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Abstract. The work is a comparative analysis of two k-ε turbulence models applied to a flow
under the combined effects of stagnation, streamline curvature, stiff pressure gradient and
recirculation. For such flow situations, it has been found that standard versions of k-ε model
fail to predict even the most basic flow features unveiled by experimental data. Recently, a
new version of k-ε model, developed from Renormalization Group (RNG) theory, has been
proposed and successfully applied to a number of flows where other k-ε models have shown
poor results. The reason for this superior performance of the RNG k-ε model cannot be easily
explained since most works in the literature focus their attention only on results for quantities
associated to the mean velocity field, without any reference to turbulence quantities. In the
present investigation, the RNG k-ε model is compared to the widely used Launder &
Sharma’s k-ε model in the prediction of a complex flow. An assessment of the superior results
found with the RNG k-ε model is provided through results for eddy viscosity and turbulence
length scale.
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1. INTRODUCTION

Most flow situations of practical interest exhibits an extremely complicated behavior
associated to turbulence. The wide range of length and time scales dictates that in most
engineering calculations one still has to use Reynolds decomposition, which describes the
turbulent motion as a random variation about a mean value. The Reynolds stress tensor uiuj

that results from this average can be evaluated from its modeled transport equations derived
from the Navier-Stokes equations. Nevertheless, this approach, known as second moment
closure, has failed to yield for all flow situations better predictions than those returned by
simpler closures so as to justify its greater computational cost. Additionally, the near-wall



region where viscous effects are significant cannot be taken into account in second-moment
closures with the generality needed in complex flow geometries.

A second route for turbulence modeling is to assume that the diffusive nature of a
turbulent flow is analogous to that of a laminar flow and may be represented by a much larger
diffusivity. This is the basis of Boussinesq’s hypothesis of a 'turbulent' or 'eddy' viscosity νt,
which considers the Reynolds stresses uiuj to be proportional to the velocity gradient, in an
analogy to viscous stresses, as follows:
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where δij is the Kronecker delta and the kinetic energy of the turbulent motion, k, is defined as
k=(uiui)/2.

By far the most common choice for calculating of νt has been that in terms of the
turbulence kinetic energy k and its rate of dissipation, ε. Launder and Spalding (1974)
proposed the first version of such a model that could applied with success to a considerable
number of flows. In a subsequent work, Jones and Launder (1972a, 1972b) included low-
Reynolds-number effects into the k-ε model so that it can be used to compute near-wall flows
as well as those where wall effects are not present. Later, Launder and Sharma (1974)
modified slightly some damping functions in the Jones & Launder’s model and today this
modified version is probably the most used turbulence closure for engineering calculations.
The main reason for the success attained by the k-ε model can be attributed in part to its
robustness, economy and acceptable results in the predictions of several flows. However, the
model is known to have deficiencies in flow situations involving streamline curvature,
adverse pressure gradient and separated regions.

More recently, Yakhot et al. (1992) offered a new theoretical frame, known as
Renormalization Group (RNG) theory, to derive an alternative version of k-ε model that
removes part of the anomalies usually associated to k-ε models. In the so-called RNG k-ε
model constants and functions are evaluated by the theory and not by empiricism as is the
case of other versions. Additionally, the model can be applied to the near-wall region without
recourse to wall-functions or ad-hoc function in the transport equations of the turbulence
quantities. This mathematical foundation is pointed out by Orszag et. al. (1993) as the main
reason why the RNG k-ε model should have a wider range of applicability, as compared with
standard models. A support to this claim is reported by Yakhot et al. (1992) for the case of a
turbulent flow over a backward facing step, where the RNG k-ε model is seen to produce
much better results than standard versions of k-ε models.

Several works have considered the application of the RNG k-ε model to complex flow
situations and some provide a comparison of its performance with other versions of k-ε
model. However, most investigations restrict themselves to exploring results for velocity and
pressure. The present work is a further test of the RNG k-ε model, applied to a flow situation
where other k-ε models failed to reproduce the experimental data. In addition to results of
velocity and pressure, comparisons for turbulence quantities are also provided to clarify
differences found between different turbulence models adopted in the work. The radial
diffuser flow chosen for this comparative analysis is a good test case since it includes regions
of stagnation, stiff pressure gradient, separation and streamline curvature.

Figure 1 shows the main parameters of a radial diffuser that affect the flow. Basically, the
fluid enters axially the feeding orifice of diameter d with uniform velocity Uin, hits the front
disk of diameter D with inclination α and then a radial flow is established. Attempts to solve



the flow through the diffuser with parallel disks using standard versions of k-ε models did not
capture the pressure distribution on the front disk surface available from experiments
(Deschamps et. al, 1988, Deschamps et al., 1989). The lack of agreement with experimental
data was attributed to the incorrect prediction of separated flow regions at the entrance of the
diffuser. Recently, the RNG k-ε model has been successfully applied to the same flow
situation (Deschamps et al., 1996) for different Reynolds number, Re (=Uind/ν), diameter
ratios, D/d, and gap between the disks, sc/d.
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Figure 1: Schematic view of a radial diffuser.

2. TURBULENCE MODELS

The transport equations for k and ε corresponding to the k-ε model of Launder & Sharma
(1974), denoted here as LS k-ε model, and to the RNG k-ε model of Orzag et. al. (1993) can
be summarized in the form of the following equations:
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where S2 = 2SijSij is the modulus of the rate-of-strain tensor. The eddy viscosity appearing in
equations (2) and (3) is defined as:
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Table 1 summarizes parameters (cµ, cε1 and cε2) and terms (D, E and M) appearing in
equations (2)-(4) according to the turbulence model being considered.

The damping functions adopted in cµ and cε1 for the LS k-ε model is necessary to produce
a proper diminution of the turbulence structural ratio in the vicinity of a wall. This function is
evaluated according to a viscosity dependent parameter,
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commonly referred to as turbulence Reynolds number. A first major difference between the
models is that in the case of the RNG k-ε model cµ, cε1 and cε2 retain their values even in the
viscous sub-layer.

Table 1: Parameters and terms in k-ε models

LS k-ε Model RNG k-ε Model
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The term D in the LS k-ε model had to be included since instead of solving equation (3)
for the total dissipation, Jones and Launder (1972a, 1972b) decided to solve it for the
isotropic dissipation ε~  defined as

2
j)x/k(2~ ∂∂ν−ε=ε   .    (6)

This simplifies the wall boundary condition for the dissipation rate ε~ , whose value can be set
to zero. The difference between ε and ε~ decreases away form the wall, so that in the fully
turbulent region they are equivalent. To avoid convergence difficulties, a special treatment is
advisable in the implementation of term D of the LS k-ε model (see Sinha & Candler, 1998).

The main distinction between these two turbulence models is represented by term E. For
the LS k-ε model E was simply chosen by convenience so as to improve the result of
turbulence kinetic energy profile near the wall. Yet, in the case of the RNG k-ε model the
term E is related to the rate-of-strain tensor, through the ratio of turbulence to mean strain
time scale η defined as

ε=η /kS    ,    (7)

and has an important role on ε level when the strains are large. Constants ηo and β appearing
in Table 1 are given values of 4.38 and 0.012, respectively. The term E may change sign
depending on whether the time scale ratio η is greater than the value ηo found in homogenous
shear flows. In regions of small strain rate, the term E has a trend to increase νt somewhat,
whereas in regions of elevated strain rate the sign of E becomes positive and νt is
considerably reduced. This feature of the RNG k-ε is responsible for substantial
improvements verified in the prediction of large separation flow regions.



Finally, the Prandtl numbers σk and σε in equations (2) and (3) are equal to 1.0 and 1.3,
respectively, for the LS k-ε model but assume a single value for the RNG k-ε model, which is
expressed through the inverse of the Prandtl number, γ (=1/σ):
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3. NUMERICAL METHODOLOGY

A finite volume methodology was employed to integrate the governing differential
equations using a non-staggered grid scheme. Interpolation of unknown quantities at the
control volume faces were obtained using the QUICK interpolation scheme, which is
considered to be a second order procedure. However, for the equations of turbulence
quantities the Power Law Differencing Scheme (PLDS) was adopted since the unboundedness
of the QUICK scheme usually introduces serious numerical instabilities, causing calculations
to diverge. A segregate approach was employed to solve the equations and coupling between
pressure and velocity was handled through the SIMPLEC algorithm. The system of algebraic
equations that result from the integration of the equations over each control volume is solved
using the Tridiagonal Matrix Algorithm (TDMA). Underrelaxation of the iterative procedure
was required to avoid divergence during the marching procedure towards convergence.
Further details on the numerical methodology can be found in Versteeg & Malalasekera
(1995).

Boundary conditions for the governing equations are required at inlet, outlet, walls and
locations of symmetry. At the walls, the condition of no-slip and impermeable wall boundary
condition were imposed; this implies that k = 0. For the turbulence dissipation ε, a value equal
to zero could also be adopted at the walls in the case of the LS k-ε model. Yet, for the RNG k-
ε model a value was set for the control volumes adjacent to the wall, following a non-
equilibrium wall-function. In the symmetry locations the normal velocity and the normal
gradients of all other quantities were set to zero.

The velocity component normal to the inlet boundary was specified as U = Uin, with the
other components set to zero. Salinas Casanova (2000) has shown that this uniform velocity
condition is adequate since the inflow velocity profile at the feeding orifice plays no
significant role in the solution of the flow field in the diffuser. Numerical tests revealed that
when the turbulence intensity I varied form 3% to 6% no significant was observed in the
predicted flow. Therefore, a value of 3% was adopted in the calculation of all results shown in
this work. The dissipation rate at the inlet was estimated based on the assumption of
equilibrium boundary layer, that is ε = (cµ k2)3/4/�m, with cµ = 0.09 and the mixing length �m =
0.07 d/2.

At the outlet boundary the solution domain was extended well beyond the diffuser exit, so
that the atmospheric pressure verified in the experiment could be set to the outlet. The
boundary condition for k in this case was fixed according to a turbulence intensity of 3%
whereas the dissipation rate was estimated based on the same assumption of equilibrium
boundary layer used at the inlet. Given the wall jet characteristic of the flow exiting the
diffuser it is expected that any inaccuracy of the above outlet condition will not have a
significant impact on the numerical solution.
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Figure 2: Sensitivity of results for pressure distribution to mesh refinement; D/d=1.66.

4. RESULTS

A first step in the analysis was to reduce the truncation error in the calculations to a
minimum so that the numerical solution could be assumed to represent predictions through
the turbulence models. Figure 2 shows typical results of sensitivity tests with respect to the
grid refinement for dimensionless pressure P* (= 2p/ρU2) distribution on the front disk
surface, considering D/d=1.66, sc/d=0.05, Re=25,000 and two different front disk inclinations
(α= 0o and 1o). Initially a condition of parallel disks was considered since for this two-
dimensional flow situation the grid refinement in the axial (x) and radial (r) directions could
be explored to a greater extent. The results yielded by three grid levels (70x80, 140x160 and
280x320, axial x radial) plotted in Fig. 2a show that the less refined grid returns some
truncation error. Nevertheless, it was decided that the difference between the results was not
such so as to justify the much more expensive computation associated to the more refined
grids. For the circumferential direction (θ) the investigation revealed virtually no effect on the
pressure distribution when the grid is doubled in that direction, as can seen from Fig. 2b.
Therefore, for the remaining calculations a grid level of 70x80x9 (x, r and θ, respectively)
was adopted.

Having investigated the level of truncation error in the numerical result the analysis was
directed to the performance assessment of each turbulence model for two diameter ratios D/d
(= 1.66 and 3.0), two gaps sc/d (= 0.05 and 0.07) and three inclinations α (= 0, 1 and 2o). All
cases considered a Reynolds number Re = 25,000. Figures 3-5 show the radial pressure
distribution along the front disk surface obtained from the experiments and computations with
each turbulence models. Details on the experimental setup and procedure will be not given
here due to space limitation but can be found elsewhere (Salinas Casanova et al., 1999). There
has been some conflicting information in the literature concerning the proper definition for νt

in the RNG k-ε model. For instance, Orzag et al. (1993) define νt according to equation (4)
and term M as defined in Table 1. However, Yakhot et al. (1992) neglect M in deriving term
E, which is arguably the major benefit, from the turbulence modeling point of view, offered
by the RNG k-ε model. Here, it has been decided to use the RNG k-ε model with and without
term M in equation (4); these two versions of the model will be referred hereafter as 2T RNG
k-ε model and 1T RNG k-ε model, respectively.
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Figure 3: Pressure distribution on the front disk surface: D/d=1.66; α=0o; Re=25,000.
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Figure 4: Pressure distribution on the front disk surface: D/d=3.0; α=0o; Re=25,000;
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Figure 5: Pressure distribution on the front disk surface: D/d=3.0; Re=25,000;



As can be seen from all figures, the presence of the front disk creates a plateau on the
central part of the pressure distribution (r/d < 0.5). The sharp pressure drop at the radial
position r/d ≈ 0.5 is  associated to  the change in the flow direction  and to the reduction of
the flow passage area. The latter is particularly strong in the range of disk displacement and
Reynolds number considered here since, as will be shown shortly, a separated flow region is
always present on the back disk at the diffuser entrance. The additional reduction in the
passage area originated by this separation results in a further pressure drop due to the increase
of local velocity. After reaching its minimum the pressure distribution progresses towards the
atmospheric condition at the exit of the diffuser, although in some cases this recovery is not
fully accomplished, with the pressure still remaining negative at the diffuser exit.

The agreement between numerical and experimental results in Figs. 3-5 is very poor as
far as the LS k-ε model is concerned, especially at r/d ≅  0.5, where the pressure drop occurs.
On the other hand, predictions given by both versions of the RNG k-ε model (with and
without term M in the equation for νt) are closer to the experimental data. Particularly, when
term M is neglected a markedly improvement in the prediction is verified at r/d ≅  0.5,
although some degradation is visible in the pressure plateau region (r/d < 0.5).

In order to understand the physical mechanism behind the level of agreement verified for
each turbulence model, Figs. 6-8 were prepared. There, contours for stream function ψ,
dimensionless eddy viscosity νt/ν and turbulence length scale � (=k3/2/ε) at the diffuser
entrance are plotted for D/d =3.0, sc/d=0.05, Re=25,000 and α =0o. As pointed out before, the
pressure drop at r/d ≅  0.5 is associated to the velocity level at the diffuser entrance, which is
affected by the presence of any separated flow region there. Therefore, the greater pressure
drop observed for the 1T RNG k-ε model should be an outcome of its capability to predict a
larger separated flow region; Fig. 6c shows that this is precisely the case.

An effective way to diminish or even prevent the flow from separating is through the
increase of turbulence level in the region of interest. Figure 7 shows that levels of eddy
viscosity predicted by the LS k-ε model are much higher than those observed for both
versions of the RNG k-ε model. As a consequence, the LS k-ε model predicts virtually no
separation region (Fig. 6a). Naturally, it is difficult to conclude whether such turbulence
levels are physically consistent by simply examining results of eddy viscosity. A more
convenient choice for this assessment is the evaluation of turbulence length scales. Figure 8a
shows that length scales obtained by the LS k-ε model exceed even the physical dimension
left by the gap between the disks (sc/d=0.05) and suggests therefore an overprediction of
turbulence at the diffuser entrance. As expected, both versions of the RNG k-ε model yield
much lower values for length scale (Figs. 8b and 8c).

5. CONCLUSIONS

The present work has presented a comparative analysis of the RNG k-ε model and the
Launder & Sharma (LS) k-ε model. A radial diffuser flow geometry was chosen as the test
case since it brings about a number of flow features that make this class of flow difficult to
predict. The flow was analyzed for different parameters such as diameter ratios, gap between
the disks and inclination of the front disk.

The RNG k-ε turbulence model was found to reproduce experimental results of pressure
distribution on the front disk surface in much better agreement than the LS k-ε model. The
poor performance of the LS k-ε model had already been verified for the flow through radial
diffuser with disks parallel and is also found here when the front disk is inclined. The poor
results yielded by the LS k-ε model is associated to its overpredicted levels of turbulence at
the diffuser entrance. The RNG k-ε model provides much lower levels of turbulence and, as a



        

       (a) LS k-ε model                    (b) 2T RNG k-ε model             (c) 1T RNG k-ε model

Figure 6: Stream-function contours: D/d=3.0; s/d=0.05, α=0o and Re=25,000.

      

       (a) LS k-ε model                     (b) 2T RNG k-ε model              (c) 1T RNG k-ε model

Figure 7: Eddy-viscosity contours: D/d=3.0; s/d=0.05, α=0o and Re=25,000.

      

     (a) LS k-ε model                    (b) 2T RNG k-ε model               (c) 1T RNG k-ε model

Figure 8: Turbulence length scale contours: D/d=3.0; s/d=0.05, α=0o and Re=25,000.



consequence, captures a separated flow regions as suggested by measurements. A full
assessment of the RNG k-ε model regarding its results for turbulence quantities is not possible
however, since there is no available experimental data for such quantities.
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