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Abstract. The classical Galerkin finite element method performs poorly in the computa-
tion of convection-dominated transport phenomena. This deficiency may be alleviated by
stabilization. A family of stabilized methods has evolved over the last two decades, includ-
ing Galerkin/least-squares, SUPG (also known as streamline diffusion), and the unusual
stabilized finite element method. These three methods share the approach of appending to
the Galerkin equation terms containing residual-based operators multiplied by stabilization
coefficients. The residual-based operators naturally account for the direction of the flow.
The stability coefficient is typically designed on the basis of model problems or bounds from
error analyses. Heretofore the flow direction has been ignored or regarded on an ad hoc
basis. In this work we analyze the spurious anisotropy inherent in the Galerkin method,
i.e., the dependence of the solution on the orientation of the mesh with respect to the flow
direction. On the basis of this analysis we propose definitions of the stability parameter
that rationally incorporate the flow direction. Numerical tests compare the performance
of the proposed methods with established techniques.
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1. INTRODUCTION

The Galerkin finite element method with low-order piecewise polynomials performs
poorly for advection-dominated equations. Adding terms to the variational formulation
is well-accepted practice, leading to stabilized methods.

Stabilized finite elements have been around for more than 20 years. These methods
have the desirable properties of improving the numerical stability of the Galerkin method
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and of preserving good accuracy properties. The streamline upwind/Petrov-Galerkin
(SUPG, or streamline diffusion) method was introduced by Hughes and Brooks (1979)
and (Brooks and Hughes, 1982). Variations of this idea considered for advective-diffusive
equations are: the Galerkin/least-squares (GLS) version, introduced by Hughes, Franca
and Hulbert (1989), and a few years later, the version termed unusual stabilized finite
element method (USFEM) (Franca, Frey and Hughes, 1992; Franca and Farhat, 1995).

The additional terms are residual-based and contain stabilization coefficients. The
residual-based operators in these terms translate into a streamline diffusion effect. The
degree of stabilization in this direction depends on the stabilization coefficients. These
were originally conceived based on comparisons to exact solutions of one-dimensional test
problems on uniform meshes (Brooks and Hughes, 1982). They were improved to take
into account general polynomial discretizations using error estimates (Franca et al., 1992).

The design of the stability parameter in previous work ignores the flow direction, or
accounts for it in ad hoc fashion, see, e.g., (Brooks and Hughes, 1982). Here we analyze the
spurious anisotropy inherent in the Galerkin method, i.e., the dependence of the solution
on the orientation of the mesh with respect to the flow direction. We propose definitions
of the stability parameter that rationally incorporate the flow direction. Numerical tests
compare the performance of the proposed methods with established techniques.

2. STABILIZED METHODS FOR ADVECTION-DIFFUSION

Let Ω ⊂ Rd be a d-dimensional, open, bounded region with smooth boundary Γ. We
partition Ω into nonoverlapping regions (element domains) in the usual way, denoting the

union of element interiors Ω̃, such that Ω = Ω̃.

2.1. Boundary-value problem

Consider the (homogeneous Dirichlet) advective-diffusive problem of finding a scalar
field u(x), such that

Lu = f in Ω (1)

u = 0 on Γ (2)

where Lu = −∇ · (κ∇u) + a · ∇u, the diffusivity κ(x) > 0 is known, a(x) is the given
flow velocity, and f(x) is the prescribed source distribution. Generalization of the results
presented herein to problems with other types of boundary conditions is straightforward.

2.2. Galerkin approximation

Galerkin approximation is stated in terms of the set of functions Vh ⊂ H1
0 (Ω). The

standard finite element method is: find uh ∈ Vh such that

a(vh, uh) = (vh, f), ∀vh ∈ Vh (3)

where (·, ·) is the L2(Ω) inner product. (The form of the right-hand side assumes suffi-
ciently smooth f .) The bilinear operator is

a(v, u) = (∇v, κ∇u) + (v,a · ∇u) (4)



2.3. Stabilized methods

The standard family of stabilized methods is obtained by appending to the Galerkin
equation (3) terms containing residual-based operators multiplied by stabilization coeffi-
cients τ , namely

a(vh, uh) + (L̄vh, τLuh)Ω̃ = (vh, f) + (L̄vh, τf)Ω̃ (5)

Subscripts on inner products denote domains of integration other than Ω. Different sta-
bilized methods are obtained via definitions of the differential operator

L̄v =


Lv, GLS (Hughes et al., 1989)
Ladvv = a · ∇v, SUPG (Brooks and Hughes, 1982)
−L∗v = ∇ · (κ∇v) + a · ∇v, USFEM (Franca et al., 1992)

(6)

The methods differ in the treatment of ∇ · (κ∇vh) in the added terms.
Definition of the stability parameter τ is discussed in the following. We restrict the

discussion to linear elements with constant diffusivity within each element. In this case
∇ · ∇vh = 0 in Ω̃ and the three methods coincide.

3. ONE-DIMENSIONAL ANALYSIS AND DESIGN

For completeness we review the analysis of the Galerkin method in one dimension
(representing the case of a uniform d-dimensional mesh aligned with a constant velocity)
and the design of stability coefficients based on this analysis (Brooks and Hughes, 1982).
The presentation in the following analysis is different from the one in (Brooks and Hughes,
1982), but the results and conclusions are identical.

In addition to the constant, an exact, free-space solution to the advection-diffusion
equation (1) in one dimension, with constant coefficients and in the absence of sources, is
of the form

u = exp (|a|x/κ) (7)

3.1. Spurious oscillations in the Galerkin method

We consider a uniform mesh of linear elements of size h, with nodes at xA = Ah.
Nodal values of the exact solution (7) are

u(xA) = (exp (2α))A (8)

where α =
|a|h
2κ

is the element Péclet number. Similarly, we assume that corresponding

nodal values of finite element solutions are

uA =
(
exp

(
2αh

))A
(9)

where uA = uh(xA). The dependence of αh on α is determined by the analysis of a
three-node stencil. (This presentation includes the constant for αh = 0.)

The Galerkin method (3) yields the following equation at interior node A

sinh(αh)
(
α cosh(αh)− sinh(αh)

)
= 0 (10)



Solutions to this equation are the trivial solution αh = 0 (i.e., the constant is represented
exactly) and

αh = arctanh α (11)

which indicates that αh approximates α accurately for α� 1. This presentation may be
reconciled with familiar analyses such as (Brooks and Hughes, 1982) by noting that

arctanh α =
1

2
log

1 + α

1− α
(12)

so that

exp (2 arctanh α) =
1 + α

1− α
(13)

According to Eq. (11), αh is real valued for α < 1, approximating α with increasing
accuracy as α→ 0 (Fig. 1). There is significant degradation in accuracy even prior to the
onset of spurious oscillations at α = 1. For α > 1, spurious oscillations are marked by αh

being complex valued, with Imαh = π/2, so that

uA =
(
− exp

(
2 Reαh

))A
(14)

The real part of αh is shown in Fig. 2.
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Figure 1: Error in αh in the range α < 1.

0 1 2 3 4 5
0

0.5

1

1.5

α

R
e 

αh  / 
α

Figure 2: Reαh for Galerkin.

3.2. Stability parameter

Repeating the preceding analysis for the stabilized methods (5) (all coincide for linear

elements) shows that defining the stability parameter as τ = h
2|a| ξ0, where

ξ0 =
1

tanhα
− 1

α
(15)

leads to αh = α.



A different approach to designing the stability parameter is based on bounds from

error estimates (Franca et al., 1992). For linear elements this results in τ = h
2|a| ξFFH,

where

ξFFH =

{
α/3, 0 ≤ α < 3
1, 3 ≤ α

(16)

Brooks and Hughes (1982) refer to this as a doubly asymptotic approximation (see Fig. 3).
Franca et al. (1992) defined the parameter in terms of the p-norm of a. Here we employ
the 2-norm. In the following numerical results we refer to this as FFH.

4. SPURIOUS ANISOTROPY AND STREAMLINE DESIGN

In addition to the constant, an exact, free-space solution to the multi-dimensional
advection-diffusion equation (1), with constant coefficients and in the absence of sources,
is of the form

u = exp (a · x/κ) (17)

4.1. Spurious anisotropy in the Galerkin method

In contrast to exact solutions, Galerkin solutions are anisotropic in the sense that
they depend on the orientation of the mesh with respect to the given velocity. This
phenomenon is demonstrated in the following analysis.

We consider a uniform, two-dimensional mesh of bilinear elements of size h, aligned
with the global axes, with nodes at xA = (mh, nh). Since aT = |a|〈cos θ, sin θ〉, nodal
values of the exact solution (17) are

u(xA) = (exp (2αc))m (exp (2αs))n (18)

where c = cos θ and s = sin θ. Similarly, we assume that corresponding nodal values of
finite element solutions are

uA =
(
exp

(
2αhc

))m (
exp

(
2αhs

))n
(19)

where uA = uh(xA). The dependence of αh on the element Péclet number α and the
orientation of the mesh with respect to the streamline direction is determined by the
analysis of a nine-node patch (Fig. 4). (This presentation includes the constant for αh =
0.)

The Galerkin method (3) yields the following equation at interior node A

sinh(αhc)
(
αc cosh(αhc)− sinh(αhc)

) (
3 + 2 sinh2(αhs)

)
+

sinh(αhs)
(
αs cosh(αhs)− sinh(αhs)

) (
3 + 2 sinh2(αhc)

)
= 0 (20)

The trivial solution αh = 0 satisfies this equation (i.e., the constant is represented exactly).
There is an additional solution, corresponding to Eq. (11) when the mesh is aligned with
the flow. The variation of this solution with the orientation of the mesh with respect to
the streamline direction (θ) is shown in Fig. 5. For brevity, cases in which αh is complex
valued (α > 1) are omitted. Note that the best performance is attained when the flow is
along element diagonals (θ = π/4).
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Figure 3: Terms in the stability parameter. Figure 4: Nine-node patch.

4.2. Streamline design of the stability parameter

Repeating the preceding analysis for the stabilized methods (5) (all coincide for the
mesh considered) provides a definition of the stability parameter that leads to αh = α,
which is omitted for brevity. In the limits, this parameter may be expressed simply as

τ = h
2|a| D(θ) ξ0(α), where

D =

{
c4 + s4, α = 0
c+ s

1 + 3 cs
(0 ≤ θ ≤ π/2), α→∞ (21)

The least amount of stabilization is applied when the flow is along element diagonals
(θ = π/4, Fig. 6), i.e. when the performance of Galerkin is at its best (Fig. 5).

The difference between the two cases of D is not large. This suggests a definition
of the parameter that may be employed in practice. Since the advective-dominated case
(α� 1) is the challenging regime, we propose

τ =
h

2|a|
cos θ + sin θ

1 + 3 cos θ sin θ

(
1

tanhα
− 1

α

)
(22)

Note that the orientation should be regarded so that 0 ≤ θ ≤ π/2. This presents no
practical limitation. In the following numerical results we refer to the parameter that
leads to αh = α as the streamline parameter (STR), and the one defined by Eq. (22) is
called the estimated parameter (EST).

5. NUMERICAL RESULTS

In this section we compare the numerical performance of stabilized finite element
methods with the proposed parameters to established techniques. We consider the fol-
lowing methods:

STR Stabilized finite elements with the streamline parameter that leads to αh = α in
the analysis in Sec. 4.2.



0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

θ/π

(α
h  −

 α
) 

/ α

α = 0.9
       0.5  
       0.2  

Figure 5: Anisotropy in Galerkin method.
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EST Stabilized finite elements with the estimated streamline parameter (22).

FFH Stabilized finite elements with the FFH parameter (Franca et al., 1992), see (16).

RFB The method of residual-free bubbles, with the bubble derived for the advective
limit (Brezzi, Franca and Russo, 1998).

We use bilinear elements in all tests.

5.1. Smooth boundary layer

Consider a constant-coefficient advective-diffusive problem in the unit square, with-
out distributed sources (f = 0) and with inhomogeneous Dirichlet boundary conditions
selected so that the solution is of the form (17). We use a uniform mesh with 20 × 20
elements. Table 1 shows the relative error, measured in the L2 norm. The error relative
to the exact solution at θ = 0 is consistently larger since the boundary layer spreads along
an entire side of the domain, whereas in other cases it is concentrated in a corner. In all
cases, the interpolation error dominates. For STR and EST the approximation error is
negligible. The EST results are comparable to STR, so from here on we show only EST
results.

5.2. Advection skew to the mesh

We modify Problem 5.1. so that there is a discontinuity in the inflow Dirichlet
data which is propagated into the domain creating an internal layer, with homogeneous
Neumann outflow conditions. Here α = 2.5×104. A piecewise constant reference solution
(based on the advective limit) is set equal to the inhomogeneous Dirichlet value to the
left of the discontinuity, and zero to the right. EST provides some improvement over
FFH, yet RFB exhibits the best performance for these problems with discontinuities,
particularly when the flow is along element diagonals (Fig. 7).

5.3. Advection skew to the mesh with outflow boundary layers

The outflow conditions of Problem 5.2. are changed to homogeneous Dirichlet con-
ditions, leading to outflow boundary layers (Brezzi et al., 1998; Franca et al., 1992).



Table 1: L2 relative errors [%], Problem 5.1.
rel. to exact sol’n rel. to nodal interpolant

α θ STR EST FFH STR EST FFH

0 7.62 7.62 8.59 4.51×10−14 5.25×10−14 1.81
2.5 30 1.14 1.15 1.25 5.04×10−14 3.28×10−2 0.337

45 1.14 1.15 1.26 5.58×10−14 4.74×10−2 0.362
0 12.8 12.8 12.9 1.13×10−13 9.75×10−14 3.65×10−2

250 30 1.67 1.67 1.75 5.22×10−14 1.27×10−3 0.361
45 1.67 1.67 1.77 6.17×10−14 1.20×10−3 0.411
0 12.9 12.9 12.9 9.87×10−14 1.00×10−13 3.66×10−4

2.5×104 30 1.67 1.67 1.75 7.31×10−14 1.28×10−5 0.361
45 1.67 1.67 1.77 6.12×10−14 1.21×10−5 0.410
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Figure 7: L2 error [%] in Problem 5.2. relative to reference solution (left) and nodal interpolant
(right).

Solutions at θ = 60◦ are shown in Fig. 8. The outflow boundary layers are numerically
challenging, but may not represent typical physical configurations. The EST parameter
is designed to reduce stabilization based on the streamline direction, see Fig. 6, which
is inappropriate for the outflow boundary layers in this problem, leading to the relative
deterioration in the EST results (Fig. 9).

5.4. Advection in a rotating flow field

Consider a homogeneous Dirichlet advective-diffusive problem (Franca et al., 1992;
Hughes and Brooks, 1979) in the unit square (centered at the origin), without distributed
sources (f = 0), and with κ = 10−6 and a rotating velocity field aT = 〈−y, x〉. There is
an internal boundary along the negative y-axis, with the boundary condition

u(0, y) =
1

2
[cos(4πy + π) + 1] , −0.5 ≤ y ≤ 0 (23)

An FFH solution on a uniform mesh of 200×200 elements is set as the reference solution,
and the tests are performed on a uniform mesh of 40× 40 elements. Stability parameters



Figure 8: Solutions of Problem 5.3. at θ = 60◦: EST (left), FFH (center), and RFB.
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Figure 9: L2 error [%] in Problem 5.3. relative to reference solution (left) and nodal interpolant
(right).

are evaluated in terms of velocity at element centers. Solutions are shown in Fig. 10.
Table 2 shows the relative error, measured in the L2 norm. EST exhibits the best perfor-
mance on this smooth problem. We note that the version of RFB implemented herein is
designed for the advective limit, while this problem contains diffusion-dominated regions.

Figure 10: Solutions of Problem 5.4.: EST (left), FFH (center), and RFB.

6. CONCLUSIONS

In this work we analyze the dependence of numerical solutions on the orientation
of the mesh with respect to the flow direction. We propose definitions of the stability



Table 2: L2 relative errors [%], Problem 5.4.
rel. to ref. sol’n rel. to nodal interp.

EST 0.779 0.344
FFH 0.904 0.484
RFB 0.809 0.353

parameter that rationally incorporate the flow direction. Numerical tests compare the
performance of the proposed methods with established techniques.
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