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Abstract. The Generalized Integral Transform Technique (GITT) is employed in the solution
of two-dimensional laminar natural convection within inclined enclosures filled by air
(Prandtl number of 0.71), subjected to differentially heated walls and insulated horizontal
surfaces. The hybrid nature of the GITT approach allows for the establishment of reference
results in the solution of non-linear partial differential systems, as the coupled set of heat and
fluid flow equations that govern the steady natural convection problem under consideration.
The aim of the present work is to provide reference results to steady-state natural convection
in square cavities with Rayleigh numbers equal to 104 and 105 for several different inclination
angles, α= 400, 600, 1200 and 1400. Numerical values of the mean Nusselt numbers and
streamfunctions are presented to all examined situations.
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1. INTRODUCTION

The thermally driven square cavity with adiabatic top and bottom walls is one of the most
popular test-problems in heat transfer literature. It is important to emphasize that this problem
is free of any singularity in the boundary conditions except the presence of the corners of the
cavity, which makes it more attractive than other problems, offering a sufficiently complete
and complex model for evaluations on accuracy and performance of each individual numerical
scheme proposed in heat and fluid flow. Once of the most relevant contributions in this
classical problem (α= 900, vide Fig.1) was given by de Vahl Davis (1983) that utilized the
streamfunction-vorticity formulation of the flow equations, and adopted the finite differences
method with a false transient scheme to obtain solutions in the Rayleigh number range from
103 to 106. Non-conservative second order differencing was employed, and Richardson’s
extrapolation strategy was invoked to generate the final benchmark results.



The importance of the inclined convection problem was firstly pointed out in the review
paper of Ostrach (1972). Despite of being an excellent test-problem to check the accuracy of
different computational schemes, natural convection inside inclined enclosures occurs in a
variety of engineering applications such as storage tanks, solar energy collectors, multilayered
walls and double windows.

Talaie and Chen (1985) making use of the finite analytic method (FA), investigated the
steady and transient natural convection in inclined enclosures with angles between zero and
900. Steady state results were presented for aspect radio of 1, Grashof numbers between 104

and 106 and Prandtl number of 1. Then, transient solutions were presented for an enclosure
with aspect radio of 10, heated for bellow, for Grashof and Prandtl numbers of 104 and 1,
respectively. The evolution of flow motion in the confined rectangular enclosure was
examined.

In a combined experimental and numerical work, Hamady et al. (1989) studied the
influence of inclined boundaries and Rayleigh number on the local natural convection heat
transfer in an air-filled differentially heated enclosure. The QUICK (quadratic upstream
interpolation for convection kinematics) scheme was utilized to attain the numerical solutions.
Measurements of local and mean Nusselt numbers were presented at various inclination
angles, ranging between 00 (heated from above) and 1800 (heated from bellow), for Rayleigh
numbers between 104 and 106.

Although Rasoul and Prinos (1997) were interested in steady-state results, they made use
of the transient natural convection formulation to study the effect of inclination for Rayleigh
numbers ranging from 103 and 106, and Prandtl numbers equal 0.02, 0.71 and 4000, paying
attention to their effect on the streamlines, isotherms and local and mean Nusselt numbers.
The power law differencing scheme (PLDS) was used for the discretization of the convective
terms. The SIMPLE method was used for transforming the continuity equation into Poisson
equation and a pressure correction equation was solved. Finally, a tri-diagonal matrix
algorithm was applied for solving the algebraic equations.

The Generalized Integral Transform Technique (GITT), reviewed in detail by Cotta
(1993), Cotta and Mikhailov (1997) and Cotta (1998), has been progressively established as a
powerful tool in benchmarking and engineering applications for linear and nonlinear diffusion
and convection-diffusion problems. More specifically it is worth mentioning the integral
transform solutions of the 2-D and 3-D Navier-Stokes equations under streamfunction-only
formulation for incompressible flow within cavities, and the solutions of laminar and
turbulent flows inside regular and irregular ducts. Transient and steady natural convection
inside rectangular enclosures, under Boussinesq approximation and with variables properties,
were investigated by Leal et al. (1999) and Leal et al. (2000), respectively.

The hybrid nature of GITT allows for the automatic global error control along the solution
process, towards an user prescribed accuracy target, making it particularly suitable in
obtaining reference results for test-problems, which can then be employed in the validation of
purely numerical approaches. The aim of the present work is to furnish some benchmark
results through GITT for the natural convection problem inside inclined enclosures, in this
case for inclination angles of α= 400, 600, 1200 and 1400, Ra=104 and 105, Prandtl number
equal 0.71 and aspect ratio of 1.

2. PROBLEM FORMULATION

Steady laminar natural convection of a Newtonian fluid inside a inclined square enclosure
is considered. The lateral walls are differentially heated, while the top and the bottom walls



are kept insulated, as in Fig 1. The Boussinesq approximation for the buoyancy effect is
invoked, and this coupled heat and fluid flow problem is formulated via vorticity transport
equation in streamfunction-only formulation, and the associated energy equation, in
dimensionless form as:
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with boundary conditions:

Figure 1- Schematic representation of inclined enclosure.

The remaining dimensionless variables are given by:
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where "*" identifies the dimensional variables, L is the cavity length, while Th and Tc are the
uniform temperatures at hot and cold walls. The Rayleigh and Prandtl numbers are defined,
respectively by:
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3. SOLUTION METHODOLOGY

The integral transform approach is based on the eigenfunction expansion of the potentials,
in this case, temperature and streamfunction. For this purpose, the boundary conditions on the
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coordinate variable to be eliminated through integral transformation, are first made
homogenous, so as to coincide with the boundary conditions of the eigenvalue problem to be
proposed. Thus, a filtering solution for the temperature field is developed, in the form:

T x y T x y T xp( , ) ( , ) ( )*= + (4.a)

where the filter Tp is the solution of the pure conduction problem in the cavity, readily
obtained as:

T x xp ( ) = −1 (4.b)

which results in producing a new temperature problem, for T*, with homogenous boundary
conditions, and the final filtered system is rewritten as:
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with now homogeneous boundary conditions:
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The next step is then the choice of the eigenfunctions for the dependent variables
expansions. The “x” direction is selected to be eliminated through integral transformation, and
the eigenvalue problem of biharmonic-type is adopted for the streamfunction representation.

For the temperature expansion, the classical second order diffusion operator yields a
Sturm-Liouville-type problem, readily solved with the appropriate boundary conditions of first
kind, at the lateral walls. The respective eigenvalue problems and their solutions are fully
discussed in Cotta (1998), Leal et al. (1999) and Leal et al. (2000).



The solution methodology proceeds towards the proposition of the integral transform pair
for the potentials, the integral transformation itself and the inversion formula.

For the streamfunction field:
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and for the temperature field:
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The integral transformation process is now employed through operation of Eq.(5.a) with
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Similarly, Eq.(5.b) is operated on with 
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Then, the resulting coupled infinite ODE’s system for the transformed potentials is
described by Eqs. (8 and 9), together with the integral transformed boundary conditions:
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The related coefficients ijkA , ijkB , ijkC , ijD , imE , iF , jmnQ , jmnS  and jmP  were already

obtained analytically through Mathematica software system of symbolic manipulation,
Wolfram (1991), and automatically generated in Fortran form. More details can be seen in
Cotta and Mikhailov (1997), Cotta (1998) and Leal et al. (1999). The new coefficient imW ,

also obtained analytically through Mathematica software, is defined as:

∫
1

0

~~
 mi dx  X φ (11)

4. COMPUTATIONAL PROCEDURE

A Fortran 77 code was constructed and implemented on a PC Pentium 266-128Mb. The
subroutine DBVPFD from the IMSL Library (1989) was employed as the boundary value

problem solver, with an automatic local relative error selected to be 10
-4 (i.e. ±1 in the fourth

significant digit). For computational purposes, the expansions were truncated to NV and NT
terms, respectively, streamfunction and temperature fields, towards the user prescribed
accuracy target. An inclined air-filled square cavity (Pr= 0.71) was considered with four
inclination angles, α = 400, 600, 1200 and 1400 for Rayleigh numbers equals to 104 and 105.

Once the transformed potentials, ψ i  and Tm , have been numerically evaluated under
controlled accuracy, the inversion formula, together with the filtering solution, are recalled to
provide explicit analytical expressions, in the “y” direction, for the original potentials ψ(x,y)
and T(x,y).

The average Nusselt number at the midplane vertical cross-section (x=1/2) and at the hot
wall (x=0), Nux, is obtained from de Vahl Davis (1983) as:
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The overall average Nusselt number across the cavity is obtained from:
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The integrations required in Eqs. (12a, b) were numerically performed by making use of
the appropriate subroutines in the IMSL Library (1989).

5. RESULTS AND DISCUTION

For benchmarking purposes in natural convection cavity problems, the convergence
process controls can be done over the mean Nusselt number values. Note that the numerical

quantities of 0Nu  and 2/1Nu  must converge toward the same value under the same

conditions, satisfying the conservation of heat flux through any vertical plane. Therefore, it

looks clear that the overall average Nusselt number ( gNu ) must also converge to the this
value.



Tables 1 and 2 present, respectively for Ra=104 and 105, benchmark results for the
streamfunction modulus at the cavity center ( MEDψ  at x= y= 1/2), mean Nusselt number at the

hot wall ( 0Nu ) and at the vertical mid-plane of the cavity ( 2/1Nu ), and global Nusselt

number ( gNu ) for the several proposed inclination angles. It can be observed from Table 1
that, as the inclination angle decreases, larger truncations orders are required for full
convergence, especially for the temperature field (Nt), since the problem closes in the classical
Rayleigh-Bernard problem (hot bottom wall and cold top wall - α= 00). The convergence
behavior becomes more critical as Rayleigh is increased, vide Table 2. It is then clear that the
convergence criterion of equality for all the Nusselt numbers requires larger truncation orders

for full convergence, especially due to the value at the hot wall ( 0Nu ), because the derived

series that defines the Nusselt numbers is different in nature from the original eigenfunction
expansions.

Table 1– Benchmark results for Ra= 104.

Inclination  angles
�=1400

�=1200
�=600

�=400

Nv/Nt 32/32 32/32 40/40 40/60

MEDψ 1.786 3.002 6.828 7.516

0Nu 1.324 1.709 2.469 2.471

2/1Nu 1.324 1.709 2.469 2.471

gNu 1.324 1.709 2.469 2.471

Table 2– Benchmark results for Ra= 105.

Inclination  angles
�=1400

�=1200
�=600

�=400

Nv/Nt 40/70 40/70 40/70 40/70

MEDψ 2.027 4.671 15.08 21.03

0Nu 1.768 3.027 4.619 4.499

2/1Nu 1.768 3.027 4.619 4.499

gNu 1.768 3.027 4.619 4.499

Figures 2 and 3 show, respectively for Ra=104 and 105, the effect on the isotherms and
streamlines in a square cavity for the different inclination angles, namely α= 1400, 1200, 600

and 400.
One can note from Fig. 2 that the flow patterns are similar for all angles with a single cell

whose shape changes according to the inclination of the cavity. The isotherms behavior in Fig.
2 indicates similar levels of mean Nusselt numbers, especially for the angles of 60 and 40
degrees.

Figure 3 shows two small cells developed within one large rotating flow for α= 1400.
This patterns is maintained up to an inclination angle of 60 degrees. Then, the two cells merge
into one and the motion becomes a single dominant central roll cell which has a nearly
circular
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Figure 2- Isotherms (0.1, (0.1), 0.9) and streamlines for Ra= 104.
(a) � = 1400; (b) � =1200, (c) � = 600 and (d) � = 400
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Figure 3- Isotherms (0.1, (0.1), 0.9) and streamlines for Ra= 105.
(a) � = 1400; (b) � =1200, (c) � = 600 and (d) � = 400
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shape for α= 400. This behavior in not observed in the work of Rasoul and Prinos (1997)
where at 60 degrees the presence of one cell is already remarked. It takes place in all
probability due to the lack of convergence accuracy on their results. The isotherms in Fig. 3
remain perpendicular to the gravitational vector at α= 1400 and 1200. In situations of α= 600

and 400 the temperature stratification in the core region breaks down and the isotherms are no
longer orthogonal to the gravitational field.

6. CONCLUSIONS

The Generalized Integral Transform Technique (GITT) was successfully employed to
provide some benchmark results to the natural convection problem inside inclined square
cavities. The traditional convergence criterion applied for benchmarking purposes in this type
of problem is completely obeyed, i.e. the equality for the three calculated values of the mean
Nusselt numbers.
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