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Abstract. The present paper describes LGFlow, a two-dimensional interactive numerical
water table for fluid flow visualization, developed for educational purposes and based on
lattice gas models. Lattice gas models are relatively recent and were developed to perform
hydrodynamic calculations, being object of considerably interest in the last years. Two
models are used, the Boolean model and the Boltzmann model. In its simplest form, Boolean
model consists of a regular lattice populated with particles that hop from site to site in discrete
time steps in a process, often, called propagation. After propagation, particles in each site
interact with each other in a process called collision, in which the number of particles and
momentum are preserved. An exclusion principle is imposed in order to achieve better
computational efficiency and a Boolean variable n; (r, t) is assigned to each direction in a site
to indicate the presence (ni=1) or absence (n=0) of a particle in that direction. Boltzmann
model has the same principles but works with real variables related to the ensemble average
values of <nj (r, t)>. Despite its simplicity, these models reproduce Navier-Stokes equation
behavior for low Mach numbers. The present work deals with two-dimensional models based
on a hexagonal lattice. Intended to be a self-learning tool in fluid-mechanics education,
LGFlow received an attractive and user-fi-iendly graphics interface based on Coi-lib® with an
on-line visualization window for velocity and pressure fields and boundary conditions are
easily managed from form windows. This work, some visualization examples are given of
fluid flow around obstacles and inside constrictions and compared with available data found
in fluid mechanics literature.
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1. INTRODUCTION

This paper presents LGFlow, a numerical inferactive water table developed for
education purposes in the learning of fluid mechanics and related disciplines.

LGFlow simulation algorithms are based on Lattice Gas Automata models (LGA).

In lattice gas automata models (LGA), fluid is supposed to be represented by a finite
set of particles. Each of these particles has a finite number of degrees of freedom and can
move following, only, the directions of a regular lattice, jumping from one lattice node (sites)
to another in unitary time steps. Each lattice node is the site of a collision process between
particles. In this way, their dynamical evolution is described following a sequence of unitary
time steps. Each time step evolution is performed, in accordance with a collision step
followed by a propagation step.

Description of fluid flow by following the dynamical evolution of a finite set of
material points in random motion, considering elastic collisions between these points, was
achieved in the late XIX by Maxwell and Boltzmann, founding the Kinetic Theory of Gases.

In kinetic theory, continuous variables are used for describing space, time and
velocities. Broadwell (1964) was the first to use discrete variables, proposing a three-
dimensional model with six directions following the orthogonal directions of a Cartesian
frame, establishing the Discrete Kinetic Theory.

The first LGA model was introduced in the early seventies by Hardy, Pazzis e
Pomeau (1973, 1976). In the first half of the eighties, several papers from Wolfram (1983,
1984) on cellular automata had a great influence on LGA development. A critical step was
given by Frisch, Hasslacher ¢ Pomeau (1986). They suggested a hexagonal LGA model,
further called FHP model.

LGA theoretical development was achieved by introducing ensemble averages over a
set of LGA realizations. Chaos molecular hypothesis gives Boltzmann equation in discrete
form, which has an H-theorem and a Fermi-Dirac distribution as equilibrium solution.
Further, use of Chapman-Enskog method shows that FHP and several other LGA models are
capable of retrieving hydrodynamic equations in the limit of low Reynolds and Mach
numbers.

Boltzmann’s equation describes what is expected to be the dynamical evolution of the
particles distribution function N; (X, T), related to direction i, lattice site X and time T, when
a great number of LGA realizations are considered.

Boltzmann’s equation gave rise to another kind of lattice gas models, presently called
Lattice Boltzmann Models (LB) which are based on the relaxation of N;j to an equilibrium
distribution N;°, written in the manner to retrieve hydrodynamics, without the intrinsic
limitations of Fermi-Dirac based LGA older models.

An LB model based on a hexagonal plane lattice is used in LGFlow, for describing
intermediate Reynolds number flows. Sample studies showed that LGFlow module based on
LB model can be used up to Re=1000 in a Pentium-II, 124 Mb resident memory PC.

In the next, the basic fundamentals of lattice gas models are presented, followed by a
brief presentation of LGFlow software and machine requirements. Finally, visualization
results of using LGFlow as a numerical water table are presented and discussed.

2. LATTICE GAS FUNDAMENTALS

2.1 Kinetic Theory

Although kinetic theory dates from Bernoulli (1738), who tried to explain elasticity of
gases considered them as a set of particles in random motion, its main development occurred
in the second half of XIX century by Maxwell and Boltzmann. This was achieved by



introducing probability theory in the study of N-body problem in classical Lagrangian
mechanics.

In fact, no general solution exists for the N-body problem when N is larger than 2.

Considering a gas as a set of a very large number N of material points, with
translational degrees of freedom, it is possible to use probability laws when considering

f(r, ¢, t)
as a probability density function for the number of particles with velocities between ¢ and ¢ +
dc found, at time t, inside an elementary volume dr of the physical space.

Considered as a continuous function, the velocity distribution function f(r, ¢, t) is
modified in the absence of external forces by the streaming of particles and by collisions in r,
¢ space. Its evolution is given by Boltzmann’s equation:

atf_l—cocaocf :(atf)coll (1)
where 0, is a time derivative and 0, means a spatial derivative.

Boltzmann’s equation has an H-theorem and an equilibrium solution, explaining
irreversibility of macroscopic behavior as due to inter-particle collisions. In this way,
collisions are considered to be the main mechanism responsible for dissipation phenomena in
fluids.

In the early XX century, Chapman and Enskog, simultaneously, formally retrieved
hydrodynamic transport equations from Boltzmann’s equation, by considering the first
statistical moments of the velocities distribution function (Chapman and Cowling, 1970):
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where v designates fluid velocity.

In the above equations:

1) pressure p is directly related to mass density p by ideal gas law,

i1) first, u, and second, k, viscosity coefficients are given in terms of the
collision term in the Boltzmann’s equation and related to ideal gas
behavior.

These two above remarks are very important in the context of lattice gas development.
In fact, this means that: a) a set of particles follow ideal gas law, when /ong-range interaction
are not considered; b) hydrodynamic equations are insensible to the details of collision
processes, which appear related, only, to the transport coefficients themselves p and « .

The first observation is of no consequence in the low Mach number approximation for
incompressible flow.

The last observation was the basis for the development of LGA models.

2.2 Lattice Gas Automata Models: Microscopic dynamics

In LGA models (Fig. 1), particles are restricted to move along the directions of a
regular lattice, jumping from one lattice site to another after unitary time steps. Lattice
particles are not to be considered as gas molecules, but just as model particles, with the same
overall statistical behavior of a large set of gas molecules. In this way lattice particles follow
mass and momentum conservation in collisions at lattice sites. For each time step, the dynamic
evolution of the model is, then, given in two steps. In the first step, designated as collision
step, the state of site X is changed following collision rules conceived so as to preserve total
mass and momentum of the site. In the second step, called propagation step, particles are
propagated to the neighbor sites, in accordance with their direction at site X after collision
step. In addition, an exclusion principle is used, avoiding two particles to be, simultaneously,
at the same link between two sites, at the same time step. Due to the nature of LGA models,
this restriction is not to be considered as a physical restriction, but a way for reducing
computational requirements, enabling to work with Boolean variables.



Figure 1. A hexagonal, two-dimensional lattice gas model.

Consider a regular lattice where each site X has by, neighbors. A Boolean variable
n; (X, T) is assigned to site X to indicate the presence (nj=1) or absence (n;j=0) of a particle in
direction i at time T. Vector ¢; indicates the unitary velocity vector pointing in direction i. A
finite, at most b,, number of rest particles is allowed to populate site X. Let b= by, + b;. Let S
be the set of all possible states of a given lattice site. Obviously S has 2° elements.
A given state s of S can be represented by the array:
$=(Sol,-+ »Sobr> S1» --+>Sbm) 4)
where the first b, bits indicate rest particles and the following by, bits indicate moving
particles.
Microscopic evolution is described by the following equation:
nj(X+¢;, T+1)=ni(X,T) + 0i(no1,.. Nobr, N1, -..Npm) Q)
where ®;: (no1,.. Nobr, N1, -..Npm)—>{-1,0,1} represents the collision operator which can take the
values —1, 1 or 0, depending on the state (no1,.. Nopr, N1, ...Npm) Of site X, before the collision.
Considering o: SXS — [0,1] to be the transition matrix (with 2° X2° elements), the
collision term can be written as

b
O; (g5 Ny s My s Ny ) = z ZOL(S, s')(s'i—s;) Ha(nﬁi »Sjui )} (6)
s s' j=1
where s designates post-collision states.

2.3 Ensemble averages. Macroscopic behavior of a LGA model.

Lattice-gas models have three description levels. In the more detailed level, ni(X,T)
are described for every X and T. In general, this is too refined in the description of
macroscopic phenomena. A less detailed description is given by furnishing the expected
values Ni=<ni(X,T)>, obtained as ensemble averages over a large number of realizations. In
the third level, only the first moments of N; are furnished for each X and T. In fact, in the
continuum limit, when Knudsen number is very small, it can be show that the first moments
of N; are related between themselves through a closed system of equations, i.e., the
hydrodynamic equations.

Classically, in the framework of Fluid Mechanics, we try to solve this closed system
of equations and obtain numerical values for pressure and velocity fields. In LGA conception,
expected values N; (X, T) result from several Boolean realizations. Macroscopic equations
are, then, obtained from the first moments of N;. What we are going to show, in the
following, is that, under certain restrictions, these moments satisfy classical hydrodynamic
equations.



Ni(X,T) is defined as the expected value of nj(X,T), over an ensemble of realizations,
run using randomly chosen initial conditions and satisfies.

Ni(X+ci, TH)=N(X,T) + Qi(Noi... Nobr, N1, ...Npm) (7)
which is the Boltzmann’s equation for the lattice, in discrete form. Taking molecular chaos
hypothesis into account, the collision term can be written as:

Qi(NOlr- Nobrs le ~-9me):
b
<O (N NNy eny) >= Y| Y A s)(s-s,) [N A-N)"™ (8)
s s' j=1

It may be show that, as a consequence of exclusion principle, this equation has a
Fermi-Dirac distribution as equilibrium solution.

2.4 LGA Hydrodynamic Equations.
The first two moments of distribution function N; are:

2N =p ©

lZNiCi =u (10)
P

where p=p(X, T) is the total number of particles and u= u (X, T) is the macroscopic velocity
in site X, at time T, in lattice units.
Using Chapman-Enskog method, a closed system of equations is obtained relating
these two first moments, in the limit of low Reynolds number and Mach number M<<1
Vv=0 (11)
PO, (Vy) =0, (p) +pvOs0,V, (12)
where v=(h/d)u, h is a space scale and o is a time scale, converting lattice to physical
variables
For high Reynolds number, non-physical lattice effects are present in the
hydrodynamic equations. These effects are to be attributed to the nature of Fermi-Dirac
equilibrium distribution, associated with exclusion principle.

2.5 Lattice Boltzmann Model.
Lattice Boltzmann models are based on relaxation equations for the velocities
distribution function. The most common are written as:
N.(X,T)-N? (X, T)

Ni(X+e;, T+H1)-Ni(X,T) = (13)
T

where 7 1S a relaxation time, in lattice units.

Equilibrium distribution, N, is written in the manner so as to retrieve hydrodynamic

equations in the form
Vv=0 (14)
1
0,(v) +0,[v.v, |- —Eaa(p)waﬂ[aﬁ(ua)] (15)
describing incompressible flow, without the limitations of Boolean models and able to
describe high Reynolds number flows.

3. FLOW SIMULATION IN LGFlow
3.1 Simulation Grid

LGFlow has a small grid editor (Fig. 2) and is able to open black and white bitmaps,
where velocity is to be calculated at the grid points in the flow region.



Figure 2. LGFlow grid editor.

B&W bitmaps are usually codified as rectangular arrays of black and white pixels.
LGFlow uses a hexagonal plane lattice, where each site has 6 neighbors. This is performed in
accordance with Fig. 3 showing how LGFlow establish a 6-neighboring relation on a
rectangular grid.

€
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(a) (o) (c)
Figure 3 (a) Establishing a 6-neighboring relation on a rectangular grid. (b) Sites 1-
6 are considered to be the 6 next neighbors of the central site 0. (c) Macroscopic
velocity is calculated at central site by using the hexagonal configuration.

3.2 Boolean Model.

Evolution equation, Eq. (5), is the basic algorithm used by LGFlow for simulating
flow. At time t=0, lattice particles are randomly distributed on the lattice sites. For each pre-
collision configuration s, post-collision configuration s’ is randomly chosen between those
states s” with the same mass and momentum. This is performed by using a transition table
located in computer resident memory and constructed, previously to simulation, following the
particular LGA model used. LGFlow is based on a hexagonal lattice with b,,=6 and b,=1;
collisions exclude pre-collision state when transition is possible. This model is called FHP
collision full-saturated model due to Frisch, Hasslacher e Pomeau (1986). In propagation
step, each particle at direction 1 is propagated to the neighbor site X+ ¢;.

At solid boundaries, particles that reached boundary sites are bounced back in the
same direction, at the next time step. This is the, frequently used, bouncing-back condition,
avoiding flow slipping at the boundary, and assuring the limiting condition u=0.

In simulating incompressible flows, considering the state equation relating pressure to
mass density, pressure gradients can, only, be promoted, associated to density gradients,
which must, in turn, remain small. This problem is eschewed in conventional simulation by
using Navier-Stokes low Mach number approximation. Nevertheless, in LGA simulation,
flow is the result of billiard balls collisions and incompressibility can only be assured by



working with small |u| meaning small M=u/c,, where c; is the speed of sound in lattice units.

It can be show that ¢,=0.65, in present Boolean model. In this way, in LGA simulation a
pressure gradient can only be created associated to a density gradient, which must be small,
assuring M<<1 and avoiding compressibility effects.

For simulating flow, LGFlow Boolean module uses periodic conditions and a pumping
zone at the beginning of the water-table. Periodic conditions assure that particles that escape
from the end of the water-table are re-introduced at its beginning. In pumping zone,
momentum is added to the particles, forcing them to the flow domain. In this way, LGFlow
tries to mimic the real conditions related to a real hydraulic closed looping.

3.3 Boltzmann Model
LB model simulation is very easy to carry out. Initial conditions are source data and
given in terms of p and components x and y of velocity u for each site X. Equilibrium

distribution N7 (X,T) is, then, calculated, for each site X. Boundary sites are considered to

have an equilibrium distribution N7 (p,u), given in terms of the specified velocity u at the

boundaries. In the following steps, relaxation equation, Eq. (13), is, successively, used to
calculate Nj. At each step, velocity is calculated using Eq.(10), giving the flow field and
enabling visualization at LGFlow simulation window.

4. RESULTS

4.1 Boolean Model. Fig. 4 presents a partial view of
the main flow visualization window of LGFlow, showing the §
simulation results of a plane Poiseuille flow, using a Boolean
model. Physical domain had 20X80 points and simulation
took about 5 minutes in a Pentium II, 400 MHz computer,
after 10° steps. Although representing a very simple flow
problem, Poiseuille flow has been used for validation
purposes. Simulation was performed with Re=5 and M=0.09.

Boolean models are most appropriate to simulate low
Reynolds number flows and were successfully used by M-
present authors to simulate fluid flow through porous
structures, in the prediction of intrinsic permeability of »
petroleum reservoir rocks. In these cases Re ~1 (Santos ef e -
al., 2000a,b). Results confirmed the reliability of Boolean || R
method for calculating intrinsic permeability, for five |
different Brazilian sandstones. Fig. 5 presents a sample [N
visualization of velocity field inside a two-dimensional
porous structure, obtained by LGFlow. Pumping zone is 10
lattice units large, where a particle going to the left has a
probability p=0.08 to be turned back to the right. Probability =~ Figure 4 Partial view of
p corresponds to pump strength and will be responsible for LGFlow visualization
accelerating the fluid toward the porous structure. Figure  window, showing a plane
also shows two free flow zones, assuring flow uniformity, at  Poiseuille flow
the entry and rear faces of the porous structure.
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Figure 5. LGFlow simulation through a porous structure using Boolean model.

. F1gure6F10W pa-s-tla-l circular cylinder.
Re=70. Comparison with a flow visualization
taken from Batchelor (1970)

i inside

4.2 Boltzmann Model. Fig. 6 shows

§ simulation results using LB model for the

flow past a circular cylinder at Re=70.
Simulation starts by supposing fluid at rest at
t=0 and by imposing a constant velocity to the
right at all four boundaries. Results are related
to the first 1000 simulation steps and
simulation is compared to a flow visualization

E taken from Batchelor (1970). Both simulation

and visualization show two vortices with
opposed rotations, behind the cylinder,
created as a result of boundary layer
separation. These two vortices grow, moving
downstream and asymmetry-generated
instability degenerates the flow field to
periodic waves, behind the cylinder (von
Karman vortices).

This is shown in Fig. 7 for flow past a
rectangular plate.

Considering flow against obstacles and
constrictions LGFlow simulation
results have been qualitatively compared with
experimental visualization and numerical
results, for several Reynolds number.

In addition, although partially, LGFlow has been validated against analytical and finite
volume methods and by comparison with experimental data for several problems, including
flow inside lit-driven cavities. In this sense, Fig. 8 shows the real transition when fluid starts



from rest attaining stationary state, when the plate closing a fluid cavity starts moving to the
right at constant speed (Ghia, 1982). Simulation was performed for Re between 100 and 3200,
giving excellent agreement with numerical results obtained by using finite volume methods.
Figure 9 shows a comparison between simulation and Ghia’s results for Re=1000.

5. CONCLUSIONS

Present paper describes the main
models and algorithms used in LGFlow,
conceived to be an interactive numerical
water table for educational purposes.

In this way, LGFlow received an
attractive and user-friendly graphics
interface with on-line visualization
windows for velocity and pressure fields.
Boundary conditions are easily managed
from form windows. LGFlow is, thus,
easily managed by undergraduate and
graduate students in the learning of fluid
mechanics and related disciplines.

In addition, although based on a very
simple hexagonal lattice, validation
results, apparently, confirm the reliability
of LGFlow to be used in simulating two
dimensional flows.
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Figure 7. von Karman vortices: speed fields for
2000, 4000 and 15000 time steps (Re=467)

Figure 8. Lid -driven cavity: LB simulation starts from the rest to stationary state. Flow
domain: 155X155. Figure shows speed fields for 2000, 6000 and 25000 time steps
(Re=400, M=0.09).
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Figure 9 Velocity vy (y) at x=L/2 for Re=1000, after flow attains stationary state.
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