A GENERAL OBJECT-ORIENTED FRAMEWORK DESIGN FOR NUMERICAL
SOLUTION OF POTENTIAL PROBLEMSBY BOUNDARY ELEMENTS

Rogério Jose M ar czak — rato@mecanica.ufrgs.br
Departamento de Engenharia Mecanica - Universidade Federal do Rio Grande do Sul
Rua Sarmento Leite, 425 - Porto Alegre - RS - 90050-170 - Brazil

Abstract. This work presents an object-oriented architecture to be used as a general
numerical framework for the development of computer programs based on the boundary
element method (BEM). The proposed design provides a large set of classes developed
specifically to handle those entities most commonly found in solution procedures based on
boundary or finite elements. The framework is divided into logical units which enable the
analyst to "assemble” the code accordingly to the type of problem is to be solved: linear or
nonlinear, steady state or transient, type of system of equations, type of solver to be used, type
of solution strategy and so forth. The present version is particularized for the solution of
potential problems using the BEM. The design allows the use of an arbitrary number of
subregions, which are connected automatically by imposing compatibility conditions for
potentials and fluxes. This enables the analyst to model problems composed by different
material properties or subdomains in a single solution step and, in the case of linear
problems, without need of interior meshes. The use of the proposed framework as an included
library thus simplify the development cycle of research software for heat flow, torsion,
electromagnetic and other problems governed by Poisson equation.

Keywords: Boundary Element Method, Object-oriented programming, Potential problems.

1. INTRODUCTION

During de 90's, the use of object-oriented programming (OOP) has become a common
paradigm in most software development fields. The application of OOP has also reflected
heavily on engineering software, especially on those commercially available. The diffusion of
the use of OO languages in engineering is due to a number of factors. Some of them are
directly related to the software development cycle and its corresponding cost. The constant
need for software updating and re-releasing was almost reaching its practical limits. In some
cases, one can find computer programs that sarted its development life more than thirty years
ago, using a (now considered) obsolete computer language and - not rarely - based on source
codes composed by hundreds of thousands of structured programming lines. This naturaly
has lead to a demand for extensibility and reusability of the codes (or part of them) without
demanding the costs associated to the development of new software or due to unwanted
changes in source codes successfully tested and used. This demand is relatively old, but only
the born of object-oriented programming (OOP) has been leading to an adequate solution. As
amatter of fact, this demand is intimately related to the origins of several OO languages.

This work presents an object-oriented architecture to be used as a general numerical
framework for the development of computer programs based on the boundary element method
(BEM). The present version is particularized for the solution of steady-state potential
problems using an arbitrary number of subregions, thus enabling the analyst to model
problems composed by different material / characteristics. The main goal of the present work
is to unlink the domain classes (those containing elements, nodes etc.) from the analysis
classes (linear, non-linear, steady state, transient etc.).

A detailed description of the OO philosophy will not be covered in this work. It is
supposed a basic knowledge in OO programming as well as its fundamental aspects (classes
and objects, inheritance and polymorphism). Classes hierarchy and relationship will be
illustrated following Rumbaugh (1991) notation.

1.1 Some characteristics commonly found in OO FEM/BEM software

A brief review of the literature reveals many conceptually different possibilities available to
develop FEM computer programs using OO philosophy (Archer, 1996; Hedegal, 1994;
McKenna, 1997). In the BEM context, the number of published works are much more scarce
(Marczak, 1999). Whatever the choice, the essential part of a FEM/BEM software are the
solution algorithms of the discretized problem, a determining aspect of the efficiency,
robustness, and stability of the solution. This part is generally provided by a set of classes that
govern the flow of the available data during the solution. In view of the responsibility that
these classes have on the solution of the problem, it is expected a higher level of abstraction in
their design, and we will refer to them in thiswork as analysis classes.

Another important layer of classes (called model classes in this work) is necessary to
store and manage the problem data. They provide the data of the numerical model to the
analysis objects.

On the other hand, good OO designs also provide classes to handle special entities like
basic linear algebra objects (vectors, matrices, etc.). These objects perform auxiliary (but not
less important) tasks requested by the analysis and model objects, or help to build higher level
objects as an aggregation of them. They will be called auxiliary classes.

Accordingly, it seems reasonable to identify three relative levels of abstraction for most
classes found in OO FEM/BEM software, as shown in Table 1:

* Low level: They implement algorithms that handle tensors, matrices or vectors. A typical
example is a class able to solve a linear system or an eigensystem. Although matrix
objects are the most common case, other entities like lists (to store the objects),
mathematical functions, strings, geometric primitives, memory management, among
several others, are also treated in this level.

* Intermediate level: These classes generate or sore the necessary information for the
solution of the problem. These data are responsible for the relationship mathematical
problem - physical problem. For instance, it is in this level that one can find FEM/BEM
objects like material property, geometry, mesh, numerical integration, boundary condition,
superelements and loading.

e High leve: It is in this level that one or more objects solve the problem from the
governing equation point of view. This is accomplished by using and controlling the
information generated by objects in the two previous levels. For example, a single mesh
object can be used to solve a static linear problem and a dynamic transient problem during
the same job. In essence, both problems differ only in the way the high level objects will
manipulate the data provided by the intermediate level objects, using the tools provided by
the low-level objects.

Table 1. Class category convention adopted in this work.

Level of abstraction Class category (in a FEM/BEM software)

Low Auxiliary class
Intermediate Model class
High Analysis class

The classification in Table 1 does not mean, for example, that a matrix class actually has
alow level of abstraction. But calling it an auxiliary class means (in the context of the present
work) that there is not much more that a matrix object can do except for matrix operations. An
analysis class, by its turn, can span from a simple linear steady state analysis to a fluid-
structure optimization analysis.

2. THE ntBEMLIBRARY

The nc BEM library was started as a research project focusing on applying OO programming
to develop flexible, modular, and reusable software components for solving differential
equations by the BEM. The underlying idea in its design is that different applications share a
common mathematical and numerical structure, and more importantly, storage (model)
classes do not perform any solution step. In the form of a compiled library, nc BEM provides
a complete set of auxiliary and model classes, as well as a basic set of analysis classes. To
create an application code, the analyst assembles the code collecting the objects necessary to
perform the solution. The programmer’s work is limited to implement the new analysis
classes (in case they are not provided), deriving them from any of the existing ones. The
objective of this section isto present the basic hierarchy layout of nc BEMmain classes.

2.1 nc BEMmodel classes

The nc BEM model classes are mostly formed by a set of classes derived from a super class
called ncEnt i ty. They were designed to compose a bulk of entities commonly found in a
discrete PDE solution model, like FEM and BEM. But the most important model class of the
proposed design is the ncDonmi n class. McDomai n acts as a container class for the
analysis, storing all ncEnt i t y objects necessary to describe the problem such as geometry,
mesh, loads and boundary conditions. The objects are stored in list objects (ntLi st)
especially designed for nt BEM reducing by a significant amount the overhead of general
purpose standard lists (like the STL - Standard Template Library Programmer's Guide, 1999).

Figure 1 depicts the basic hierarchy of ncBEM model classes. The most important of

them will be described in the sequel.

ncPoi nt : Implements a coordinate point in [° space. It can be attached to a user-defined
coordinate system, if desired.

ntNode: Derived from ntPoi nt class, a ntNode object represents a point which has
degrees of freedom (DOF), i.e. a space location that holds part of the discrete solution for
agiven mesh.

ntCoor Sys: Enable the analyst to use special coordinate systems throughout the
solution.

ncVat eri al : A classto implement general material properties.

ntCGeonet ry: Implements geometric properties for special applications (like areas in
gpars, thickness in plates, etc.)

ntBESubr egi on: Implements a BEM subregion of the solution domain. This can be
used to handle problems composed by different materials, geometric properties etc. The
ntBESubr egi on class aso encapsulates information about the type of the differential
equation which is being solved, so that it knows how many DOF's each nc Node have, or
what are these DOF's. In addition, ant BESubr egi on object can access the fundamental
solution of the problem, and determine whether a DOF is a primal or a dual one. Thisis
necessary to implement compatibility conditions on the interface shared by two or more
subregions, as well as to impose the boundary conditions. A similar class - the
ntFESubr egi on can be used for finite elements.

ntBEl enment : This class implements boundary element objects on the boundary of each
subregion. The ntBEI enent 's objects are composed by aggregating two super classes:
ncPhysi cal Partition and ntGeonetricPartition, in such a way that the
geometric description of the element may be dissociated from its physical description
(Devloo, 1997). For instance, a linear geometric partition can be used along with a
constant (one node) physical partition or alinear (two node, continuous or discontinuous)
physical partition.

ncDCel | : Implements domain cells for problems where an interior mesh is necessary.
Similar classes implement finite elements, control volumes etc.

ntlLoad: Thisclass is used to create general loads to be applied on the domain. In BEM
applications, the boundary conditions are implemented as a special case of loads.

ncDomai n: The ntDomai n class collects and manages all ntEnt ity objects for a
given solution domain. That is, it represents the computational model of the problem. It is
used by the analysis classes to access all necessary information to solve the discretized
problem. Since ntDonmai n objects perform no analysis step, the analyst can solve
different domains during the solution phase.

ot ——<}-{_roode |

S
ncCyl Coor Sys

i somateri

ncSpar Geonet ry
3
mCEntity ntPl at eGeonetry

ntBodyLoad
ntSur f aceLoad

ntBoundar yCondi ti on]

nmcBE2D1
4

ntDeadWei ght

nmcDC2DQL

.

ntBEPI aneSt r ess
mcBESubr egi on <]
ntBEEl ast 3D

ncBEPot 2D

Figure 1: Examples of basic mc BEMmodel classes.

2.2 ntBEManalysis classes

The analysis of the problem is performed by a set of five super classes aggregated by the
analyst, depending on the type of the problem and solution desired. Many of the ideas adopted
here came or were adapted from the work of McKenna, 1997. This approach adds flexibility
by enabling the user to dot each one of these five major classes according to the specific
needs of each application. If necessary, one can implement a new class by deriving it from
any of these five super classes and limiting the coding task to those analysis steps not
provided by nc BEM The analysis classes currently implemented in this work are summarized
below:

ncSol uti onAl gorithm The ntSol uti onAl gorithm objects orchestrate the
major steps in the analysis. Typical tasks of these objects are: form the left hand side and
the right hand side of the linear system, and solve the linear system. In case of linear
problems this is generally done only once, but for non-linear problems the steps are
repeated until convergence is reached. Currently, two major subclasses are derived from
this class: nt BEMEI genval ueSol Al go and nc BEMEqui | i bri unBSol Al go. Both
can be particularized for special cases, asillustrated in Fig. 2.

ncAssenbl er: The ntAssenbl er objects provide methods necessary to form the
system of equations. It is responsible for accessing each boundary element, domain cell,
finite element or control volume and adding its contributions to the global system of
equations. One major subclass is currently derived from nc Assenbl er class: it is the
ncl ncrenent al Assenbl er class, which generates derived classes like
ncSt ati cAssenbl er (for linear steady state problems), nc Tr ansi ent Assenbl er

(for transient problems) and ntEi genval ueAssenbl er (for eigenvalue problems).
Fig. 3 showsthe basic hierarchy.

[ncSol ut i onAl gorit hm]

L ncBEME genval ueSol Al goJ [m:BENEqui I'i briunsol A goj [ncBEMTT ansi ent Sol Al goj

(mcBEMWVi brat i onSol Al go |

[ncBEMBuck! i ngSol Al go J

(mcBEMLi near | (mcBEMBFGS | [mcBEMContractivelap |

Figure 2: Typical nrc BEMsolution algorithm classes.

[ncBEMBt at | cAssenbl er] [ncBEMTT ansi ent Assenbl er] [ncBEMEI genval ueAssenbl er]

[ncCentral Diff J [m;Newrmrk J

Figure 3: Typical nt BEMassembler classes.

ncModel Handl er : The model handler objects are responsible for providing access to
the objects in ncDormai n during the solution phase, so that no object in the analysis
aggregation needs to access the solution domain directly. Any object in the domain can be
reached by nt Model Handl er methods. Iterators are provided to access nodes, elements
etc. Fig. 4 illustrates the basic hierarchy.

ncConst rai nt Handl er: The ntConstrai nt Handl er super class implements
methods to apply constraints on the system of equations. Prescribed temperatures or fluxes
are handled here. The imposition of compatibility conditions on the interface shared by
two or more subregions are also handled by ntConst r ai nt Handl er objects. Other
examples of tasks performed here are DOF numbering and Lagrange multipliers handling.
In case of the BEM, the ntConstrai nt Handl er object is also responsible for
automatically creating the nodes of the boundary elements and domain cells..

ntAnal ysi s: This is the analysis aggregation itself. A ntAnal ysi s object receives
all other component objects as arguments. It checks for validity of the aggregation and
links them by pointers. A single virtual method: anal yze() triggers the analysis start
up. ntAnal ysi s objects also knows whether the solution domain changed so that is
necessary a new analysis (like in adaptive or nonlinear problems) or not. Figure 4
illustrates the subclasses implemented in this work.

2.3 ntBEMauxiliary classes

The nc BEM ibrary provides a large number of classes encapsulating many features found in
computational mechanics. A few examples are: lists, dictionaries, identification, iterators,
error handlers, file handlers, DOF and DOF sets, fundamental solution and numeric

integrators.

[ntBEMSt at i cAnal ysi s] [ntBEMTIT ansi ent Anal ysi s } [ntBEMEI genval ueAnal ysi sj

Figure 4: Typical nt BEManalysis subclasses.

Of particular importance in the efficiency of a numerical solution is the storage and
manipulation of the system matrices that generate the solution of the problem. The present
implementation of ntBEM provides two major super classes to accomplish this task (see
Fig.5):

* ntSysten Equati ons: It is responsible for storing the system matrices. It also
provides methods to perform the assembly of element sub-matrices as well as rearranging
rows and columns to eliminate/add DOF's etc. Several types of storage schemes are
provided to accommodate the types of matrices generated by the different methods
(banded, full, symmetric, non-symmetric, etc.). The ntSyst emOf Equat i ons objects
do not perform the solution of the system.

* ntSol ver: Thisisthe super class that actually solves the system of equations. Because
it is disconnected from the ntSyst enOf Equat i ons, a ntcSol ver object can be
linked with well-known Fortran solvers or other numerical libraries (Zeglinski et al.,
1997).

ntSol ver

ntlinear Sol ver

nt Syst emf Eguati ons

ncNonSymet ri cLS
ntDenseNonSyniS
‘ (ncNonSymmet ri cLS(]E]
ntGaussDNSLS ncLUDecDNSLS
AN
nt DenseNSLSCE

Figure 5: Some of nc BEMauxiliary classes.

AN ILLUSTRATIVE EXAMPLE

Suppose the analyst is interested in solving a steady state heat conduction problem like the
one depicted in Fig. 6. The primal variables are the temperatures (T) while the dual variables
are the normalized heat flux (g =q/k). The domain is composed of two subregions (Q; and
Q,) of different material properties (k; and ky). The interface I, accounts for that part of the
boundary of Q; which is shared with Q,, and I';; has an analogous meaning. Let ', be
formed by boundary elements e; and &,, while I",; is formed by boundary elements e; and eg.

q=0

yl

T= 300\ k1 kz — T=0 1 Q, 1 41 Q, 4

L

q=0
Figure 6: A simple example of domain composed by two subregions.

To solve such problem using the proposed framework becomes very simple by using two
ntcPot 2D objects and the two corresponding material properties. As already noted,
ntBEsubr egi on objects keep track of the fundamental solutions as well as their DOF's (T
and q'). Inthis case, one could use:

1. ntlsoMaterial mat _1(kl), mat_ 2(k2);
2. ntPot 2D onega_1, onega_2;

It is also necessary to define the interface shared by both subregions:

3. ntinterface interf _12(el, e2,e7,e8);

The code fragment exemplified above suffices to define both materials, both 2D potential
subregions, and to enforce the compatibility conditions over the interface, so that T, =T,

and q, = -0,

A point of further interest is the way the compatibility conditions are imposed. In nt BEM
all DOF's are identified by a code number and also by a code name. If two nodes - belonging
to different subregions - are interfaced, nc BEM compares both names and codes. It they
coincide, it is enforced the same values for their primal variables and opposite values for their
dual variables. This enables the user to join two subregions governed by different differential
equations, provided they share at least one (primal or dual) DOF.

3. REUSABILITY AND EXTENSIBILITY

The main goal of the OO design proposed in this work is to enable the analyst to write a few
programming lines to customize the code for a given application. A simple analysis like the
one shown in Fig. 6 would be straightforward reusing the relevant objects. Figure 7 shows a
possibility. Note that the solution of a linear static 2D structural problem would use the same
code (the inherent differences would be hidden in subregion objects properly defined).

If the user is interested in solving the same problem in a transient fashion, it would be
necessary to write adequate analysis classes (if they are not provided) and change lines 4, 5
and 10 of the code in Fig. 7 accordingly to Fig. 8.

[N

PBoo~NoO A~ WON

11.

ncDomai n part_ 959;

domai n. ReadConfi gFil e("i nput.dat");
donmai n. set Cur r ent LoadCase(donai n. get Def aul t LoadCase());

ncBEMLi near t heAl gorithm

ncBEMSt at i cAssenbl er t heAssenbl er;

ncBEMvbdel Handl er t heMbdel ;

ntcBEMConst r ai nt Handl er t heConstrai nt;

ncDenseNonSyniS t heSol ver;

ntDenseNSLSCE t heSOE(t heSol ver) ;

ncBEMSt at i cAnal ysi s t heProbl en{ part_ 959, theAl gorithm

t heAssenbl er, t heMbdel ,
t heConstraint,t heSCE) ;
t hePr obl em anal yse();

Figure 7: A possible code fragment for a Seady state analysis of the problem in Fig.6.

[N

Boo~NoO A~ WM

11.

ncDomai n part_ 959;

domai n. ReadConfi gFil e("i nput.dat");
domai n. set Cur r ent LoadCase(donai n. get Def aul t LoadCase());

ncBEMTr ansi ent Sol Al go t heAl gorithm
ncBEMIT ansi ent Assenbl er t heAssenbl er;

nc BEMvbdel Handl er t hehMbdel ;
ncBEMConst r ai nt Handl er t heConstrai nt;
ncDenseNonSyniS t heSol ver;
ntDenseNSLSCE t heSOE(t heSol ver) ;

ncBEMTr ansi ent Anal ysi s t heProbl en{ part_ 959, theAl gorithm
t heAssenbl er, t heMbdel ,
t heConstraint,t heSCE) ;
t hePr obl em anal yse();

Figure 8: A possible code fragment for atransient analysis of the problem in Fig.6.

4. CONCLUSIONS

This work presented a modular, reusable and extensible OO design for numerical solution of
potential problems using the BEM. The main super classes of the proposed architecture were
presented, showing the independent role that storage and solution classes play. This enable the
user to customize the code for a given application by modifying only a few lines of the driver

program.

REFERENCES

Archer, G.C., 1996, Object-Oriented Finite Element Analysis. PhD thesis, University of
California at Berkeley.

Beck, R., Erdmann, B. & Roitzsch, R., 1995, Kaskade 3.0 - an object-oriented adaptive finite
element code. Technical report, Konrad-Zuse-Zentrum fir Informationstechnik Berlin,
TR 95-4.

Besson, J., Foerch, R., Cailletaut, G., Aazizou, K. & F. Hourlier, F., 1997, Large scale object
oriented finite element code design. Preprint.

Devloo, P.R.B., 1997, PZ: An object oriented environment for scientific programming.
Comput. Methods Appl. Mech. Engrg., 150, 133-153.

Dubois-Pélerin, Y. & Zimmermann, T., 1993, Object-oriented finite element programming:
[11. an efficient implementation in C++. Comput. Methods App. Mech. Engrg., 108, 165-
183.

Feijoo, R.A., Guimardes A.C.S. & Fancello, E.A., 1991, Some experiences with object-
oriented programming and their applications in the finite element method (in Spanish).
LNCC - Laboratério Nacional de Computacdo Cientifica - Brazil, Report 015/91.

Forde, B.W.R., Foschi, RO. & Steimer, SF., 1990, Object-oriented finite element
analysis.Computers & Structures, 34(3), 355-374.

Hedegal, O., 1994, Object-Oriented Structuring of Finite Elements. PhD thesis, Aalborg
University.

Kong, X.A. & Chen, D.P., 1995, An object-oriented design of fem programs. Computers &
Structures, 57(1), 157-166.

Langtangen, H.P., 1996, Details of finite element programming in diffpack. Technical report,
Department of Mathematics, University of Oslo.

Lu, J., White, D.W., Chen, W.F. & Dunsmore, H.E., 1995, A matrix class library in C++ for
structural engineering computing. Computers & Structures, 55(1), 95-111.

Mackie, R.I., 1992, Object oriented programming of the finite element method. Int. J. Num.
Meth. Engng., 35, 425-436.

Marczak, R.J.,, 1999, A partial review of object-oriented architectures for finite element
programs (in Portuguese), in: Proc. 15" Brazilian Congress of Mechanical Engineering,
Aguas de Lind6ia, S&o Paulo, Braxzil.

McKenna, F.T., 1997, Object-Oriented Finite Element Programming: Frameworks for
Analysis, Algorithms and Parallel Computing. PhD thesis, University of California at
Berkeley.

Menétrey, P. & Zimmermann, T., 1993, Object-oriented non-linear finite element analysis:
Application to J2 plagticity. Computers & Structures, 49(5), 767-777.

Miller, G.R., 1991, An object-oriented approach to structural analysis and design. Computers
& Structures, 40(1), 75-82.

Olsson, A., 1998, An object-oriented implementation of structural path-following. Comput.
Methods Appl. Mech. Engrg., 161, 19-47.

Pidaparti, R.M.V. & Hudli, A.V., 1993, Dynamic analysis of structures using object-oriented
techniques. Computers & Structures, 49(1), 149-156.

Rumbaugh, J., Blaha, M., Premerhani, W., Eddy, F. & W. Lorensen, W.,1991, Object-
Oriented Modeling and Design. Prentice-Hall.

Scholz, S.P.,1992, Elements of an object-oriented FEM++ program in C++. Computers &
Structures, 43(3), 517-529.

Standard Template Library Programmer's Guide, 1999, Silicon Graphics Computer Systems,
Inc.

Zeglinski, G.W., Han, R.P.S. & Aitchison, P., 1994, Object-oriented matrix classes for use in
afinite element code using C++. Int. J. Num. Meth. Engng., 37, 3921-3937.

Zimmermann, T. & Dubois-Pelerin, Y. & Bomme, P., 1992, Object-oriented finite element
programming: |. governing principles. Comput. Methods App. Mech. Engrg., 98, 291-
303.

