wide range of indastrbecause they consist of simple algorithm based on
physics of flow. Leonard (1980) summarized the basic algorithm wauhes of its applications. Sarpkaya (1989)
presented a comprehensive review of various vortex methods baskdgrangian or mixed Lagrangian-Eulerian
schemes, the Biot-Savart law or the vortex in cell methigdmemoto (1995) summarized mathematical basis of the
Biot-Savart law methods. In 1999, the first International Conéerem Vortex Methods was held in Kobe, Japan, in
which many leading works related with different kinds of vorteathods were presented, and a book consisting of
selected papers of the conference was edited by Kamemoto eatidrs (2000). The second International Conference
on Vortex Methods was held in 2001, in Istanbul, Turkey. At the confererazgy attractive papers on development or
application of advanced vortex methods were presented.

As well as many finite difference methods, it is a crupaint in vortex methods that the number of vortex
elements should be increased when higher resolution of turbulenaeirstsus required, and then the computational
time increases rapidly. Recently, in order to overcome theatnaint, some of leading researchers examined spatial
averaging models of turbulence in high Reynolds number flows for Lagramalige eddy simulation. Leonard and
Chua (1989jproposed application of the Smagorinsky model in simulations ofagtien between interlocked vortex
rings and interaction between two colliding vortex rings. Malusfeg al. (1998)(1999) proposed a dynamic eddy
viscosity model of subfilter-scale stresses for Lagrangi@mex element methods and applied it to simulation of
collision of coaxial vortex rings. Kiya et al. (1999) carried outudation of an impulsively started round jets by a 3-d
vortex method using the Smagorinsky model. Saltara et al. (898jated vortex shedding from an oscillating
circular cylinder with use of turbulence modeling of Smagorirtgke in a vortex in cell method. Recently, Pereira et
al. (2002) proposed a local second-order velocity structure furfotiaralculation of local kinematic energy spectrum
and applied it into simulation of vortex shedding flow about a circular cylindandoytex method.

On the other hand, Cotte et al (2002) recently investigatiadbiidy of numerical analysis of turbulent structures
by a vortex method of so-called vortex-in-cell method presenting a comparigenpErformance of the vortex method
and the spectral method in a homogeneous turbulent flow at low Reymahber and a vortex reconnection case at a
moderate Reynolds number. And it was clarified from their sthd/the accuracy of the vortex method in the large
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and intermediate scales of turbulence is good enough to yiedghtable statistics. And it was also pointed that in the
under-resolved case of subcore scales, vortex methods appehiat@ as accurate LES models in the sense that they
avoid accumulation of energy at the end of the spectrum, withoassixe dissipation in the resolved scales. Fukuda
and Kamemoto (2004) newly proposed a grid-free redistribution model of 3-D ceaglisyg method for turbulent flow
analysis by a vortex method based on the Biot-Savart lawhagdkamined the availability of the model by applying

it into the flow of inclined collision of a pair of vortex rings.

It is noteworthy that Eldredge et al. (2002) proposed a newxvoréthod for two-dimensional compressible flow
analysis, which might be considered as a pioneering work for eoten$iapplicability of the vortex methods to
general compressible flows.

The vortex methods have been applied mostly into analysis wfagyscharacteristics of fundamental flows like
jets or wakes behind bluff bodies, so far. On the other hand, neddetlapplicability of the vortex methods based on
the Biot-Savart law has been extended to numerical predictianstéady and complex characteristics of various flows
related with difficult engineering problems concerning flow-inducédation, off-design operation of fluid machinery,
automobile aerodynamics, and biological fluid dynamics and so on. KamemdtOjima (2004) reported a study of
virtual operation of fluid machinery using their advanced vortex method.

In this paper, in order to deepen discussions on the contributtbe &iot-Savart law vortex methods, attractive
characteristics of the methods are described, explaining matbanitsackground of an advanced vortex method
developed and examined up to this time by the group of the prasémtr. And, introducing the recent works on
development of turbulence models for Lagrangian vortex methodsuliects of the vortex methods which should be
solved as a tool of the Lagrangian large eddy simulation ardystigcussed. Then, examples of numerical simulation
of two and three-dimensional unsteady separated flows and engineering mpliGat introduced.

2. Algorithms of the vortex method based on Biot-Savart law
2.1. Mathematical basis

The vortex methods are based on the Navier-Stokes equation azwhtimeiity equation for incompressible flow
which are written in vector form as follows.

ﬂ+(u Egrad)u:—lgradpﬂﬂzu 1)
ot Yo

divu=0 (2)

Alternative expression of the governing equations of viscous and jpmessible flow gives the vorticity transport
equation and pressure Poisson equation which are derived from tienratat divergence of Navier-Stokes equations,
respectively.

?T(: +(ugrad) w = (wlgrad)u + V2w 3

02%p = -p div(u yrad u) (4)
Whereu is a velocity vector. The vorticitgis defined as

w=rot u (5)
Lagrangian expression for the vorticity transport expressed by Eq.gi8gisas

d—?:(w grad ) u +vO 2w (6)

When a two-dimensional flow is dealt with, the first term of ight hand side in Eqg. (6) disappears and so the
two-dimensional vorticity transport equation is simply expressed as

e 5 ) (7
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In the vortex method based on the Biot-Savart law, Eq. (6) is ncattgrsolved by the operator-splitting scheme
of Chorin (1973) (1978). If the vorticity of a fluid particle tahe t is written asw (t), we obtain an approximate
expression of the change of vorticity through convection and diffusion dusmgthtime intervadt as follows.

w(t +dt) = w(t) + (w [Grad)u [t + v wldt (8)

In Eq. (8), the second term in the right hand side is based onréeedimensional convection and stretching of
vorticity, which always becomes zero for two-dimensional flow, #uedthird term is the rate of viscous diffusion of
vorticity. If the Reynolds number of the flow is sufficientéyge, the convection term is considered much larger than
the diffusion term, and thus, the third term in Eq. (8) may lodented in the computation. Furthermore, if the high
Reynolds number flow is two-dimensional, Eq. (8) is approximated bynplesiequation likew (t+dt) = w (t) =
constant. Therefore, if we take a small sectional dsdar the fluid particle and the vorticity is assumed camtsiia
this area, the two-dimensional fluid particle is thought a free x@feEment which transports a constant circulatiGn
wds

On the other hand, the motion of the fluid particle at a locatisrrepresented by a Lagrangian form of a simple
differential equation.

ar _, )
dt

Then, the trajectory of the fluid particle over a time stefs approximately computed from the Adams-Bashforth
method as follows.

r(t+dt) = r(t) +{ 15u(t) - 05u(t —dt) }dt (10)

4 g
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Figure 1. Flow field involving vorticity region.
2.2. Generalized Biot-Savart law

As explained by Wu and Thompson (1973), the Biot-Savart law caleddeed from integration of the vorticity
definition equation expressed as Eq.(5).

u=|, @y x0oG dv+ [{(ng [Ug) [0,G — (g X Ug) X [y G} ds (11)

Here, subscripty” denotes variable, differentiation and integration at a locatjpandny denotes the normal unit
vector at a point on a boundary surf&eAnd G is the fundamental solution of the scalar Laplace equatitmtiaé
delta functiord (r-ro) in the right hand side, which is written as

G= 27171 |Og£ %J (2-D) (12)

or
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c=-_t (3-D) (13)
47R

here, R=r-ro, R=R|=|r-ro].

In Eg. (11), the inner produaty © Uy and the outer productyxu, stand for respectively normal and tangential
velocity components on the boundary surface, and they respectivedgpond to source and vortex distributions on
the surface. Therefore, as shown in Fig.1, it is mathematicallyrstodd that a velocity field of viscous and
incompressible flow is arrived at the field integration concermorgjcity distributions in the flow field and the surface
integration concerning source and vortex distributions around the boundary surface

2.3. Calculation of pressure

Instead of the finite difference calculation of the pressuresBoiequation represented by Eq. (4), the pressure in
the flow field is calculated from the integration equation which was fotedilay Uhiman (1992) as follows.

L H+[gH %—(n;ds:—ijG(uxw)dv—js {G [hDZ—l:+VD1IZ(Dwa)}ds (14)

Here,s is 8= 1 inside the flow ang8 = 1/2 on the boundary S. G is the fundamental solution given by Eq. (E&) or
(13), and H is the Bernoulli function defined as

hoP,u’ (15)
p 2

here,u=| u|.
2.4. Introduction of nascent vortex e ements

The vorticity field near the solid surface must be represkby proper distributions of vorticity layers and discrete
vortex elements so as to satisfy the non-slip condition on thecsuifathe advanced vortex method developed by the
group of the present author, a thin vorticity layer with thickiess considered along the body surface, and the surface
of the solid body is discretized by a number of source panels as ghdig. 2. Using normal velocity conditions on
the solid surface, the strength of the source panels for the next sedputdition can be evaluated numerically from Eq.
(11) by applying the panel method.

r
nascent vortex element =
3
~a \
L .
ha | s & T
vorticity layer st Ter -Vfl i p o vortex blob

source panel

Figure 2. Thin vorticity layer and introduction of nascent vortex elements.

If the flow is considered to be two-dimensional for convenience, dimar distribution of velocity in the thin
vorticity layer is assumed, the normal convective velodifyon the outer boundary of the vorticity layer can be
expressed using the relation of continuity of flow and the non-slip conditidghe solid surface for the element of the
vorticity layer [ABCD] as

v, = i[ hu _@j (16)
sL2 2
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Here, s, h; anduy; respectively denote length of an outer boundary element, vwprgier thickness and tangential
velocity at each node of the outer boundary.

On the other hand, vorticity of the thin shear layer diffuses through the outeddry of the vorticity layer into the
flow field due to viscous diffusion. In order to consider this edstidiffusion, a diffusion velocity is employed in the
same manner as the vorticity layer spreading method proposedrbgnioto (1995), which is based on the viscous
diffusion of the vorticity in the shear layer developing ovesualdenly accelerated plate wall. In this case, the
displacement thickness of the vorticity layer)(diffuses with the progress of time s 1.136¢T)*? from the solid
surface at a tim@. Differentiating o by T and substituting the thickness of the vorticity lalyeinto J, we obtain the
diffusion velocityVy at the outer boundary of the vorticity layer as follows.

2
Vd - 1.136 “v (17)
hi + hi+l

Here, v is kinematic viscosity of the fluid. If the value oV(+Vy ) becomes positive, a nascent vortex element is
introduced in the flow field, where the thickness and vorticity of the eleanergiven as follows.

hvor = (Vc +Vd )mt (18)
r

= 19

Bor = Ao (19)

Here, 7" is the circulation originally involved in the element of the vorticifjeld ABCD], andA andA,; are the areas
of the vorticity layer element and the nascent vortex element.

In case of three-dimensional flow calculation, a three-dimensinastent vortex element of a rectangular
parallelepiped is introduced in the same manner as the two-donehsiase, through each element of the outer
boundary of a thin vorticity layer. The details of treatment&Hhmen explained in the paper by Ojima and Kamemoto
(2000).

It will be noteworthy that as a linear distribution of veloddyassumed in the thin vorticity layer, the shearing
stress on the wall surface is evaluated approximately fnerfollowing equation as far as the thickness of the vorticity
layer is sufficiently thin.

Ty=MH— =—Uw (20)

2.5. Replacement with equivalent vortex blobs

For simplification of numerical treatments, every nascertexaglement which is far from the solid surface can be
replaced with an equivalent discrete vortex. Either in a twadgional flow or in a three dimensional flow, the
discrete vortex element is modeled by a vortex blob which has its own smootheithvaidiribution and a core radius,
where the size of core radius spreads with time accordinttetoiscous diffusion expressed by the third term in the
right hand side of Eq. (8) as explained by Kamemoto (1995). In thenpres¢hod, every nascent vortex element
which moves beyond a boundary at the distance of four tirfesm the solid surface is replaced with an equivalent
and circular (2-D) or spherical (3-D) vortex blob of the core spreading model

When a two-dimensional flow is dealt with, the total circulationl éhe sectional area of the blob core are
determined to be the same as those of the rectangular nesdentelement. As explained by Leonard (1980), if a
vortex blob has a core of radius and total circulation/’;, a Gaussian distribution of vorticity around the center of the
blob is given as

2
w(r) = r—izexp{—[r —f ] } (26)
IEi Ei

Here,r;denotes a position of the center of the blob. As explained by Kaméh®&), the spreading of the core radius
& according to the viscous diffusion expressed by Eg. (7) is represented as

de; _ 2.242%v
dt 2¢;

(27)
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When a three-dimensional flow is treated, a nascent vortex elemergatbagular parallelepiped is replaced by an
equivalent vortex blob with a spherically symmetric distributionaficity which was proposed by Winckelmans and
Leonard (1988) and modified by Nakanishi and Kamemoto (1992). The details of tredtenenbeen explained in the
paper by Ojima and Kamemoto (2000). A vortex blob is a sphericatlmath a radially symmetric distribution of
vorticity. Once the i-th vortex blob is given in a flow field e tpositiorri=(ry, ry, ), its vorticity w=(a, @, wy) and
its core radiug;, the vorticity distribution around the vortex blob is represented by the folleguoagtions.

w ()= p(r=r | /&) dy (28)
Here,dv; is volume of the blob ang{§) is smoothing function proposed by Winckelmans & Leonard (1988).
p(§)=1587¢" +1)7? (29)

On the other hand, the evolution of vorticity is calculated by Equi(8)three-dimensional core spreading method
modified by Nakanishi & Kamemoto (1992). In this method, the $tregom and diffusion term of Eq. (8) are
separately considered. The change of core radius due to the stretchinglé&edifrom the following equations.

do_ (wlgrad) u (30)
dt
dt |aw| [ dt
(Ej = —iﬂ (32)
dt stretch 2 [nt dt

Here, & andl are the core radius and the length of the vortels model. The viscous term of Eq. (8) is exprddse
the core spreading method. The core spreadingatiéthbased on the Navier-Stokes equation for useliffusion of
an isolated two-dimensional vortex filament in atréluid, and as well as Eq. (27), the rate of cgpeeading is
represented as follows

2
(d‘j =SV (c=2.242) (33)
dt diffusion 2£t

Taking account of two factors expressed as Eqs. (32) and (&8gcteristic values of the elongated blob element are
obtained from the following equations.

de de
£, =&+ | — N 2t 34
i t |:( dt jstretch ( dt j diﬁusion:| o
dl
=, +—[ 35
t+4 t dt ( )

2
£t
w., .| =W (36)
‘ t+At‘ ‘ t‘ gHAtj

And then, the elongated element is replaced with a new and sphveried blob which has the volume equivalent to
the elongated one.

It should be noted here that in order to keep higher accuragpiliession of a local vorticity distribution, a couple
of additional schemes of re-distribution of vortex blobs are introdimcedr advanced vortex method. When the vortex
core of a blob becomes larger than a representative $dhle local flow passage, the vortex blob is discretized into a
couple of smaller blobs. On the other hand, when the rate of three-dimensionali@idngabmes large to some extent,
the vortex blob is discretized into fractional blobs in order to appatrirthe elongated vorticity distribution much
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more properly. Recently, the detail of the redistribution modsl been explained in the paper by Fukuda and
Kamemoto (2004).

2.6. Numerical procedure

Once all of the vorticity layers existing in the flow fielt any time are represented with discrete vortex
distributions, the strengths of the source panels distributed Hiengplid surface are numerically calculated so as to
satisfy the boundary conditions of normal velocity component on it,ppjyiag the popular scheme of the panel
method into Eg. (11). Once the source distributions are determirted night hand side of Eq. (11), not only a flow
velocity at an arbitrary position in the flow field but also tenvective velocity of each vortex element can be
calculated. Substituting the velocities into Egs. (8) and (10), oneciy transport and trajectory of each vortex
element over the time step are numerically investigatedchwprovide new distributions of discrete vortices
corresponding to the vorticity layers and vorticity regions transported fiotheluring the time step.

Consequently, the iteration of the above procedure provides the dEwme of the grid-free Lagrangian
simulation of unsteady, incompressible and viscous flow, by meate @&iot-Savart law vortex method explained in
this paper.

2.7. Application to forced convective heat transfer

When forced heat convection in a flow of a high Reynolds humber andsa-satall Prandtl number is assumed,
we can ignore the effects of natural heat convection. Thererttigy equation for forced convective heat transfer is
expressed as

%—-tr+ (utgrad )T = a0 2T (37)

whereT is temperature and is the thermal diffusivity. Lagrangian expression for Eq. (37) isrglwy

ar _ al’T (38)
dt

As firstly pointed out in the study on random-particle simulatibworticity and heat transport by Smith and Stansby
(1989), it is clear that the energy equation expressed by Eq. (38) is of tlee &mnil to the vorticity transport equation
expressed as Eq. (6). When a two-dimensional flow is dealt with, the vorticisptna equation is simply expressed by
Eq. (7). Therefore, the form of Eq. (38) becomes completelyaime s Eq. (7). This fact seems to suggest that the
energy Eqg. (38) can be solved in an analogous way, with nascent temgetaments, in place of vortex elements
using a time splitting scheme.

In the vortex element method developed by the group of the peasthior, the viscous diffusion expressed by Eq.
(7) is approximately taken into account by the core spreading thelindhe same manner, the thermal diffusion
expressed by Eq. (38) is numerically treated by introducing a thermal codéstoete heat element which spreads with
the increase of time, and as same as that of a vortexre|eime trajectory of each heat element in flow is remteske
by Eqg. (9).

The detail of humerical treatment in the calculation of foromolvective heat transfer has been explained in the
papers by Kamemoto and Miyasaka (1999) and Nakamura et al. (2001).

3. On modeling of wall turbulence

As described in Chapter 1, all of the LES turbulence modelsriex methods have been proposed and applied
only for free turbulence, so far. Any challenging works on modeling/af turbulence for the Lagrangian vortex
methods have not been reported, yet.

However, the results of study by Cotte et al. (2002) areestigg that introduction of the scheme of vorticity
redistribution is more effective to take account of subsoede turbulence features than using LES models based on
Smagorinsky type. Considering existence of unsteady reverse tigmspass of turbulence energy in energy cascade,
local introduction of smaller scale vortex elements as thdtrekredistribution scheme seems much more useful to
take account of the smaller scale manifestation of the dllogvto keep the computational effort within a manageable
range. Introducing a new grid free type of redistribution th&o3-D core spreading method, Fukuda and Kamemoto
(2004) simulated a flow of inclined collision of two vortex rings, arel/twere succeeded in reasonable calculation of
turbulence energy spectra in the flow. In the redistribution modtsdrrdation of individual vortex element during a
short time interval is estimated from its stretching rate, and accoadthg tmagnitude of stretching, the vortex element
is discretized into smaller-scale vortex elements.
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As the algorithms of the advanced vortex method explained in ésemdrpaper are very simple, it seems not so
difficult to take account of the effects of subcore (sudrfiiteddies on the flow represented with discrete vortices.
Therefore, as the first step of modeling of wall turbulencsillitbe very interesting to test the combination of the SGS
models proposed for free turbulence with the redistribution schentiee Biot-Savart law vortex method, in the
proximity of a solid boundary in simulation of a high Reynolds number flow around a body.

4. Application examples
4.1. Ungteady flow past an oscillating airfoil

In order to examine the effectiveness of the present metimedywo-dimensional unsteady separated flow past an
oscillating NACA 0012 airfoil was computed by Etoh et al. (19%igure 3 shows instantaneous flow patterns at the
angle of attackr = 15.0 during pitching up and down motion, under condition of oscillation in pitch aimet the
quarter chord point ag = 15.0 +5.¢° sin @ T at Reynolds numbdRe=5.0x 1C°, whereT is the non-dimensional time
based on the cord length and the velocity of uniform flow, and the non-dimensioaatep wasiT=0.026 and?2 was
given as@? =1.0. Itis clearly shown that in the case of pitching down motioth a large dynamic stall vortex and a
trailing edge vortex exist around the airfoil, whereas in the ofsgitching up motion, the dynamic stall is in
developing stage, and so the both vortices are not so large, yet.

(a) Pitching down atr= 15.0 (T=11.0) (b) Pitching up at= 15.0 (T=14.1)

Figure 3. Instantaneous flow patterns around an oscillating airfoil NACA 0012,
here,a = 15.00 +5.0 0 siQ T, Re = 5.(x 105.

4.2. Ungteady flow in a centrifugal pump

The advanced vortex method has been applied to such an engineepogepas simulation of unsteady and
complex flow through a two-dimensional centrifugal impeller by Zhale{1998). Figure 4 shows an instantaneous
pattern of flow through the impeller in the case of partiadtdisge (60% of the design flow rate) at a non-dimensional
time T=2.0 after the start of rotation at a constant speed ®ekeolds numbeRe=10°, where the time step size was
dT=0.01 and the non-dimensional value were based on the inlet meritbaityvat the design condition and the outer
diameter of the impeller. It is clearly demonstrated thaflthve becomes completely non-axi-symmetrical and some of
blade-to-blade passages seem to be blocked with separation bubbles.

(a) Flow pattern represented by discrete vortices. (b) Veloditpre

Figure 4. Two-dimensional unsteady flow in a centrifugal pump at 60% of the diesigrafe.
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4.3. Rotor-stator interaction in a diffuser pump

As the flow-unsteadiness generated by rotor-stator interactiombomachinery usually causes serious problems
concerning vibration and noise, development of easy-to-handle methoelshben expected to simulate the real
unsteady-interaction without introducing either a sliding-surfadeve®n the rotating and stationary frames or
turbulence models of time-mean type. In order to examineppkcability of the advanced vortex method for those
purposes, the unsteady and interactive flows between a two-domaheentrifugal impeller and a surrounding vaned
diffuser were simulated by Zhu and Kamemoto (1999). In the catmulaach vane of the impeller and diffuser was
represented 50 vortex panels, and the time step size and Reynolder nuenb taken asit=T/150 andRe=10
respectively, her@& is the period of revolution of impeller.

Figure 5 shows examples of calculated instantaneous pressuitautisirat a time and periodic fluctuation of
static pressure with time at a point close to the suctib-sf leading edge of a diffuser vane compared with
experimental data by Tsukamoto et al. (1995). It is found that &éxéseconsiderable differences of static pressure in
the flow field around the diffuser inlet corresponding to theixelgiosition between impeller and diffuser vanes. And
it is one of the most interesting points that the fluctuationattfutated pressure coefficie@p is in good agreement
with experimental one in its absolute value.

Cp
05
os M
054
044
0.3
a2l
0.
nnt
a0r
LIRS
(a) Instantaneous pressure distribution. (b) Variation of gie¢igsure with time at a point
close to the suction-side of leading edge of a diffuser vane.

Figure 5. Interactive pressure distribution around rotor and stator vandgfirsar pump (100%).
4.4. Simulation of forced convective heat transfer around acircular cylinder

Kamemoto and Miyasaka (1999) proposed a vortex and heat elemetiisd and showed application results of
analysis of unsteady and forced-convective heat transfer asocincular cylinder in a uniform flow. Figure 6 (a) and
(b) respectively show an instantaneous temperature distribatitre flow field around a circular cylinder and the
corresponding flow pattern at a non-dimensional fime&5.0 after the impulsive start of flow, whéRe= 10* andPr =
0.71. It is clarified that thermal crowds are formed behind the cylinder and paliydlwed in the wake, corresponding
to the periodical shedding of vortices. The time-averaged logsgt number distribution in the same flow is shown
in Fig. 6 (c), compared with experimental results by Igarashi (E3&1pchmidt & Wenner (1941). It is known that the
calculated result reasonably coincides with the experiments.

(a) Instantanenou temperature (b) Instantaneous flow pattern

Figure 6. Instantaneous temperature distribution and flow pattern. ( Re=204RTime=25.0).
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(c) Time-averaged local Nusselt number distribution.
Figure 6. (Continued).
4.5. Simulation of three-dimensional unsteady flows through a wind turbine

In relation with further development of promising clean eneggources, investigations of unsteady and three-
dimensional characteristics of flows around wind turbines areresjuspecially, it is necessary to predict the features
of complex vortical flows for design of suitable operational pdoces under unexpected flow conditions.
Corresponding to such requirements, simulation of three-dimensiodalresteady flows through the horizontal-axis
wind turbine with a couple of blades of NACA0012 experimented by Ver@d@®91) was performed applying the
advanced vortex method by Ojima and Kamemoto (2001). In the calcuthtdnlade was divided into 572 source and
vortex panels (span wise: 22, sectional blade element: 26), atichthstep size and Reynolds number were taken as
dtV/R=27 /(2002) andRe=VR/»=1.0x1C°, whereV, R and2 denote the blade tip velocity, the rotational radius of
the blade tip and angular velocity. Figure 7 (a) shows calculaséghtaneous flow pattern represented by distribution
of discrete vortex elements in operation at the tip speed tat\/U=7.5 after three times of rotor revolution, whére
is a wind velocity. At the initial stage of the flow, compleaks structure is formed behind the rotor blade due to
interaction among starting vortices shed from the trailing edgl the longitudinal vortices shed from the tip and root
of the blade. And it is observed that as time goes on, the starting vortices flostdgamn and the longitudinal vortices
tend to have dominant role in the flow field. Figure 7 (b) shoeraparison of calculated power coefficientfe and
axial drag force coefficient £xis with experimental results by Vermeer (1991). It is confiried both the power and
the axial drag coefficients are reasonably coincident with expednesults.
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Figure 7. Simulation of performance of a wind turbine.
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4.6. Numerical fish

As pointed by Fisher et al. (1998), recently, in relation to coatiervof fish resources, development of numerical
prediction technique has been expected for confirmation of safe sagnuhfishes through a hydraulic turbine of a
power station. For this purpose, Iso (2000) have started to applytinix methods to numerical simulation of fish
swimming. Figure 8 (a) shows the aspect of swimming efoadimensional trout obtained from a 2-D calculation.
We can find that there is no separation region around theffidralternative vortex rows are formed like a Karman
vortex street behind the fish. However, the upper vortex row is consistingioésaf counter-clockwise rotation and
the lower is consisting of clockwise vortices. Figure 8 (b) shtbeisnstantaneous pressure distribution on the skin of a
trout obtained from 3-D calculation, here, the convex part sholigher pressure region and the concave part is a
lower pressure region. Figure 8 (c) shows the 3-D and complex vametuses in the flow around the trout swimming
at the best efficiency condition.

(a) Flow around a swimming trout (2-D)(b)  Instantaneous pressure
distribution around a trout (3-D).

(c) 3-D vortex structures in the flow behind a trout
Figure 8. Flow around a numerical fish (trout).

4.7. Pump-turbine

In design and operation of a pump-turbine for hydroelectric powesraggon, it tends to become much more
important to understand the effects of unsteady interaction amongdiradi roles of stay vanes, guide vanes and
rotating runner vanes on the unsteady characteristics of itatigpal performance. Making use of the advantage of the
Lagrangian grid-free scheme of the present vortex method, dtiterdeatures of two-dimensional, unsteady and
complex flows through a model pump-turbine were calculated, wherReyieolds number was Re%:D,/v = 6.0
x10P, hereU, denotes peripheral velocity at the outlet diamBteof the runner vanes. Figure 9 shows an instantaneous
flow pattern in the whole passage during turbine-operation expresseduloyber of velocity vectors. It was revealed
that unsteady flow characteristics in the runner are ealgrariginated from the vortical flow features developed in
the flow-passage through the stay vanes and guide vanes.
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Figure 9. Instantaneous flow pattern in a pump-turbine during turbine-operation.
4.8. Mixed flow pump

In order to predict the fluctuation of radial force acting owltating impeller, the internal flows of a mixed-flow
pump were simulated by Kamemoto and Ojima (2004), for three ampatnditions: the design poir®(Q.=1.0) , an
off-design point (Q/Q;= 0.65 ) and a shut-off point@/Qy=0.0). This pump was manufactured and tested by DMW
Corporation in Japan, and it was composed of a 4 bladed mixed-floellém 5 bladed guide vanes and an inlet whirl
stop. Here, the outlet diameter of this impeller is 360 mntlaadip clearance is 0.4 mm. Specifications of the pump
are as follows: designed flow ra®. =18.1 n¥/min, head ) =16.0 m, rotational speed =1480 rpm.

(b) Q/Q; =0.65

(c) Q/Qy =0.0 ( left: front view, right: side view)
Figure 10. Instantaneous flow patterns.

Figure 10 shows instantaneous flow patterns for the three apecatnditions which are represented by a number
of discrete vortex elements in the flow fields. It is obsdrthat for both cases of flow raf#Q;=1.0 and 0.65, any
remarkable flow separations are not detected around everyémyshe. In the case dP/Q;=0.65 shown in Fig.1 (b),
however, strong tip-leakage vortices are formed from theofipapeller vanes, and the tip-leakage vortices develop to
the pressure side surface of the adjacent impeller vafi@wodownstream in the passage of diffuser vanes. And then,
a strong vortex bubble is formed in a vane-to-vane flow-passage in the diff@ethe other hand, as shown in Fig.10
(c) in the case of the shut-off operati@y@Q,= 0.0), the reverse flow appears and longitudinal vorticestteddvelop
in the inlet region of the pump.
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Figure 11 shows the computed radial fluid-forces acting on the enpelitler the three operation conditions. In
this figure, F, andF, denote the radial forces exerting on the impeller in the hugkdirectionx and the vertical
directiony. It was confirmed that radial force components were peridglitattuating with the interaction between
rotating impeller-vanes and stationary guide-vanes, and the magoitfidetuations becomes larger as the flow rate
decreases.

Figure 12 shows the computed total head, shaft power, and pumpnefficiecomparison with measured ones.
Although only three cases of operation condition were simulatéteipresent study, the predicted characteristics of
the pump reasonably agree with the experimental ones.
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4.9 Pump sump

In order to economize on cost and time in construction of a pump sppiation of numerical simulation
technique has been expected to test whether undesirable suaticesvare detected around a suction opening of a
pump or not, instead of experimental investigation using a swadlel of the sump. Figure 13 shows an example of
flow pattern in a pump sump of unsuitable configuration obtained fromla#iculation by the group of the present
author. It is clearly observed that a submerged vortex is growing up undectio@ spening.

Figure 13. Instantaneous flow pattern in a pump sump.

4.10. Tractor-trailer

Recently, the group of the present author had an opporturpyesénting the result of our numerical investigation
of aerodynamic features of a model of tractor-trailer at th@ted Engineering Foundation Conference on
Aerodynamics of Heavy Vehicles, which was held in Monterey, 5-8 December, 2002 1Bigshows an instantaneous
flow patter around a tractor-trailer in condition of meandeniagion, whereRe :UOSl/Z/V =3.0x10°, S is frontal
area of the tractor. It was revealed from the calmrahat considerable fluctuations of aerodynamic forces ir@yita
act on both the tractor and the trailer as a result of unshetatgction of the flow separated from the tractor with the
trailer

Figure 14. Instantaneous flow patter around a tractor-trailer in condition afieré@ag motion.
5. Conclusion

In this paper, mathematical background and numerical treatmémt afdvanced vortex method developed by the
group of the present author were mainly explained, and several exasfipleallenging application of the method were
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introduced. The discussion on attractive features and contribotithe advanced vortex method are summarized as

follows:

(1) Since the present method is based on the Biot-Savart lavgriahgeneration is not necessary at all, for its time-
splitting calculation of trajectory of discrete vortex elements Iowa field.

(2) Numerical calculation using the method is very stable bectgsenain procedure is consisting of numerical
integrations instead of finite difference calculations.

(3) The method is flexibly responsible to required accuracy of elonl because the minimum scale of discrete
vortex element can be determined according to resolution of vorticity distrisigufficient to represent the vortex
structures to be solved.

(4) The method is available to direct numerical simulation of turthdlew with introduction of small vortex elements
of the Kolmogorov's scale in the flow field.

(5) The method is useful for Lagrangian large eddy simulatioh witroduction of both vortex elements of rather
large scale than the Kolmogorov's scale and conventional Smagorinsky model.

(6) From the results of recent challenging works of applicatiohag been confirmed that the vortex method is
available and useful for research in vortex dynamics and development in \argnesering fields.

(7) It has been clear that the method consists of simple dgotiased on physics of flow and provides easy-to-
handle and completely grid-free Lagrangian calculation of adgtand vortical flows without use of any RANS
type turbulence models.

Finally, it may be possible to consider that the advanced voretkod is one of the most capable methods to
contribute to the new generation of computational fluid dynan@&®]j and it yields a promising way toward virtual
reality of unsteady and complex flows in vortex dynamics
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