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Abstract. This work presents a numerical technique for solving three-dimensional non-
Newtonian free surface flows. It is an extension of the technique introduced by Tomé, McKee and
Duffy (1996) to three dimensions. The governing equations are solved by the finite difference
method on a staggered grid. It uses marker particles to describe the fluid which provides the
location and visualization of the free surface. As currently implemented, the present method can
simulate the flow of Cross and Power-law modelled fluids. Results demonstrating the capability
of this technique for solving industrial problems are presented. In particular, results which
simulate the flow of a non-Newtonian fluid jet impinging onto a flat surface are given.
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1. INTRODUCTION

Non-Newtonian fluid flows with free surfaces appear in many technological processes:
container filling (food industry), injection moulding (plastic industries), ink jet devices, wire
coating, among others, are all examples of non-Newtonian free surface flows problems. Many
numerical techniques have been proposed over the past three decades to treat non-Newtonian
flows. Today there is an intense activity in this area: a general overview of free surface flows
can be found in the books of Shyyet al. (1996) and Griebelet al. (1997) (see also Mompean,
1997; Brasseuret al., 1998; Dinget al., 1993). This paper describes a numerical technique
for solving three-dimensional non-Newtonian free surfaces flows. The governing equations of
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a generalized fluid are considered and a solution procedure is presented. As a test problem we
simulated the flow of a non-Newtonian jet impinging onto a flat surface. The numerical results
obtained with the Cross model agree qualitatively with the theory.

2. GOVERNING EQUATIONS

The basic equations for the flow of an incompressible generalized fluid with density� can be
written as

�
Du

Dt
= r � ��� + �g ; r � u = 0 (1)

whereu(x; t), �(x; t) andg denote the fluid velocity, the stress tensor and gravitational accel-
eration, respectively. The stress tensor is required to obey the constitutive equations

��� = �p I+ 2�(q)d (2)

wherep is the fluid pressure,I is the identity tensor,d is the rate-of-deformation tensor

d =
1

2

h
(ru) + (ru)T

i
; (3)

q is the local shear rate defined by

q =
h
2tr(d2)

i1=2
(4)

and�(q) is the apparent viscosity (a prescribed function ofq). Introducing Eq. (2) and Eq. (3)
into Eq. (1) we obtain

Du

Dt
= �rp+ �(q)r2u+r�(q)

h
(ru) + (ru)T

i
+ g; (5)

r � u = 0; (6)

where�(q) is the kinematic viscosity. We shall consider unsteady free-surface flows of viscous
fluid moving into a passive atmosphere (which we may take to be at zero pressure). In the
absence of surface tension the normal and tangential components of stress must be continuous
across any free surface, so that on such a surface

n � (��� � n) = 0 and m � (��� � n) = 0; (7)

wheren andm denote unit normal and tangent vectors to the surface and��� denotes the stress
tensor. We also have the no-slip condition (u = 0) on fixed boundaries. Other boundary
conditions, such as those at an entry or exit port to the computational domain, are discussed
in Tomé, Duffy and McKee (1996). We consider three-dimensional flows and use Cartesian
coordinates, with
u = (u(x; y; z; t); v(x; y; z; t); w(x; y; z; t)) andp = p(x; y; z; t). With L, U and�0 denoting
‘typical’ length, velocity and viscosity scales, we introduce the nondimensionalization

u = U�u; x = L�x; � = �0��; q =
U

L
�q; t =

L

U

�t; p = �U
2�p; g = g�g;

whereg = jgj (so that�g is a unit vector). For the sake of clarity we drop the overbars so that
Eq. (5) and Eq. (6) may be written as
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@u

@t
= �rp+N(u) (8)
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@z
= 0 (9)

whereN(u) has components

N1 = �
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whereRe = UL=� andFr = U=
p
Lg are the associated Reynolds number and Froude number

respectively. The local shear rate Eq. (4) is given by

q =

"
2

�
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:(13)

The viscosity�(q) can be any function ofq representing the shear-thinning nature of the fluid.
In the simulations, we employ the Cross Model,

� � �1

�0 � �1
=

1

(1 + (Kq)m)
; wherem, �0, �1 and K are given positive constants.(14)

3. PROCEDURE

To solve Eq. (8) and Eq. (9) we employ the following procedure which is the 3D-version of
GENSMAC (see Tom´e, Duffy and McKee, 1996).
Let us suppose that at a given time, sayt0, the velocity fieldu(x; t0) is known and boundary
conditions for the velocity and pressure are given. To compute the velocity field and the pressure
field at the advanced timet = t0 + Æt, we proceed as follows:

Step 1: Computeq(x; y; z; t0) and�(x; y; z; t0) usingu(x; y; z; t0)

Step 2: Let ~p(x; y; z; t) be a pressure field which satisfies the correct pressure condition
on the free surface.
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Step 2: Calculate the intermediate velocity field,~u(x; y; z; t), from

@~u

@t
= �r~p+N(u) (15)

with ~u(x; y; z; t0) = u(x; y; z; t0) using the correct boundary conditions foru(x; y; z; t0).
The components ofN(u) are definided by Eqs. (10)–(12). These equations are solved by
the finite difference method.

Step 3: Solve the Poisson equation

r2
 (x; y; z; t) = r:~u(x; y; z; t): (16)

The appropriate boundary conditions for this equation are (see Tom´e & McKee, 1994)

@ 

@n
= 0 on rigid boundaries and  = 0 on the free surface.

Step 4: Compute the velocity field

u(x; y; z; t) = ~u(x; y; z; t) �r (x; y; z; t): (17)

Step 5: Compute the pressure

p(x; y; z; t) = ~p(x; y; z; t0) +
 (x; y; z; t)

Æt
: (18)

Thus, we solve the momentum equations explicitly followed by a sparse symmetric system (the
discrete Poisson equation) for the potential function . For container filling problems the order
of this system is continually increasing (since one only solves foru andp within the bulk fluid).

3.1 Boundary conditions

The rigid boundary conditions currently implemented are of no-slip and prescribed inflow types.
They are applied on the rigid boundaries (containers and inflow boundaries) in contact with the
fluid and require the calculation of the intersections of lines parallel to the sides of the cells
with the containers. These intersections are calculated only once and stored in a tree structure
representing the cells in the structures Container and Inflow. For details see Casteloet. al.

(2000).

4. BASIC FINITE DIFFERENCE EQUATIONS

For solvingSteps 1 to 5 of the procedure presented in the previous Section we employ the
following approach. A staggered grid is used. A typical cell is shown in Fig. 1. The variables
pi;j;k, the potential function i;j;k and the discrete shear rateqi;j;k are positioned at a cell centre
while ui;j;k, vi;j;k andwi;j;k are staggered by a translation ofÆx=2, Æy=2 andÆz=2 respectively.
A scheme for identifying the free surface and the fluid region is employed. To accomodate
this, the cells within the mesh are defined as full cells (F), surface cells (S), empty cells (E)
and boundary cells (B). A detailed description of these is given in Tom´e et. al. (2000). The
momentum equation Eq. (15) is discretized and applied atu�nodes,v�nodes andw�nodes
respectively. The time derivative is discretized explicitly while the Laplacian is approximated by
central differences. The convective terms are first averaged and then are discretized using central
differences. Details of these approximations are given in Tom´e et. al. (2000). Therefore, Eq.
(15) is approximated by the following difference equations
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Figure 1. Typical cell used in a calculational time-step.
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and similar expressions for thev andw components. The Poisson equation Eq. (18) is dis-
cretized at cell centres using the seven-point Laplacian, namely,

 i+1;j;k � 2 i;j;k +  i�1;j;k

Æx2
+
 i;j+1;k � 2 i;j;k +  i;j�1;k

Æy2
+
 i;j;k+1 � 2 i;j;k +  i;j;k�1

Æz2
= ~Di;j;k(20)

where ~Di;j;k =
~ui+ 1
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;k � ~vi;j� 1

2
;k

Æy
+

~wi;j;k+ 1

2

� ~wi;j;k� 1

2

Æz
:

The velocity at the advanced timetn+1 is obtained by discretizing Eq. (17) at the respective
nodes, namely,8>>>>>><

>>>>>>:
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�
:

(21)

Equation (20) leads to a symmetric and positive definite linear system for i;j;k. In order to solve
this linear system we employ the conjugate gradient method as implemented in GENSMAC (see
Tomé & McKee, 1994). Therefore, a calculational cycle consists of solving Eqs. (19)–(21) for
a given time-step.
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4.1 Free surface stress conditions

Let n, m1, andm2 denote unit normal and tangential vectors on the free surface. Then, condi-
tions Eq. (7) can be written as
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+
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= 0 ; (22)
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respectively. In order to apply these conditions we employ the ideas presented by Tom´e & Mc-
Kee (1994) as follows. Let us suppose that the mesh spacing is small enough so that, locally, the
free surface can be approximated by a planar surface. Then Eqs. (22)–(24) can be approximated
by local finite differences according to three cases: planar surface parallel to a coordinate axis,
450-sloped planar surface and 450-sloped planar surface. Details of the corresponding finite
difference equations involved for each case are given in Tom´eet. al. (2000).

4.2 Time-step control and free surface movement

A procedure for calculating the time-step is employed. The time-step size is computed accord-
ing to the following stability restrictions
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Re

2

1

�max
; (25)

where�max is maximum value of the viscosity whithin the bulk fluid (normally taken as 1).
The implementation of this time-step procedure follows the same ideas of Tom´e, Duffy and
McKee (1996). The fluid is represented by a B-Rep data structure (see M�antyl�a, 1988). The
fluid surface is defined by a piecewise linear surface composed of triangles and/or quadrilaterals
containing marker particles on their vertices. The fluid surface is updated in three stages: firstly,
the surface is moved to the new location according to the newly computed velocity field, in the
second stage new particles are inserted if required and thirdly, particles are removed from cells
which have accumulated too many. A fluid particle moves according to the equation

dxp

dt
= up ;

whereup is the velocity of the particle at timetn+1. By using Euler’s method, the particles are
moved to the new position

x
n+1 = x

n + upÆt; y
n+1 = y

n + vpÆt; z
n+1 = z

n + wpÆt;

wherexn; yn; zn is the position of particlep. The particle velocitiesup; vp; zp are found by
performing a tri-linear approximation using the eight nearest velocities.
Details of particle insertion and particle removal are given in Casteloet. al. (2000).
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5. NUMERICAL RESULTS

The finite difference equations described in Section 4 were incorporated into the Freeflow–
3D code in order to simulate unsteady non-Newtonian free surface flow. We present several
calculations which demonstrate that the technique presented in this paper can indeed simulate
flows of a shear thinning fluid. The results are as follows.
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Figure 2. Problem specification and viscosity variation as a function of the parameterK.

a) b)

q

5.1 Simulation of a jet impinging onto a flat surface

We consider a flat surface of dimensions 8cm� 8cm and an axisymmetric jet of 6mm diameter
which is issuing from an axisymmetric nozzle into the flat surface at a prescribed velocity (see
Fig. 2a). The following input data was employed: domain dimensions: 8 cm� 8 cm� 7 cm;
mesh size:80� 80� 70 cells (Æx = Æy = Æz = 1 mm); jet diameter (D): 8 mm; fluid velocity
at the nozzle) (U ): 0.25 ms�1 ; flat surface dimensions:8 cm�8 cm with wall thickness3
mm; nozzle dimensions:8 mm diameter and 7 mm height; height of nozzle (H): 6 cm (distance
of the nozzle to the flat surface); convergence criteria for the Poisson equation: EPS =10�7 ;
gravity was taken to act in thez�direction withgz = �9:81 ms�2. The fluid was modelled by
the Cross model using�0 = 0:002, �1 = 0:0002 andm = 1. For the scaling parametersU , D
and�0 were employed so thatRe = UD=�0 = 1.0 andFr = 0.8924. The no-slip condition was
applied on the flat surface walls.
To demonstrate that the technique presented in this paper simulates non-Newtonian flow we
present five simulations through which we can observe non-Newtonian behaviour of a fluid
modelled by the Cross model. The problem studied is the jet flow described above with the
same geometry and input data; only the data regarding the viscosity will be different. For
the first run we used the Cross model with the constantK = 0, obtaining a Newtonian flow
with viscosity� = �0; for the next three runs we employed the Cross model withK = 0.1, 1
andK = 10, respectively. In the fifth run we performed a Newtonian flow with the viscosity
� = �1 (K � 1 in the Cross model). In these runs the scaling parameters were the same for
each run, namely the supplied values ofU ,D and�0. Figure 3 displays three-dimensional flow
visualizations at different times for these runs where, in the first column, we have the results
of the first run (Newtonian flow with� = �0); the second column displays the Cross model
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results withK = 0:1; third and fourth columns display the cross model results ofK = 1

andK = 10, respectively. The last column displays the non-Newtonian results with� = �1.
The plots shown in Fig. 3 are taken at the same time frame. Figure 4 displays the front view
visualization of these results. As we can observe in Figs. 3 and 4, the behaviour of the flow of a
non-Newtonian fluid modelled by the Cross model is intermediate between the two Newtonian
flows of � = �0 and� = �1. Indeed, as we can see in the Cross model (see Fig. 2b) the value
of the constantK has a direct influence on the value of the viscosity and hence, the flow can
approach the Newtonian flow with� = �0 (if K <<< 1) or the Newtonian flow with� = �1

(if K >>> 1) according to the value ofK. As we can see from the plots, the larger the value
of K the closer the flow is to Newtonian flow with� = �1 (see Figs. 3 and 4,K =1). These
results are consistent with the Cross model where for large values ofK the value of viscosity
approaches�1 and therefore the flow should approach the Newtonian flow of� = �1. Thus,
the results shown in Figs. 3 and 4 give us confidence that they are correct.
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