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Abstract. This paper presents a method for predicting intrinsic permeability of porous media based
on Lattice Gas Cellular Automata methods. Two methods are presented. The first is based on a
Boolean model (LGA). The second is Boltzmann method (LB) based on Boltzmann relaxation
equation. LGA is a relatively recent method developed to perform hydrodynamic calculations. The
method, in its simplest form, consists of a regular lattice populated with particles that hop from site
to site in discrete time steps in a process, called propagation. After propagation, the particles in
each site interact with each other in a process called collision, in which the number of particles and
momentum are conserved. An exclusion principle is imposed in order to achieve better
computational efficiency. In despite of its simplicity, this model evolves in agreement with Navier-
Stokes equation for low Mach numbers. LB methods were recently developed for the numerical
integration of the Navier-Stokes equation based on discrete Boltzmann transport equation. Derived
from LGA, LB is a powerful alternative to the standard methods in computational fluid dynamics.
In recent years, it has received much attention and has been used in several applications like
simulations of flows through porous media, turbulent flows and multiphase flows. It is important to
emphasize some aspects that make Lattice Gas Cellular Automata methods very attractive for
simulating flows through porous media. In fact, boundary conditions in flows through complex
geometry structures are very easy to describe in simulations using these methods. In LGA methods
simulations are performed with integers needing less resident memory capability and boolean
arithmetic reduces running time. The two methods are used to simulate flows through several
Brazilian reservoir petroleum rocks leading to intrinsic permeability prediction. Simulation is
compared with experimental results.
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1. INTRODUCTION

Lattice gas models (LGA) designate a large class of models whose main feature is the presence
of a set of particles moving in a discrete space (a lattice). The use of such models to study and
simulate fluid dynamics was firstly introduced by J. Hardy, O. de Pazzis e Y. Pomeau, in 1973,
Hardy et al. (1973), but it was only after 1986 that these models grew in increased importance due
to the work of Frisch et al. (1986, 1987). These authors formally demonstrated that, under certain
conditions, the dynamics of such models was described by the Navier-Stokes equations for
incompressible flows, and could be used to simulate such flows. Since then, several improvements
have been made to simulate multiphase flows (Rothmann and Keller, 1988, Chen et al, 1991),
phase transitions (Apppert and Zaleski, 1990) and the development of a new method to simulate
fluid dynamics: the Lattice-Boltzmann Method (McNamara. and Zanetti, 1988, Higera and Jimenez,
1989, Qian, d’Humiéres, Lallemand, 1992).

Although computer non-expensive, considering processing operations and resident memory
requirements, lattice gas cellular automata (LGA) have intrinsic fluctuations related to the use of
Boolean variables and is not suitable for describing hydrodynamics, excepting in the limit of
incompressible, low Reynolds number flows (Rothman and Zaleski, 1997). In fact, the equilibrium
distribution for the expected values of the Boolean variables, used in these models, is a Fermi-Dirac
distribution, producing non-physical effects for intermediates and large Reynolds number.

Lattice Boltzmann method (LB) was originated from the ensemble average of LGA
microscopic dynamic equation. In this aspect: 1) it is based on regular discrete lattices, maintaining
propagation and collision steps, ii) it works with real variables instead of Boolean variables, which
are interpreted as the probability Ni(X,T) of finding a particle in the direction i of a given lattice site
X, at time T.

The main feature of Boltzmann method, distinguishing this method from a method based on
statistical ensemble averages of Boolean models, is that the collision term is written to give the
expected macroscopic behavior.

In this way LB method is not limited to low Reynolds number flows, being suitable to the
study of flow problems where inertial effects are important. In fact, it has been used in the last
decade in the study of unstable flows with periodic fluctuations (von Karman vortex street).

This work is devoted to present the single phase lattice gas models giving rise to LGA and
LB methods, which are applied to estimate the intrinsic permeability of sandstones. The
microscopic and macroscopic dynamics are discussed. Simulation results are presented and
compared with experimental values in the prediction of intrinsic permeability of Brazilian
sandstones.

2. BOOLEAN MODEL

2.1 Microscopic Dynamics

Lattice gas models are, basically, composed by particles distributed over a discrete space,
the nodes of a regular lattice (Bravais lattice). The particles hop from a site to the neighbor sites in
one time step with a discrete and limited velocities’ set.

In LGA models, the state of a site X at time T is represented by a set of Boolean variables,
designating the presence (n;=1) or absence (n;=0) of a particle in a given direction i, n, indicates the
presence or absence of a rest particle. For each time step, the dynamical evolution of the model is
given in two steps. In the first step, designated as collision step, the state of site X is changed
following collision rules conceived so as to preserve total mass and momentum of the site. In the
second step, called propagation step, particles are propagated to the neighbor sites, in accordance
with their direction at site X after collision step. This is described by the evolution equation:

ni(X+c;, T+1)=ni(X,T) + 0i(ni,...np), (1)



where o;: (ni,...ny)—>{-1,0,1} represents the collision operator which can take the values —1, 1 or 0,
depending on the state (nj,...ny) of site X before the collision. Considering S to be the set of 2°
possible states, s=(si....sp) of site X and ai: SXS — [0,1], to be the transition matrix (with 2°x2P
elements), the collision operator can be written as

o;(N,....n,) = Z Z(X(S,S')(S'i —s;) HS(nj+i=Sj+i) 5 2

whereys’ designates post collision states. In present work, it was considered changes to each possible
state s with the same probability with the inclusion of s between the post collision states.

2.2 The FCHC model

Simulation results presented in this paper are based on the three-dimensional FCHC model
(d’Humigeres et al., 1986). Three-dimensional regular lattices do not have the required symmetries
and fail in describing fluid flow with isotropic properties. To overcome this problem d’Humigres, et
al. proposed the use of the face centered hipercubic lattice (FCHC). This lattice is constructed
using the vectors:

¢; = perm(+1,£1,0,0), 3)
where the symbol “perm(a.b,c.d)” indicates all the permutations among a,b,c,d. There are six
possible permutations and four combination of signs and, consequently, 24 vectors ¢;. Considering
the three dimensional projection of FCHC lattice (i. e. the first three dimensions), two kinds of
vectors are possible. Twelve vectors have the form

¢, = perm(£1,£1,0), 4)
whose moduli are /2. These vectors will connect second neighbors in the three dimensional
projection.

The remaining twelve vectors have the form

¢, = perm(£1,0,0), ®))

and correspond to vectors linking the first neighbors in the projection. It is important to notice that
each projected vector of this form is the result of the projection of one of the two possible vectors in
the four dimensional lattice:

¢, = (perm(£1,0,0).1), (6)
and

¢, = (perm(£1,0,0),-1), (7)
therefore it is necessary to use two vectors linking the first neighbors in 3D projection, i. e., two
particles are allowed to populate each of these directions.

2.3 Forcing the Flow

External body forces g(X) may be simulated in LGA by adding a fixed amount of
momentum at site X at each unitary time step. In present paper, this is performed after each
collision step, by changing n; by

Anf = P(X){gi [ni (I=n,,)—n4,(1- ni)]+ 8itb/2 [ni+b/2 (1-n;)—n;(1- ni+b/2)]} , ®)
whenever possible, i.e., whenever exclusion principle is not violated and mass is preserved, P(X)
being 1 when a random variable attributed to X is smaller than S(X) and 0 otherwise, in accordance
with a given probability S(X), related to the external force strength. Eq. (1) is thus, modified, to
give:

ni(X+¢;, T+1)=n;(X,T) + wi(ny,...np) + Anf . )



2.4 Boltzmann Approximation

Lattice gas simulation may be considered as a single realization of a stochastic process,
starting from a given initial condition. Considering an ensemble of different realizations and calling

Ni=<n;(X,T)>, (10)
corresponding to the expected value of the Boolean variable n; at a given point X and time T, the
evolution equation satisfied by Nj can be found, at a closed form, by supposing Boolean variables n;
at X, T to be non-correlated before collision. This is called molecular chaos hypothesis and gives

Ni(X+e;, T+ - NiX,T)= ©, =D | D A(s,s')(s —s,.)f[a(Nﬁi,sjﬂ. } (11)

which is the dynamical evolution equation for the distribution Nj, in the Boltzmann approximation.
In the above equation,

Q, =<o;(n,,...n,) >, (12)
A(s, s7)= <ous, s7)>, (13)
Using the semi-detailed balance condition, it may be proved that,

D A(s,s) =1 Vs'. (14)

Equation (11) has an H-Theorem and an equilibrium solution, which is a Fermi-Dirac distribution
function

o 1

" l+expth+qe,)

(15)

Due to the discrete nature of the model, a linear low velocity approximation of Eq.(15) is
used, written in terms of the density

by
p=> N, +Nb,, (16)

i=l
where b, is the maximum number of rest particles allowed at each site X, and in terms of the mean
velocity

uZLZNc . (17)

This equilibrium solution can be written as

Db D* b’ (1-2f ¢’ 3
N =f]1+ cu +——|—\lc c,——(1-b)5 ., [u u, [+O0(u 18
i |: C2bm oo 2C4 brzn ( 1—f j{ i i D( r) (XBJ o [3:| ( ) ( )
for moving particles whereas for rest particles,
D b (1-2f), 4
Ne=f|1- — u” |+ O(u 19

In the above equations D is the Euclidean dimension of the lattice, D=2 in FHP and D=4 in
FCHC models, b= by, + b; and f=p/b.

2.5 Scaling to physical variables
Using h and ¢ as, respectively, a spatial and a time scale

x =hX

, 20
t=0T (20)



x and t may be considered as physical variables, varying continuously in the spatial and time
domain of the physical system to be described, when h and o are small.

2.6 Lattice Gas Hydrodynamic Equations

Use of Chapman-Enskog method on the Nj evolution equation, Eq.(6), leads to lattice gas
hydrodynamic equations, in the limit of low Knudsen number Kn=h/L=6/I'<<l, where L is a
characteristic length and I is a characteristic time:

2,(p)+8,(puy)=0 21
0,(pu,) + 3, [e(PIpu,uy | = 8, (p(p, u?)) + v, [3, (pu, ) + 8, (pu) |+ md, [0, (puy)]  (22)
where
2(1-p/12
g(P)—3[1_p/24j (23)
Npﬂf)chp—%NVPgP) (24)

1. . .
and cs2 =3 is the square of LGA sound speed. The first and the second viscosity coefficients,

respectively v and m, are related to the eigenvalues of collision operator Q. Equations (21)-(22)
differ from Navier-Stokes hydrodynamic equations: i) by the inclusion of a g(p) dependence in the
inertial term, breaking Galilean invariance, ii) taking M as the Mach number, M =Ulc,, by a O(M?)
additional term in the pressure equation (Eq.(24)) and iii) by the inclusion of density p inside the
spatial derivatives in the viscous terms. These non- physical lattice effects disappear in the low
Reynolds, Re = U L/v and Mach numbers, M =U/cq, limits. This was demonstrated by Rothman and
Zaleski (1997) by using perturbation analysis and the correct hydrodynamic equations are found
when M<<Re<<1:

PO (u,)=0,(p)+pvds0su, (25)
which is the momentum equation for low Reynolds number incompressible flows.

2.7 Boundary conditions

Collision step uses local information only and therefore, boundary conditions are introduced,
solely, in the propagation step. In the sites near the wall, all particles that would hit the walls have
their velocity reversed, during this step: ¢; — - ¢;. This is called a bouncing-back boundary
condition. Bouncing-back restriction leads to non-slip boundary condition at the wall.

In the inlet and outlet regions periodic boundary conditions are used: every particle exiting
the simulation region from one edge is injected into the other edge with the same velocity. In the
simulations of flows through porous media non-solid regions were added in the inlet and the outlet
boundaries in order to guarantee that a particle exiting the lattice will never encounters a wall in the
other edge. These non-solid region were also used to force the flow in the interested region, acting
as hydraulic pumps to compensate head loss produced by porous structure

3. BOLTZMANN METHOD

3.1 Microscopic Dynamics

Three-dimensional physical space is considered to be a cubic lattice where each site X has
b, neighbors. Each site is characterized by a particle distribution function N4(X,T) which evolves
according to the Lattice Boltzmann Equation:

N:(X+¢;, T+)-N;(X+¢;,T+1)=0Q;, (26)



where T is the time variable, the index i indicates the neighbor, ¢; is a velocity vector pointing to
neighbor i (i=0 refers to the rest particle distribution). The term in the right side is called collision
term and is writen in such way that

bl‘n
> Q, =0, (27)
i=0
by
Y Qe =0, (28)

i=0
in order to preserve the mass and momentum of each site.

The evolution of the model, given by equation (26), can be split in two processes. In the
first, designated as collision, the distribution function N(X, T) is changed by the action of the
collision operator. In the second process, called propagation, the values N; are propagated to the
neighbor sites, in accordance with the direction of the vector ¢;.

The mass and momentum variables are defined with the help of the distribution function:

ZNi-l-NO =p, (29)
i=1
b,
ZNici =pu. (30)
i=0

3.2 The BGK Collision Term
In present paper a single-time-relaxation approximation for the collision is used (BGK
model (Qian ef al., 1992)

eq _ \J.
_ (Ni Nj) , (31)
T

where 7 is the relaxation time and N, the equilibrium distribution, is determined in order to obtain

i

the desired macroscopic equations. The rate of change toward the equilibrium distribution is
imposed to produce the viscosity of the fluid, which is the only macroscopic property related to
collisions in single-fluid flows.

3..3 Equilibrium distributions
When equilibrium is reached collision process should not affect the particle distribution.

Therefore, the equilibrium distributions Nieq must be specified by the collisional invariants p and
u. In the case of small u, it can be written:

N (p,u)=A; +Bjquy +Djgpugug i=1.2,....bm (32)
where by, indicates the number of directions of the lattice.

There are some conditions that must be imposed to Nieq in order to determine 4,, B,, and
D, . First, it is imposed that any transformation that preserves the lattice and direction i must not
affect the equilibrium distribution, rest particles equilibrium distributions must be independent of
the direction i, the distributions Nf’q and Ngq must be in accordance with equations (29) and (30)

and equilibrium distribution must retrieve macroscopic hydrodynamic equations, avoiding non-
physical lattice gas effects.
It can be shown that, equilibrium distribution for the rest particles is given by



b
N p(ﬁ}ﬂ(mz, (33)

2
and for moving particles along the main axes
1 2 3 1
N = . = e: -u)? = p| — |(u)?- (34)
i p(beijrp[bm Jcl u+p(bm J(cl u) P[bm J(u)
and for particles moving along the diagonals (]cl.| =2 ), N7 is given by
! 2\br+bm ) 2{b, 2\ by, 2\ b,

3.4 Hydrodynamic LB equations

Using Chapman-Enskog method, in the limit of low Knudsen number Kn=h/L=6/I'<<1,
where L is a characteristic length and I' is a characteristic time and neglecting terms beyond second
order, leads to

0,(p)+ 9y (pu; )= 0 (36)
8,(pu,) +8y(pu,u; )= -0, (p) +v3,[0, (pu,) +0, (puy)] (37)
where the pressure p and the kinematic viscosity v are given by
1
=— 38
pP=3p (3%
v=é(21—1). (39)

The mass balance equation is, exactly, the same equation obtained in classical
hydrodynamics. Considering low Mach number (p constant), the obtained momentum balance
equation will be, clearly, in agreement with the Navier-Stokes equation.

3.5 Boundary conditions

The non-slip condition near the walls can be easily obtained imposing the bouncing-back
boundary condition, i. e., all particle that would hit the walls in the propagation step reverses its
direction in this step. There are other (and more precise) ways to ensure non-slip condition (Zou
He, 1997), but the bouncing-back boundary condition was chosen due to its simplicity.

In the simulations periodic boundary conditions were always used. For simulating flows
through porous media it was added a non-solid region in the inlet and outlet, and flow was forced
adding some amount of momentum at each site of this region, according to the equation

Ni(X+ci,T+1)—Ni(X+ci,T+l)ZQi+f-ci (40)
where f indicates the direction of the force applied and is proportional to its magnitude.

4. RESULTS

Several simulations were performed to calculate intrinsic permeability of Brazilian
sandstones. Simulations start from three-dimensional representations of the porous structure,
reconstructed from petrographic thin plates by using Liang et al. method (Liang et al., 1998).
Segmentation methods provide binary two-dimensional images, from digital color and/or gray-level
images. Three-dimensional reconstruction is based on the generation of three-dimensional
stochastic realizations, preserving the statistical moments of phase function, which are measured on
the target binary image. Present reconstruction method preserves the two first moments of the phase
function: porosity and auto-correlation. A main reconstruction parameter is the sampling factor ‘n’.
Sampling factor n=1 means that three-dimensional representation and the binary image have the
same spatial resolution. As sampling factor n increases, resolution decays with the same ratio. In
general, it is very difficult to preserve original resolution, in reconstructed representations, due to



limitations inherent to the reconstruction method itself, which fails in preserving the fine details of
the porous structure. In this sense, the best reconstructed microstructure is considered to be the one
generated with the sampling factor that gave the best agreement between pore size distributions,
measured on the original binary image and on cross-sections of the three-dimensional
representation. Further details can be found in Liang ef al. (1998) and Damiani ef al. (2000). Table I
gives some simulation results and comparison with experimental data for Brazilian sandstones. Best
sampling factor is indicated by an (*). Another important reconstruction parameter is the 3D
representation linear size N. Size N must be great enough to assure statistical homogeneity, with
respect to fluid flow problem. Nevertheless, computer resident memory requirements are multiplied
by 8, when N doubles. In this way, considering computer limitations, simulation starts from small
and proceeds to larger linear sizes until convergence.

Table I - Simulation results and comparison with experimental data (Experimental data and
source digital images where furnished by CENPES/ Petrobras)

Sandstone Experimental Reconstructed Sampling Simulated Simulated
Sample Permeability Image Linear Size Factor Permeability | Permeability
(N) (n) LB LGA
P26.2K441 441 100 6 - 469
P26.2K441 441 100 5(%) 743 368
P26.2K441 441 150 5(%) 709 -
P26.2K441 441 200 5(*%) - 462
P23.8K 145 145 150 3 - 218
P23.8K145 145 100 4 (%) - 238
P23.8K145 145 150 4 (%) - 256
P26.2K69.7 69.7 150 2 (%) - 90
P26.2K69.7 69.7 200 2 (%) - 77
P22.3K154 154 100 4 - 55
P22.3K154 154 100 ) - 64
P22.3K154 154 100 6 (%) - 81
P27.5K316 316 100 4 - 261
P27.5K316 316 100 5 458 238
P27.5K316 316 150 5 350 -
P27.5K316 316 100 6 (%) - 316

(*) Best sampling factor
5. DISCUSSION AND CONCLUSIONS

Although based on a simpler model, Boolean method gave the best results when compared
to Boltzmann method, in predicting intrinsic permeability of porous rocks. This result may appear
as surprising for all those familiar with Lattice Gas Cellular Automata methods, but not acquainted
with the intrinsic difficulties in working with 3D representations of porous structures.

In fact, difficulty in predicting flow through porous structures is increased due to the
presence of small constrictions spatially distributed inside the whole structure. In usual
representations these constrictions appear with, only, some few voxels width.

Boltzmann method cannot predict reliable values for the velocity field inside these
constrictions as it is based on the relaxation of a distribution function to a collision based
equilibrium distribution, written so as to satisfy continuum macroscopic equations. In fact, recent
works have show that the number of sites between constriction walls must be larger than 20, when
applying Boltzmann method. In this way if we want to enlarge, e.g., a 2 voxels diameter small



channel to 20 voxels, the linear size N must be multiplied by a factor of 10. This increases computer
storage needs by a factor of 10°!

Nevertheless, fluid flow is very ineffective through small constrictions and main flow
follows the trajectory that offers the smallest hydraulic resistance (Fig. 1).

The main question to be answered is related to the suitability of increasing linear size to
improve the accuracy in simulating flow through these small constrictions, considering their small
role in producing hydraulic permeability.

On the other way, LGA method is based on particle collisions and does not requires any
equilibrium distribution to be run. In addition, although bouncing back condition increases
hydraulic resistance through constrictions, with respect to Knudsen flow, main flow is, apparently,
correctly modeled, producing reliable values of intrinsic permeability

Figure 1 Local velocity field inside a two dimensional porous space,
illustrating main flow line (brighter lines correspond to higher
speeds).
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