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Abstract. The characteristics of a turbulent boundary layer near the reattachment point
behind a backward-facing step flow are studied here. The emphasis is on providing exper-
imental data that can be used to validate a previous formulation of the problem advanced
by Cruz and Silva Freire(IJHMT, 41, 2097-2111, 1998). Two different flow visualization
techniques are used to find the location of the separation point. Data for the mean velocity
and mean temperature are then presented for the non-recirculation flow region. A data
reduction technique based on the inverse problem method is used to furnish predictions of
the local skin friction coefficient and Stanton number. All results are also compared with
the data of Vogel and Eaton(J. Heat Transfer, vol. 107, 922-929, 1985).
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1. INTRODUCTION

Boundary layer separation from a solid surface is certainly one of the most important
and difficult problems of fluid mechanics. Most of the theoretical attempts at describing
separated flows have resorted to asymptotic methods. Despite the fair success these
methods have achieved, most real significant advances on the problem have come from
experimental studies. The complexities associated with the short scales near points of
separation or reattachment are difficult to overcome by any means so that the physical
behaviour of such flows has been by and large constructed through phenomenologycal
models.

In recent years, the present authors have dedicated a good parcel of their time to
the development of asymptotic theories for the description of turbulent boundary layers
near a seperation point. In a series of articles, both the problems of a velocity boundary
layer and of a temperature boundary layer heading for separation have been studied. The
works have appealed to the matched asymptotic theory and to Kaplun limits to propose
a new changeable asymptotic structure to the flow near a separation point. Basically,



the asymptotic structure of the flow is supposed to undergo some modifications reducing
from the classical two-deck structure to an one deck structure.

All of our results in the past have been validated through the data of two authors:
Vogel and Eaton(1985) and Driver and Siggmiller(1987). These authors have studied the
backward-facing step flow geometry. The emphasis was on characterizing simultaneously
well the velocity and temperature fields. These authors realized that there was a lack
in measurements for the thermal fields and carried out works were the chief concern
was describing well all the relevant fluid-dynamic and heat-transfer quantities. In many
phenomena, reattaching boundary layers can cause an increase in local heat transfer rate
and this effect can certainly not be captured by simple turbulent models based on the
turbulent Prandtl number concept. This fact has created a great interest on the physical
modelling of the reattaching flows.

The purpose of the present work is twofold: 1) to add further experimental evidence
to the boundary layer behaviour near to a reattachment point, and ii) to extend the
metodology developed in Cruz and Silva Freire(1999) to a theoretical evaluation of the
local skin-friction coefficient and Stanton number in the recirculation, reattachment and
downstream of reattachment regions.

In the latter part, the wall solutions of Cruz and Silva Freire(1999) are used according
to their original formulation. However, the data are reduced using an inverse problem
solution procedure.

2. SHORT LITERATURE REVIEW

The difficulties associated with the asymptotic description of turbulent separated flows
result in a failure of the classical two-layered structure to represent the flow near a sepa-
ration point. Basically, the vanishing of the shear stresses at a separation point implies
that alternative scaling parameters have to be sought. Important works that have tried to
overcome thmany difficulties are the works of Melnik(1989), of Durbin and Belcher(1992)
and of Gersten(1987). These works, however, only deal with the velocity field.

In Cruz and Silva Freire(1998) a new asymptotic structure for the flow near a sep-
aration point, for both, the velocity and the temperature fields was proposed. In this
work, a new scaling procedure was developed which resulted in a changeable asymptotic
structure for the boundary layer, different from those of other authors, but consistent
with the experimental data. The theory, in particular, led to a new expression for the
velocity law of the wall and to a skin-friction equation that were supposed to hold up to
the separation point and in the reverse flow region. Also, new expressions were proposed
for the temperature law of the wall and for the Stanton number equation.

The same authors, Cruz and Silva Freire(1999) improved the perviously developed
theory by makink it more ammenble for a numerical treatment. In relation to the original
paper, the following modifications were introduced: 1) a new formulation for the reference
velocity, ug, 2) a new expression for the velocity law of the wall, and 3) a new expression
for the temperature law of the wall. The new reference velocity was specified through
the total shear stress, as opposed to the previous one which had to be evaluated from
an algebraic transcendental equation. The single expression advanced for the velocity
law of the wall replaced the three law of the wall expressions (Egs. 25, 26 and 27) of
Cruz and Silva Freire(1998); this expression is supposed to hold in the whole fluid region.
The temperature law of the wall is written with the help of reasonably sophisticated
expressions for its angular and linear coefficients; these are a function of the turbulent



Prandlt number, the pressure gradient, the reference velocity and the shear stress at
the wall. The main consequence of all these modifications was that much better results
are found for the prediction of Stanton number near the separation point. This was a
particular concern of the present authors when this work started.

3. THEORY

3.1. Velocity law of the wall

Here, the main theoretical developments will be shortly presented. For a complete de-
scription of the asymptotic solution of the problem, the reader is referred to Cruz and
Silva Freire(1998).

Following the procedure of Cruz and Silva Freire(1999), the law of the wall for a
separating flow can be written as

where
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and all symbols have their classical meaning; s is the von Karman constant (=0.4), u, is
the friction velocity, and ug (= /7, T = total shear stress) is a reference velocity.

The above equation is a generalisation of the classical law of the wall and replaces the
three expressions advanced in Cruz and Silva Freire(1998). Far away from the separation
point, where the shear stress is positive and dP,/dz << 7,, equation (1) reduces to
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that is, to the classical law of the wall.
Close to the separation point where 7,=0, the equation reduces to

Stratford’s equation (see Stratford(1959)).
In the reverse flow region where dP,/dz >> 7,, equation (1) can be written as
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We will now describe how the wall shear stress was evaluated from the above equations
for application in a k-¢ turbulence model.



The total shear stress can be evaluated from
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where the subscript p denotes the first grid point.
This equation can be used as a first estimate for the wall shear stress if we consider
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and £=9.8.
The pressure gradient term can be evaluated from

1 dpw _ 7—p — Tw

p dx y

Next, the characteristic length can be calculated from
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Finally, the wall shear stress is calculated from
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3.2. Temperature law of the wall

An asymptotic theory for the thermal boundary layer near a separation point is also
described in some detail in Cruz and Silva Freire(1998). Here, we write the temperature
law of the wall as
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up
and all symbols have their classical meaning.

Equation (13) was first proposed by Launder and Spalding(1974). Equation (14) has
been modified from the original formulation (A = 26) in order to perform better in the
separated flow region. In Cruz and Silva Freire(1998) the predicted values of S, were
well below the experimental values so that Eqgs. 12 to 14 had to be introduced to rectify
that. Please, note that far away from the separation point the standard law of the wall
is recovered.

4. EXPERIMENTS

The experiments were performed in the high turbulence wind tunnel located at the Labora-
tory of Turbulence Mechanics of the Mechanical Engineering Program of COPPE/UFRJ;
for the considered test conditions, the free stream level of turbulence was about 2%. The
tunnel is an open circuit tunnel with a test section of dimensions 670x670x4000 cm; the
test section has an adjustable inclination roof to assure the flows to have a zero pressure
gradient.

Measurements were performed for values of the free-stream velocity of 3.12 m/s.
Mean velocity profiles and turbulence intensity levels were obtained using a constant
temperature hot-wire anemometer. The boundary layer probe was of the type 55P15. A
Pitot tube, an electronic manometer, and a computer controlled traverse gear were also
used. In getting the data, 10,000 samples were considered which yielded a precision of
0.6% in the mean velocity data.

To obtain accurate measurements, the mean and fluctuating components of the ana-
logic signal given by the anemometer were treated separately. Two output channels of the
anemometer were used. The mean velocity profiles were calculated directly from the un-
treated signal of channel one. The signal given by channel two was 1 Hz high-pass filtered
leaving, therefore, only the fluctuating velocity. The latter signal was then amplified with
a gain controlled between 1 and 500 and shifted by an offset so as to adjust the amplitude
of the signal to the range of the A/N converter.

The mean temperature profiles were obtained through a chromel-constantan micro-
termocouple mounted on the same traverse gear system used for the hot-wire probe.

A schematic view of the step is shown in Figure 1. The step is 50 mm high and is
placed 2.000 mm dowstream of the last of four small-mesh screens. The boundary layer
thickness measured 1.800 mm from the screen was 3 cm thick.

The flow visualization was made by two methods: smoke and surface oil. The results
are shown in Figures 2 and 3. The position of the reattachment point was evaluated from
these figures.

The velocity and temperature mean profiles are shown in Figures 4 and 5 in physical
dimensional coordinates. The measurement stations were taken from the step edge. The
existence of a logarithmic region is clear from the data. Only the profile taken at x = 300
mm does not obey the logarithmic law.
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Figure 1: Step geometry.

Figure 2: Flow visualization with smoke.

5. Results

For an evaluation of the local skin-friction coefficient and Stanton number, the expressions
developed in Cruz and Silva Freire(1999) are used. The three unknowns C'y, Sy and dP,,/dx
are estimated through an Inverse Problem Solution Method. While in the direct problem
the cause is given and the effect is determined, in an inverse problem an estimation of
the cause is obtained through the knowledge of the effect. The solution of the inverse
problem used here is obtained throught the Levenberg-Marquardt Method; that is, an
iterative method for solving nomnlinear least squares problems of parameter estimation
(see, e.g., Ozisik and Orlande(2000)). The inverse problem is solved by a minimization of
the remainder of the least-square norm which can be expressed as

I
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where P = (Py, Py, ..., Py) = vector with parameters to be estimated, K(P) = K (P, y;)
= quantity estimated at position y;, ¥; = Y (z;) = measured velocity or temperature
at position x;, N = total number of parameters to be estimated, I = total number of
measurements. The estimated quantities K () are obtained through solution of the direct
problem by using a current estimation for the unknown parameters P;,j = 1...N.

The above procedure was validated for the evaluation of C'y through the data of Vogel
and Eaton(1985). The flow conditions of Vogel and Eaton are shown in Table 1. The
inverse problem technique was applied to equation 1 for the evaluation of C'y.
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Figure 4: Velocity profile in dimensional coordinates.

Next, the inverse problem technique was applied directly to our data. This time the
technique was applied to equations 1 and 11. The results are shown in Figures 6 and 7
and in Table 2

The overall behaviour of C'y and of S; follows the expected trend. What is known
from literature is that the heat transfer rate is low in the recirculation region; approachin
the reattachment point it then rises sharply attaining greater values than those typical of
a ordinary boundary layer. Downstream, the heat transfer rate relaxes back to the flat
plate solution.

Values of C'; and of S; were also calculated through the integral momentum and
energy equations. However, the number of measuring stations proved to be inadequate
for the obtaining of reliable results.

Normally, it is expected that the boundary layer relaxes back to a equilibrium state
of development several hundreds of step height downstream of the step edge. In our case
this would mean at least 5.000 mm. The asymptotic behaviour of our solution does assure
that this will occur for the Reynolds analogy is recovered for large values of x.
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Figure 5: Temperature profile in dimensional coordinates.

Table 1: The experimental data of Vogel and Eaton.

Author Ulm/s] R Qu|W/m?]
Vogel and Eaton(1985)  11.3 28000 270
Present 3.12 28000 270

CONCLUSION

The present work had a very distinct goal at its beginning, to provide a robust method
for the calculation of flows subjected to separation. Specially, we wanted to improve the
calculation methods for skin-friction coefficient and Stanton number which were developed
in the past to use the law of the wall.

Apparently, the goal has been achieved with the specification of expressions (1) and
(11). These expressions were shown to stand very well against the data of Vogel and
Eaton(1985), giving very good results for the velocity and temperature fields and the
skin-friction coefficient and the Stanton number.

Presently, the author are subjecting those expressions to further scrutiny. This will
be reported in another occasion.
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