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Summary. In this paper a numerical model based on the parabolized stability equations
1s used to investigate the characteristics of subharmonic and fundamental secondary in-
stabilities. In order to identify which instability mode is dominant, the classic K-type
and H-type secondary instability experiments are repeated including both fundamental and
subharmonic obligue modes in the initial condition. The results show that, depending on
the initial amplitude of the two-dimensional Tollmien-Schlichting (TS) wave, both oblique
modes are destabilized and that the subharmonic oblique wave has a stronger nonlinear
growth. Linearly unstable obliqgue modes are also studied showing that, due to its higher
frequency, the fundamental mode grows faster and interact more strongly with the two-
dimensional TS wave. Which secondary instability mode will prevailes depends on the
relative amplitude of the disturbances and on their growth rates.

Keyword: hydrodynamic instability, transition to turbulence, K-type secondary instabil-
ity, H-type secondary instability, Tollmien-Schlichting waves.

1. INTRODUCTION

After an initial stable laminar flow downstream of the leading edge, the boundary layer
becames unstable for infinitesimal disturbances of certain frequencies. The first unstable
disturbances are two-dimensional (2D) waves that travel in the mean flow direction. They
are known as Tollmien-Schlichting waves. Due to random noise in the flow field, three-
dimensional (3D) disturbances are also present and propagate in a direction oblique to the
mean flow direction. The nonlinear interaction between plane waves and small amplitude
oblique waves often generates a spanwise periodic variation that develop into Lambda
shaped structures which, in turn form either an aligned row pattern or an staggered row



pattern. Which row pattern will appear depends on the relative frequency of the 2D and
3D interacting waves. Kachanov and Levchenko (1984) identified that for 3D waves with
half the frequency of the 2D waves the Lambda shaped structures are staggered by half
spanwise wavelength. For 3D and 2D waves with the same frequency the Lambda shaped
structures are aligned. This second breakdown process was identified by Klebanoff, Tid-
strom and Sargent (1962). These flow patterns are called subharmonic (H-type) secondary
instability and fundamental (K-type) secondary instability respectively. They result in
the evolution of spanwise variations of the streamwise velocity profile forming peak and
valley regions and generate vortices that in a smoke wire visualization experiment would
concentrate smoke in certain regions forming the Lambda shapes. At the peak of the
Lambda structures the local vorticity is high and the structures breakdown in bursts
of turbulent spots which appear randomly in the flow field. Further downstream, these
turbulent spots coalesce into a fully developed turbulent boundary layer. Herbert used
secondary stability theory to study fundamental and subharmonic secondary instability
and was able to reproduce the characteristic lambda structure observed experimentally.
He presented a review of secondary instability theory along with details on the different
instability modes observed experimentally and numerically (1988).

Given that the natural disturbances in a given flow field are composed of random noise,
only in controlled experiments it is possible to force either K-type or H-type secondary
instability. In natural conditions it is more likely that both K-type and H-type secondary
instabilities will compete or interact, modifying the pattern of the Lambda shaped struc-
ture. The present work investigate the nonlinear development of disturbances composed
of a 2D Tollmien-Schlichting wave with frequency ‘f’, a pair of 3D waves with frequency
‘1/2f’, and a pair of 3D waves with frequency ‘f’. The results show that, by changing
the relative amplitude of the different disturbances it is possible to select the resonant
mechanism that dominates.

In the paper, the results obtained by Kachanov and Levchenko for H-type secondary
instability and by Klebanoff, Tidstrom and Sargent for K-type secondary instability are
reproduced with a numerical model base on the Parabolized Stability Equations. The
same model is then used to conduct the numerical experiments described above for dif-
ferent values of disturbance initial amplitudes and spanwise wavenumber. Results for the
growth of different harmonics are presented showing whether K-type or H-type secondary
instability prevails. The vorticity distributions are also presented.

2. FORMULATION

Details of the derivation of the Parabolized Stability Equations (PSE) and of the nu-
merical procedure used in the present investigation have been presented elsewhere (Men-
donga et al. , 2000b; Mendonga et al. , 2000a). In this section only the main points are
presented.

The Navier-Stokes equations for an incompressible flow of a Newtonian fluid are sim-
plified by assuming that the dependent variables are decomposed into a mean component
and a fluctuating component as follows:

= U* + u, and p* = P* +p, (1)
where u* = [u*, v*, w*]T is the velocity vector and p* is the pressure. The superscript ‘*’

indicates dimensional variables. The coordinate system is based on the streamlines (¢*)
and potential lines (¢*) of the inviscid flow.



The equations are nondimensionalized using d§ and U}, as the length and velocity
scaling parameters. &% = (v*¢%/U%)"? is the boundary layer thickness parameter, UZ is
the free stream velocity, ¢; is a reference length taken as the streamwise location where
initial conditions are applied, and v* is the kinematic viscosity. The Reynolds number is
defined as: Re = UZ05/v*.

The mean flow is governed by Prandtl boundary layer equations for the flow over
a flat plate. The perturbation @' is assumed to be composed of a slowly varying shape
function and an exponential oscillatory wave term. It is represented mathematically as a
double Fourier expansion truncated to a finite number of modes:
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where @, ,,,(6, %) = [Unms Vnm, Wnms pn,m]T is the complex shape function vector.
This procedure is similar to a normal mode analysis, but, in this case, the shape function
®,, , is a function of both ¢ and ).

The streamwise growth rate 7, ,,, the streamwise wavenumber «, and the spanwise
wavenumber 3 were nondimensionalized using the boundary layer thickness parameter
05. The frequency w was nondimensionalized using the free stream velocity UZ and the
boundary layer thickness parameter d; .

The perturbation variable ®'; as defined in Eq. (2), is substituted in the governing
equations. By assuming that the shape function, wavelength, and growth rate vary slowly
in the streamwise direction, second order derivatives and products of first order derivatives
with respect to the streamwise coordinate can, therefore, be neglected. After performing
a harmonic balance in the frequency, a set of coupled nonlinear equations is obtained.
These resulting equations are known as the Parabolized Stability Equations (PSE). For
each mode (n,m) an equation in vector form results:

_ 9% E
+Cnm : +Dnm = e ) 4
) 3 ) 8¢ ) a,(/) ’ 81/]2 effo an,m(é‘)df ( )

where the coefficient matrices can be found in Mendonga (1997).

The resulting equations are parabolic in ¢ and the solution can be marched down-
stream given initial conditions at a starting position ¢o. The approach is correct as long
as the instabilities are convective and propagate in the direction of the mean flow without
affecting the flow field upstream.

The boundary conditions for Eq. (4) are given by homogeneous Dirichlet no-slip
conditions at the wall, Neumann boundary conditions for the velocity components in
the far field, and homogeneous Dirichlet condition for pressure in the far field. Initial
conditions at a starting position ¢, downstream of the leading edge are obtained from
Orr-Sommerfeld solutions for Tollmien-Schlichting waves.

2.1 Normalization condition

The splitting of the perturbation ®'(¢, ¢, z,t) in Eq. (2) into two functions, @, ., (¢, V)
and an ., (4), is ambiguous, since both are functions of the streamwise coordinate ¢. It is



necessary to define how much of the variation will be represented by the shape function
@, (0, 1), and how much will be represented by the complex wavenumber a,, ,,(¢). This
definition has to guarantee that rapid changes in the streamwise direction are avoided so
that the hypothesis of slowly changing variables is not violated. Fast variations of the
shape function @, ,,(4,7) in the streamwise direction are transfered to the streamwise
complex wavenumber a, ,,(¢) = Ynm(¢) +ina(¢). If this variation is represented by by,
for each step in the streamwise direction it is necessary to iterate on ay ., (¢) until by,
is smaller than a given threshold. At each iteration k, ay,,,(¢) is updated according to
(@nm)k+1 = (@nm)k + (bnm)k-

The variation by, ,,, of the shape function can be monitored in different ways. Possible
choices are presented below.

1 o0 o,
bnm:oo_.— UJm n,m)d , 5
ok ||un,m||2d¢/o ( m oy )W ()

In Eq. 5 @ ,, is the complex conjugate of @y, . The integral of ||ty ,||> was used to
ensure that the variation is independent from the magnitude of @, .

2.2 Numerical method

The system of parabolic nonlinear coupled equations given by Eq. (4) is solved nu-
merically using finite differences. The partial differential equation is discretized implicitly
using second order backward differencing in the streamwise direction, and fourth order
central differencing in the normal direction. For the points neighboring the boundaries,
second order central differencing in the normal direction was used. The resulting coupled
algebraic equations form a block pentadiagonal system which is solved by LU decompo-
sition.

At each step in the streamwise direction, the nonlinear terms are evaluated itera-
tively The iterative process is used to enforce both the normalization condition and the
convergence of the nonlinear terms. In order to speed up the computation a A Gauss-
Siedel iteration scheme with successive over-relaxation is used. The nonlinear products
are evaluated in the time domain. The dependent variables in the frequency domain are
converted to the time domain by an inverse Fast Fourier Transform subroutine. The
nonlinear products are evaluated and the results are transformed back to the frequency
domain.

The complex wavenumber is updated at each iteration and the variation in the shape
function is monitored through Eq. (5). The iteration is considered converged when the
normalization condition is no larger than a given small threshold.

3. SUBHARMONIC INSTABILITY

Kachanov and Levchenko (1984) identified a nonlinear secondary instability mode
where a two-dimensional (2D) Tollmien-Schlichting (TS) wave excites a three-dimensional
(3D) wave having half the frequency of the 2D wave. This 3D wave is stable according
to linear stability theory. The observed growth is due to the nonlinear interaction with
the 2D TS wave. Figure 1 shows the evolution of the 2D and 3D waves and compares the
experimental results obtained by Kachanov and Levchenko with results obtained numer-
ically using PSE. The figure also shows the decay of the 3D wave obtained with a linear
analysis. The comparison between experimental and numerical results is good. The 2D



TS wave has frequency f = 0.0496 and the initial amplitude is € = 0.00439. The sub-
harmonic 3D wave has half the frequency, spanwise wavenumber 8 = 0.1333 and initial
amplitude € 1) = 0.000039.

We are interested in determining whether this subharmonic resonance mechanism is
predominant even when a third disturbance is present in the flow field. In order to perform
this investigation, we seed the initial conditions for the experiment presented in Fig. 1
with a low amplitude 3D wave having the same frequency as the 2D wave and the same
spanwise wavenumber as the 3D wave. This third disturbance is given by Fourier mode
(2,1), which would be the mode arising from a fundamental secondary instability mode.
The result is presented in Fig. 2. It shows that the Fourier mode (2,1) is not excited
by the nonlinear interaction. Raising the initial amplitude of the 2D wave, mode (2,1) is
excited. This is shown in figure 3. One sees that depending on the amplitude of the 2D
wave, fundamental secondary instability mode is excited.

0.1 T T T T T T T 0.1
mode (2,0), nonlinear result mode (2,0) initial amplitude = 0.439%
0.01 | Ry
N
¥
+
» 0001} o g o 0001 F .
3 °
= s 2 _~“mode (2,0) —
% .~ mode (1,1), nonlinear result g " mode (1,1) -——-
<0.0001 | q <0.0001 | mode (2,1) -
mode (1,1), linearresut ~~ { | 7
le-05 4 1e-05 I
1e-06 I . I I I I I g
400 450 500 550 600 650 700 750 800 10855 750 500 550 500 550 700
Re Re

Figure 1: Comparison between experi-
mental and numerical results for H-type
secondary instability. Lines - PSE results,
symbol - experimental results.

Figure 2: Numerical results for H-type in-
stability including a fundamental oblique
mode in the initial conditions.
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Figure 3: The same experiment presented
in Fig. 2 with the initial amplitude of the
2D TS wave raised to 0.01.

Figure 4: The same as in Fig. 2 show-
ing the nonlinear development of station-
ary modes.

Figures 4 and 5 show the evolution of the mean flow distortion (MFD) given by the
Fourier mode (0,0), and spanwise periodic longitudinal vortices, given by Fourier modes
(0,1) and (0,2). The oblique TS modes are responsible for the growth of this longitudinal
stationary modes. At the latter stages of the nonlinear development it is possible to



observe a very strong growth of the MFD and of mode (0,2). For the 2D TS initial
amplitude of 0.00439, the longitudinal stationary mode (0,1) remains at a low amplitude,
of the same order of magnitude as mode (2,1). For the second experiment, where the
initial amplitude of the 2D TS wave was raised to 0.01, mode (0,1) is excited. The result
suggests that the growth of mode (0,1) is due to the nonlinear growth of mode (2,1).
The growth of mode (0,1) has a strong influence on the resulting spanwise periodicity
responsible for the peak and valley regions.

A third numerical experiment was performed. In the two previous experiments the
oblique waves were stable according to linear theory, and they where excited by the nonlin-
ear interaction. Lowering the spanwise wavenumber of the oblique waves it is possible to
investigate the behavior of the nonlinear interaction for linearly unstable oblique modes.
Figure 6 shows an experiment for which the 2D TS wave is identical to the 2D wave
of the previous experiments, but the wavenumber of the oblique waves was lowered to
B = 0.04. For this spanwise wave number and for the given frequency, mode (2,1) is
already unstable, while mode (1,1) did not cross the lower branch of the neutral curve
yet. The growth of mode (2,1) is small, but as the disturbances travel downstream, its
amplitude becomes greater than that of mode (1,1). The result shows that, depending on
the growth rate of the oblique waves the characteristic feature of subharmonic secondary
instability may change due to the stronger nonlinear excitation of a fundamental mode.
In summary, whether a given laminar flow will undergo subharmonic or fundamental sec-
ondary instability depends on the initial amplitude of the modes and also on their growth
rate.
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Figure 5: The same as in Fig. 4 with the Figure 6: The same as in Fig. 3 with the
initial amplitude of the 2D TS wave raised oblique modes spanwise wavenumber low-
to 0.01. ered to 0.04.

The vorticity distribution for H-type secondary instability is presented in Fig. 7 and
Fig. 8. In both figures the disturbances are followed up to a streamwise position where
the computation presents convergency problems due to the growth of a large number of
Fourier modes. That can be taken as an early sign of breakdown to turbulence. Figure 7
presentes de vorticity distribution for the experiment presented in Fig. 2 and Fig. 8 the
vorticity distributin for the experiment presented in Fig. 3 In the experiment presented in
Fig. 3 the subharmonic mode is still dominant despite the excitation of the fundamental
mode (2,1). As a consequence, the characteristic staggered vorticity pattern is observed.
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Figure 7: Distribution of vorticity in the ¢, z plane for H-type instability.
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Figure 8: Distribution of vorticity in the ¢, z plane for H-type instability seeded by an
oblique fundamental mode.

4 FUNDAMENTAL INSTABILITY

The fundamental secondary instability mode was first identified by Klebanoff, Tid-
strom and Sargent (1962). In this instability mode a two-dimensional wave excites an
oblique wave of the same frequency. This oblique wave is stable according to linear sta-
bility theory as can be seen in the computations presented in figure 9. The figure also
shows a comparison between PSE results and experimental results obtained by Cornelius
(1985). The 2D TS wave has frequency f = 0.01932 and initial amplitude ¢ = 0.01. The
fundamental 3D wave has the same frequency, spanwise wavenumber 3 = 0.264 and initial
amplitude €¢,1) = 0.0015.

Figure 10 shows results of a similar experiment, which included a subharmonic oblique
wave (with have the frequency of the 2D TS wave) in the initial condition. It shows that
the subharmonic oblique wave is strongly destabilized by the 2D TS wave. By comparing
this result with those for lower and higher initial 2D TS wave amplitude, presented in
Fig. 11 and 12 it is observed that the destabilization of the fundamental mode is strongly
dependent on the amplitude of the 2D TS wave. In order to have fundamental secondary



instability instead of subharmonic secondary instability it would be necessary to suppress
subharmonic modes all together or to have a significantly strong initial 2D disturbance.
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Figure 9: Comparison between experi-
mental and numerical results for K-type
secondary instability. Lines - PSE results,

Figure 10: Numerical results for K-type
secondary instability, including a subhar-
monic oblique mode in the initial condi-

symbol - experimental results. tions.
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Figure 12: The same as in Fig. 10 with
the initial amplitude of the 2D TS wave
raised to 0.02.

Figure 11: The same as in Fig. 10 with
the initial amplitude of the 2D TS wave
lowered to 0.005.

On the other hand, lowering the wavenumber of the oblique disturbances it is possible
to have a situation where the fundamental oblique mode (Fourier mode (2,1)) is already
unstable, while the subharmonic oblique mode (Fourier mode (1,1)) has not crossed the
lower branch of the neutral curve yet. In this case the relative amplitude of the 2D TS
wave and of the fundamental oblique wave results in a strong destabilization of the last as
seen in Fig. 13. Never the less, the subharmonic oblique mode continues to be strongly
destabilized by the 2D TS wave. Figure 14 shows that the mean flow distortion and the
longitudinal modes (0,1) and (0,2) are also amplified by the nonlinear interaction.

Based on the limited number of numerical experiments presented in this paper, it
is possible to conclude that subharmonic secondary instability should be more easily
observed. This is because the subharmonic oblique mode is strongly destabilized by the
nonlinear interaction, even when the subharmonic mode has a lower growth rate than the
fundamental oblique mode. To confirm this conclusion a larger number of experiments for
different frequencies, spanwise wavenumbers and initial amplitudes would be necessary.
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Figure 13: The same as in Fig. 10 with Figure 14: The same as in Fig. 10 show-

the oblique modes spanwise wavenumber ing the nonlinear development of the mean
lowered to 0.06. flow distortion and of longitudinal vor-
tices.

The vorticity distribution for K-type secondary instability is presented in Fig. 15
and 16. Figure 15 corresponds to the experiment presented in Fig. 9 and Fig. 16 to the
experiment in Fig. 10. The major aligned patter is still dominant, but it is possible to
observe the growth of small cells of staggered pattern at about Re = 739.
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Figure 15: Distribution of vorticity in the ¢, z plane for K-type secondary instability.

5. CONCLUSIONS

In the present paper numerical simulations have been presented in order to investigate
the characteristics of K-type and H-type secondary instabilities. The results show that the
excitation of fundamental modes depend strongly on the initial amplitude of the 2D TS
wave. Growing subharmonic and fundamental oblique modes were also investigated. The
results show that, since the fundamental mode has higher frequency it becomes unstable
earlier than the subharmonic mode resulting in fundamental secondary instability. The
subharmonic mode has a very strong nonlinear growth. As a result, the characteristic sub-
harmonic staggered pattern for the vorticity distribution can be observed in results where
both modes are included. In natural conditions it is likely that subharmonic instability
will be more easily observed.
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Figure 16: Distribution of vorticity in the ¢,z plane for K-type secondary instability
seeded by an oblique subharmonic mode.
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