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Abstract. For most liquids the specific heat and thermal conductivity are almost independent 
from temperature, but the viscosity decreases significantly with it. A fully developed laminar 
water flow in a curved duct with temperature-dependent viscosity is analyzed in this work. 
The mass, momentum and energy conservation equations are numerically solved by the finite 
element method. Both heating and cooling of the water flow is studied. The secondary flow 
induced by the curvature effects increases the heat transfer rate in comparison with the 
straight ducts but the velocity and temperature profiles are distorted when the effects of 
temperature-varying viscosity are included. The Nusselt number obtained when the fluid is 
cooled with variable viscosity assumption are lower than the constant properties results due 
to the increase of the viscosity values at the inner points of the curved tube that reduces the 
secondary flow effect. The friction factor results also show a marked dependence on the 
viscosity variations in the coil tube cross-section. 
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1. INTRODUCTION 

Laminar flow heat transfer in straight circular ducts with constant fluid properties was 
extensively investigated by Shah and London (1978). The temperature-varying property 
problem is complex due to the fact that fluid properties behave differently with temperature.  

For gases, the density varies inversely with the first power of the absolute temperature but 
the specific heat varies only slightly with temperature. Furthermore, the viscosity and thermal 
conductivity increase as about 0.8 power of the absolute temperature. The Prandtl number, 
however, is practically independent from the temperature.  

On the other hand, for most liquids the specific heat and thermal conductivity are almost 
independent from temperature, but the viscosity decreases significantly with it. Besides, the 
Prandtl number of liquids (oils, water) varies markedly with the temperature.  

In the previous literature (Herwig, 1985;  Etemad and Mujumdar, 1995), the effect of 
temperature-varying properties is often analyzed by approximate concepts like “property ratio 
method” or “reference temperature method”. These two schemes provide a correction for the 



 

constant-property results but according to Herwig and Klemp (1988), these methods were 
proposed for standard cases as pipe and boundary layer flow problems.  

Harms et al. (1998) reviewed different models used to account the temperature-varying 
behavior of viscous liquids. The authors showed that these correlations provide reasonable 
predictions for many fluids but they are not valid over a large range of heating and cooling 
conditions or different geometries. 

The effects of temperature-dependent viscosity variations were primarily focused on the 
circular tube geometry by Bergles (1983), neglecting the curvature effects. The first analytical 
investigation on flow in a coil tube was performed by Dean (1927), considering only constant 
properties. These results showed that the centrifugal forces induce a secondary circulation, 
represented by two vortices perpendicular to the main axial flow. 

At this context, the purpose of this work is to analyze the influence of temperature-
dependent viscosity variations on fully developed laminar forced convection considering the 
curvature effects. Both heating and cooling of the water flow in a coil tube is studied, showing 
that the friction factor and the Nusselt number results are dependent of the temperature-
varying viscosity. 

2. PROBLEM FORMULATION 

Steady-state laminar incompressible water-flow in a curved duct is analyzed using a 
toroidal coordinate system showed in Fig.1. The flow is both hydrodynamically and thermally 
fully developed, with negligible viscous dissipation and axial conduction. All fluid properties 
are considered constant, with the exception of the viscosity in the coil tube cross-section. The 
temperature-varying viscosity )T(µ of the water is calculated by an extension of the 
Arrhenius model (Harms et. al, 1998) as follow:  
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where T is the temperature field and Cn (n = 1, 2, 3 4, and 5) are constants determined by a 
polynomial over the water-viscosity data provided by Incropera and DeWitt (1981).  
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R = duct curvature radius and  
a= duct cross-section radius 
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Figure 1. Circular curved duct in a 
toroidal coordinate system: 

Figure 2. The temperature-varying viscosity 
for the water 



 

Fig. 2 shows the water-viscosity distribution as a function of temperature resulting from Eq.1.  
 
The fully developed flow and the constant axial temperature gradient assumptions result in 

the following conditions for velocity and temperature profiles are: 
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where: z is the horizontal axial coordinate (main flow), w is the velocity component in the z 
direction, u and v are the velocity components in the transversal section (secondary flow), Tw 
is the wall temperature and Tb is the bulk mean temperature. The total pressure field P’(x, y, z) 
is decoupled in an axial contribution and in a part corresponding to the transversal one as: 

 
)y,x(P)z(P)z,y,x('P +=  (2) 

 
The governing equations (continuity, energy, x, y and z momentum equations) are 

represented by: 
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with R equal to the duct curvature radius, ρ the fluid density, µ  the fluid viscosity, Cp the 
fluid constant pressure specific heat and k the fluid thermal conductivity. Starting from the 
fluid properties the Prandtl number (Pr) can be defined as: 
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The boundary conditions for the problem are: 

u = v = w = 0   and  T = Tw   at ayx =+ 22  (see Fig. 1)         (9) 



 

After numerically determining the axial velocity (w) and the temperature field (T), the 
average velocity (wm) and the Reynolds number (Re) were calculated as: 
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where A is the duct cross-section area and Dh is the hydraulic diameter given by:  
 

aDh 2=  (11) 

 
The Dean number (De) and the duct curvature ratio (RC) are calculated as follows: 
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The Nu (Nusselt number) and fRe (friction coefficient and Reynolds number product) are: 
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where the convection coefficient h is defined as:  
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In the case of a straight tube, some studies using the property ratio method (Kakaç, 1987) 

established a correlation for the Nusselt number and friction factor to correct the temperature-
dependent viscosity variations. For laminar flow of liquids these correlations are: 
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with m = -0,58 for heating and m =-0,50 for cooling condition. The subscripts “var” and “cte” 
refer to variable and constant-viscosity, respectively. The sub-indices “tb” and “tw” are related 
to the absolute bulk mean and wall temperatures.  

3. NUMERICAL SOLUTION 

Firstly, by combining Eq. (4) and Eq. (5) a Poisson equation was derived to impose a mass 
conserving flow. So, the system of partial differential equations represented by the equations 
(4) to (7) and the Poisson equation were discretized applying the Galerkin finite elements 
technique. An unstructured mesh with triangular elements of six nodes and second-degree 
interpolation polynomials were used in the numerical solution. The system of resultant 
algebraic equations was solved by an iterative procedure in a non-segregated way, combining 



 

the Conjugated Gradient and Newton-Raphson methods. It was also used the PDease  
program that provides an adaptive scheme with successive mesh refinement. This resource 
was applied in the more intense gradient regions and to capture the secondary flow effects (see 
Fig. 3b) induced by the centrifugal force. Fig. 3a presents the curved duct cross-section and an 
intermediary mesh in the solution process.  

 

 

 

Figure 3a. Computational domain and an 
intermediary mesh in the solution process 

Figure 3b. Secondary flow in the curved 
tube cross-section at Dean number = 30 

4. RESULTS AND DISCUSSION 

4.1 Straight tube results 

To calibrate the numerical code, the Nusselt number and the friction factor results obtained 
with variable-viscosity were compared with the literature correlations indicated by Eq. 15. In 
this method, the viscosity variations are corrected by the following ratio: twtb µµ (viscosity 

at the mean bulk temperature to viscosity at the wall temperature). These comparisons are 
presented in Figs. 4 and 5 for the case of laminar water flow in a straight tube.  
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Figure 4. Nusselt number for the straight 
tube as a function of the viscosity ratio  

 
Figure 5. Friction factor for the straight 
tube as a function of the viscosity ratio 



 

It is verified that in the range 0.3 < twtb µµ < 3.0 (liquid water) the property ratio method 

and the solution of this work have a good agreement for both Nu and fRe results.  
Figs. 4 and 5 show that for the isothermal condition ( =µµ twtb 1), the Nusselt number and 

friction factor results coincide with the constant property values (Nu = 4.364 and fRe = 64).  
When water is cooled, the wall temperature (Tw) is smaller than the bulk mean temperature 

(Tb). Then, the viscosity value at the wall temperature is greater than the mean bulk 
temperature one and the Nu value decreases (Fig. 4) in comparison with the constant property 
value. On other hand, Fig. 5 shows that, under cooling conditions, the friction factor elevates 
because the viscosity decreases with the fluid temperature elevation increasing its viscosity 
close to the wall.  

At heating-water (Tw > Tb) the viscosity value at wall temperature is smaller than the bulk 
mean temperature one. So, the Nusselt number increases (Fig. 4) and the fRe (Fig. 5) decays in 
comparison with the constant-properties values. 

4.2 Curved duct results 

The numerical simulations with constant-properties and variable-viscosity assumptions 
were carried out varying the Dean number in the range 2 < De < 200. The duct curvature ratio 
(Eq. 12) was maintained constant. Both heating and cooling of the laminar water flow in a 
curved duct were considered, with Tw = 350 K. The dTb/dz value (see Eq. 7) was adjusted to 
obtain a bulk temperature Tb = Tw + 35 K for cooling-water and Tb = Tw - 35 K for heating-
water conditions. In this temperature range, water still is in a liquid state. 

The Dean number (De) influence on the temperature distribution at the curved tube cross-
section is shown in Fig. 6, under cooling condition (Tw < Tb).  

 

    

Figure 6a. Temperature contours (K) in the 
curved tube cross-section for De = 30 

Figure 6b. Temperature contours (K) in the 
curved tube cross-section for De = 200 

 
At small De number (Fig. 6a), the curvature effects are little accentuated and the fluid 

temperature maximum value is located near the tube central region. As the De number 
increases (Fig. 6b), the temperature field acquires an “inverted-C” configuration induced by 
the centrifugal force, with the temperature gradients (thermal boundary layer) more intense in 
the curved duct external wall.  

Fig. 7 shows the dimensionless axial velocity at the curved tube cross-section (De = 30), 
under cooling and heating conditions in comparison with the isothermal flow ( =µµ twtb 1).  
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Figure 7a. Axial velocity profile at the 
horizontal mid-plane of the curved tube 

cross-section 

Figure 7b. Axial velocity profile at the 
vertical  mid-plane of the  curved tube 

cross-section 
 
At the horizontal mid-plane, the axial velocity profile is displaced towards the duct external 

wall (Fig. 7a) due to the curvature effects, and this displacement is more accentuated in the 
water-cooling case. However, in the region close to the wall, the effect of the variable 
viscosity results in w/wm values is more intense under heating condition than in the cooling 
one. 

At the vertical mid-plane distribution (Fig. 7b), the w/wm profiles also exhibit higher values 
close to the wall and smaller at the central region of the curved duct when water is heated (Tw 
> Tb). Under cooling conditions (Tw < Tb) the influence of dependent-temperature viscosity is 
to increase the w/wm values at the central region of the coil tube due to smaller viscosity 
values in this area. 

Fig. 8 and Fig. 9 presents the temperature and viscosity distributions at the curved duct 
cross-section. At the horizontal mid-plane, Fig. 8a shows that the minimum (heating-water) 
and the maximum (cooling-water) temperature values are displaced towards the duct external 
wall because of the centrifugal force influence. As the viscosity depends on the temperature 
distributions, these curves also affect the viscosity profiles shown in Fig. 9a. When water is 
heated, appears a minimum value in the temperature profile (Fig. 8a) that is linked with a 
maximum in the viscosity distribution (Fig. 9a). Similarly, under cooling conditions (Tw < Tb 
and µw > µb) the temperature exhibits a maximum (Fig. 8a) that is related with a minimum in 
the viscosity distribution. However, in the cooling-water case (Fig. 9a), the viscosity profile is 
smoother than the heating one due to the little temperature-varying viscosity shown in Fig. 2. 

At the vertical mid-plane, Fig. 8b presents two minimum values in the temperature 
distribution under heating conditions (Tw > Tb and µw < µb). Consequently, the viscosity 
variation profile for heating-water (Fig. 9b) is also more accentuated in comparison with the 
cooling one. This fact is due to a more intense gradient in the temperature-dependence 
viscosity (see Fig. 2). 

Fig. 10a and Fig. 10b present the Nusselt number as a function of the Dean number for 
heating and cooling-water, respectively. By comparing, Fig. 4 and Fig. 10 it is verified that the 
Nu values obtained for the curved ducts are greater than the straight tube ones. This fact 
occurs because in the coil tube there is a increase in the momentum and energy transfers 
caused by the secondary flow (see Fig. 3b). 
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Figure 8a. Temperature distribution at the 
horizontal mid-plane of the tube cross-

section 

Figure 8b. Temperature distribution at the 
vertical mid-plane of the tube cross-section 
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Figure 9a. Viscosity variation in the 

horizontal mid-plane of the curved tube 
cross-section 

Figure 9b. Viscosity variation in the vertical 
mid-plane of the curved tube cross-section 

 
It is also verified that the Nu values are higher in the heating-water (Fig. 10a) than in the 

cooling case (Fig. 10b), even if the viscosity variations aren’t taken into account (constant-
properties case corresponds to the dashed-line). 

Besides, a comparison between the constant-properties and variable-viscosity results shows 
that under heating conditions the temperature-dependent viscosity assumption elevates the Nu 
value (Fig. 10a). On the other hand, when water is cooled, the Nusselt number is lower than 
the correspondent constant properties for all De number range analyzed. For example, this 
difference reaches almost 10%, at De = 80 (Fig. 10b). When the fluid is cooled considering 
variable-viscosity, the bulk mean temperature is lower than in the constant-viscosity case. 
This fact causes an increase of the viscosity values at the inner points of the curved tube 
section that reduces the secondary flow effect, and consequently the heat transfer rate.  
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     Figure 10a. Nusselt number as a function 
of the Dean number for heating-water 

    Figure 10b. Nusselt number as a function 
of the Dean number for cooling-water 

 
Fig. 10 also shows the Nu-correction obtained from Eq. 15 (symbol-line in Fig. 10) with 

the necessary constant-properties Nu-values provided by the present work numerical data 
(dashed-line in Fig. 10). The property ratio method and the curved tube Nu-results are in good 
agreement in the cooling-water condition (Fig. 10b). In the heating case, however, the 
differences are more significant: the straight tube correction provides smaller Nu-values in 
comparison with the coil tube present work results (continuous-line in Fig. 10a) for De < 20. 
In the case of bigger Dean numbers the straight tube correction leads to overestimation when 
compared with the present study. 
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     Figure 11a. Friction factor as a function 
of the Dean number for heating-water 

        Figure 11b. Friction factor as a function 
of the Dean number for cooling-water 

 
The fRe results for the curved duct are presented in Fig. 11. Under heating conditions (Fig. 

11a) the variable-viscosity numerical data are lower than the constant-viscosity fRe-values. At 
this case, when the temperature-dependent viscosity is considered, the bulk mean temperature 
is greater than in the constant-properties case. This fact results in a lower viscosity that also 
reduces de friction factor in comparison with the constant-viscosity simulation. Nevertheless, 
when water is cooled, the fRe value with variable-viscosity is greater than the constant-



 

properties ones, as shown in Fig.11b. This difference is more accentuated in the friction factor 
results than in the Nu-values (Fig. 10b), reaching 16% at De = 80 (Fig. 11b). Fig. 11 also 
presents the fRe-results based on the straight tube correction (Eq. 15 with m = -0,58 for 
heating and m = -0,50 for cooling case) for variable viscosity. Under both heating and cooling 
conditions, this method (symbol-line in fig. 11) exhibits a good agreement with the curved 
duct results (continuous line in Fig. 11) only for De < 20. As the Dean number increases, the 
property ratio method provides lower fRe-values (Fig. 11a) in comparison with the coil tube 
results. When water is cooled, the application of Eq. 15 overestimates the curved duct values 
(Fig. 11b).  

5. CONCLUSIONS  

A fully developed laminar water flow in a curved duct with temperature-dependent 
viscosity was analyzed under both heating and cooling conditions. The secondary flow 
induced by curvature effects increases the heat transfer rate in comparison with the straight 
ducts but the velocity and temperature profiles are distorted when the effects of temperature-
varying viscosity are included. The Nusselt number and the friction factor results also show a 
marked dependence on the viscosity variations in the coil tube cross-section.  

Under cooling conditions, the Nu values with variable-viscosity are lower than the 
constant-properties results due to the increase of the viscosity at the inner points of the curved 
tube section, that reduces the secondary flow effects and the heat transfer rate. The opposite 
case occurs when the water is heated. 

Acknowledges 

The authors are grateful to FAPESP, which supported this work (grant No. 99/03471-5). 

REFERENCES  

Bergles, A. E., 1983, “Prediction of the Effects of Temperature-Dependent Fluid Properties on 
Laminar Heat Transfer”, Low Reynolds Number Flow Heat Exchangers, pp. 451-471. 

Dean, W. R., 1927, “Note on the Motion of Fluid in a Curved Pipe”, Philosophical Magazine, 
Series 7, vol. 4, pp. 208-223. 

Etemad, S.GH., and Mujumdar, A.S. 1995, “Effects of Variable Viscosity and Viscous 
Dissipation on Laminar Convection Heat Transfer of a Power Law Fluid in the Entrance 
Region of a Semi-Circular Duct”, Int. J. Heat Mass Transfer, Vol. 38, pp 2225-2238.  

Harms, T. M., Jog, M. A. and Manglik, R. M. 1998,” Effects of Temperature-Dependent 
Viscosity Variations and Boundary Conditions on Fully Developed Laminar Forced 
Convection in a Semicircular Duct”, Journal of Heat Transfer, Vol. 120, pp 600-605.  

Herwig, H., 1985, “The Effect of Variable Properties on Momentum and Heat Transfer in a 
Tube with Constant Heat Flux across the Wall”, Int. J. Heat Mass Transfer, Vol. 28, pp 
423-431.  

Herwig, H. and Klemp, K. 1988, “Variable Property Effects of Fully Developed Laminar 
Flow in Concentric Annuli”, Journal of Heat Transfer, Vol. 110, pp 314-320.  

Incropera, F. P. and DeWitt, D. P. 1981, “Fundamentals of Heat Transfer”, John Wiley & 
Sons, Inc. N.Y. 

Kakaç, S. 1987, “The Effect of Temperature-Dependent Fluid Properties on Convective Heat 
Transfer”, chap. 18 in Handbook of Single-Phase Convective Heat Transfer”, S. Kakaç, 
R.K. Shah and W. Aung, eds., John Wiley & Sons, Inc. N.Y.  

Shah, R. K.and London, A. L., 1978, “Laminar Flow Forced Convection in Ducts”, Advances 
in Heat Transfer, Academic Press. 


