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Abstract. Simulations of the injection of melt polymer in molds were performed aiming the
study of the filling pattern. The fluid flow equations for a pseudo-continuous fluid in a
rectangular cavity were solved using Finite-Volume techniques and the SIMPLER scheme.
The energy conservation equation was also solved and the interface was tracked by a VOF-
TVD scheme. Polymer melt freezing was empirically accounted for in the code. Simulations
for melt polystyrene injection in a water filled mold were performed. The influence of the flow
initial condition, mold cooling and displaced fluid viscosity on the filing patterns were
analyzed. The results show that the displaced fluid viscosity value does not appreciably affect
the filling pattern. The initial flow condition slightly affects the filling pattern, while mold
cooling can dramatically change the filling pattern.

Keywords: Mold filling, TVD schemes, VOF schemes, computational fluid dynamics (CFD),
heat transfer.

1. INTRODUCTION

Injection Molding is an important industrial process for the manufacturing of thin
thermoplastic products. During the process, the solid material is heated until it reaches a state
of fluidity. It is then injected into the mold cavity under pressure and cooled in the mold. A
number of studies have been presented for the simulation of the filling process with varying
degrees of complexity, depending upon mathematical formulation of the flow equations, the
nature of constitutive equation, the related material properties and the techniques presented to
treat the resulting system of equations. Chen and Liu (1989) have done a very good review of
the injection molding processes. In this same publication, they have developed a model that
treats a two-phase quasi-steady injection. Except for viscosity, all physical fluid properties
were considered constant. During the last decade a significant number of researchers have
studied problems associated to the filling and post-filling steps of injection molding. Stress
patterns (Papathanasiou, 1991), packing and cooling stages (Chen and Liu, 1994), weld-line



formation (Dairanieh et al., 1996 and Chun, 1999), in mold shrinkage (Titomanlio and Jansen,
1996) were some of these issues. However, none of these works has combined transient fluid
dynamics analysis with heat transfer and front tracking. All these factors are extremely
important in order to have a good simulation of the mold filling phenomena. To the best of
our knowledge, the effect of the displaced fluid physical properties on the filling pattern has
never been analyzed.

In this work, the conservation equations for mass, momentum and energy have been
solved by a finite-volume method using the SIMPLER algorithm, but surface tension effects
at the interface were not included in the analysis. The front tracking problem was solved by
the VOF (Volume-Of-Fluid) method (Hirt and Nichols, 1981) using a high order TVD-
scheme developed by Chakravarthy & Osher (1985) to solve for the color function. The VOF-
TVD methodology is described in section 3. A empirical algorithm for melt solidification was
also implemented which is able to track the solid-liquid interface during the injection molding
simulation.

Melt polystyrene injection was simulated for several conditions which includes different
values for the displaced fluid viscosity, different initial flow conditions in a mold and
presence or absence of mold cooling. This enables the analysis of the effects of theses
variables on the filling pattern.

2. FLUID DYNAMICS EQUATIONS

The used dimensionless 2D-cartesian mass, energy and momentum conservation equation
for a pseudo-single-phase Newtonian fluid, with variable density and viscosity, are:
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and t is the time, x and y are the spatial coordinates, ρ is the density, µ is the viscosity, ν is the
kinematic viscosity,α is the thermal diffusivity, k is the thermal conductivity, Cp is the mean
specific heat, u is the velocity component in x direction, v is the velocity component in y
direction, p is the pressure, T is the temperature, gi is the body force in i direction, Din is the
inlet width and vmed is the mean inlet velocity. The subscript ref refers to the inlet fluid
properties (fluid 2).

After applying a finite-volume fully implicit discretization on a staggered grid using the
power-law scheme, the solution has been achieved using the SIMPLER scheme (Patankar,
1980). The fluidynamics has been tested against benchmark results of channel flow (Gartling,
1990) with good agreement.

3. VOF-TVD SCHEME

Existing methods for the computation of free fluid-fluid interfaces can be classified into
two groups (Ferziger & Pèric, 1997): surface fitting and surface capturing methods. For the
methods in the first of these categories, the interface is represented and tracked explicitly
either by marking it with special marker points, or by attaching it to a mesh surface which is
forced to move with the interface. For the methods in the second category, the fluids on both
sides of the interface are marked by either massless particles or an indicator (color) function.

The method used in this paper belongs to the second category. In the volume of fluid
(VOF) method the advection of the color function F, given by Eq. (11), has to be solved. The
F values are stored at in the staggered finite-volume grid similarly to pressure.
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For a given volume, F is equal to 0 when the volume has no injected fluid (in other words,
only fluid 1 is inside the mold), but it is equal to 1 when the volume is completely filled with
the injected fluid (fluid 2). The interface has F-values between 0 and 1. The dimensionless
physical properties of the pseudo-single-phase fluid throughout the mold are given by
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Numerical diffusion and dispersion are always associated with the solution of Eq. (11).
There are some numerical techniques that have been developed to minimize these problems.
Among them, there are the modified donor-cell method of Swaminathan and Voller (1994)
and the Total Variation Diminishing schemes (TVD). Due to some lack of physical or



mathematical basis in the flux limitation used in the Swaminathan and Voller (1994) scheme,
we decided to use a TVD scheme. A good summary of TVD schemes is given by Sweby
(1984). A numerical method is TVD if Eq.(13) is valid for scalar conservation laws, where ξ
is the transported variable and TV(ξ) is its total variation.
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Chakravarthy & Osher (1985) described one-dimensional second and third-order accurate
TVD schemes with low truncation error. These schemes were used to solve advective
equations, like Eq. (11), and systems of conservation laws (Euler equations). Goodman and
LeVeque (1985) have proved that there is no multidimensional TVD scheme, but
Chakravarthy & Osher (1985) have shown that numerical results achieved using their scheme
are extremely good. Based on its simplicity and good results the Chakravarthy & Osher
(1985) third-order scheme has been used in the present work. All the equations refers to a
discretization of Eq. (11) in its non-conservative form. This is due to the characteristics of the
chosen TVD scheme which shows large error accumulation if its conservative form is used.
Despite all these efforts, numerical diffusion remains relevant most due to low grid density
used. Lafaurie et al (1994) propose a renormalization scheme for the color function field in
order to decrease the numerical diffusion effect on the front-tracking problem.

The explicit discretized form of Eq.(11) is given by Eq. (14). The F-fluxes at the faces of
the volumes are determined using the upwind-TVD scheme. For example, for east face, for
each j line, the flux is given by Eqs. (15) to (22). In these equations the index P means

position ),( ji , E position ),1( ji + , e position ),21( ji + , ee position ),23( ji + , w position
),21( ji − , n position )21,( +ji , s position )21,( −ji . When γ equals 1/3 and β equals 4

these equations correspond to a third-order upwind scheme. Equation (15) represents the flux
given for the Engquist-Osher first-order scheme for the present flux function (Osher &
Chakravarthy, 1984). The minmod function is defined by Eq. (20) and it is used to define the
limited fluxes given in Eqs. (18) and (19). The fluxes for the other faces are obtained by
obvious changes of subscripts.
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Boundary conditions for this equation are obvious: the cells at the inlet outside the mold
are considered to be completely filled with fluid 2 (F = 1), all cells after the outlet are
considered to be completely filled with fluid 1 (F = 0) and there is no F flux at the other
boundaries. In the beginning of the filling process, the mold is filled with fluid 1 (F = 0).

4. SOLIDIFICATION CONDITIONS

During the filling, the melt cooling produces a huge viscosity increase what causes the
reduction of velocity and, finally, solidification. In order to numerically simulate the
solidification process, the following heuristic has chosen: the fluid in a cell is considered to
become a solid if all velocity components at its four faces become smaller than 0.05m/s, the
fluid viscosity become higher than 1000 Pa.s and the cell makes a boundary with the wall or
another solidified cell. After solidification of a computational cell, only the energy equation is
solved for it. The algorithm also allows fluid melting in a previously solidified cell if its
temperature changes accordingly. Since the solid polymer is a subcooled liquid, there is no
sharp phase change, being not necessary to consider the heat of solidification in the analysis.

5. BOUNDARY AND INITIAL CONDITIONS

Fully-developed laminar velocity profile was assumed for v at the inlet boundary, as
given by Eq. (30):

))(()( CxxBAxv −−⋅=              for B ≤ x ≤ C (30)

At the outlet boundary, the pressure and the horizontal component of velocity were set to zero
and continuity conditions were adopted for vertical velocity component at this position. The
non-slip condition has been used on all solid walls. Constant A in Eq. (30) was calculated in
order to guarantee an average inlet velocity equal to 0.1 m/s.

Large differences in the physical properties of the polymer and the displaced fluid bring
about numerical difficulties. In order to analyze the effects of these property variations, two
systems were analyzed: water-polystyrene and fluid A-polystyrene. Fluid A is a fictitious
fluid which has all properties equal to those of air but the density used in the fluid dynamic
equations which was made equal to the water density.

Another point that has to be addressed was the initial flow condition of the fluid inside
the mold. Depending on the actual injection equipment and mold, it can range from the no
flow condition, when the polymer is immediately injected in the mold, to the steady-state
conditions, when there is a considerable amount of fluid 1 (usually air) in the tubes of the
injection equipment which is forced to flow throughout the mold.

The actual initial flow condition is something in between these two limits, that is, it is a
developing flow which may only be calculated if the whole equipment is modeled. Thus,
some simulations have been performed with water-polystyrene system to compare the results
with these two limits for the flow initial condition.



Table 1- Physical properties of the fluids.

Fluid ρ
(kg/m3)

ρCp
(kJ/m3K)

k
(10-3 W/m.K)

µ
(Pa.s)

polystyrene T⋅− 65.01250 1.88 ρ 126 )655723.13exp( 1−+− T

Water 990 4140 645 5.3 × 10-4

Fluid A 990 1.17 28 1.9 × 10-5

In all simulations, is was assumed that the mold walls were kept at a given temperature
(283 K) while the injected fluid is at 373 K. A possible initial temperature condition for the
fluid inside the mold would be the wall temperature, as if it were in thermal equilibrium with
the mold before the injection begins. However, this condition leads to a temperature
discontinuity what brings an extra physical property jump. The algorithm could not manage
well this situation and the solution was to set the initial internal temperature equal to the inlet
fluid temperature (373 K).

6. SIMULATION RESULTS

All the simulations presented in the following have been obtained for the filling of a
square mold with one inlet and one outlet, as shown in Figure 1 (LX = LY). In this figure, Din
and Dout are, respectively, the inlet and outlet lengths. They both equals 20 mm. Dimensions
LX and LY equals 0.1 m. The physical properties of the fluids are summarized in Table 1.
Polystyrene properties were achieved from Fontes et al (1997). All the other properties were
obtained from Incropera & De Witt (1990). All the water physical properties were evaluated
at a mean temperature of 325K and considered constant. Only polystyrene density and
viscosity were considered temperature dependent. Fluid A properties corresponds to air
properties at 325 K and 1 atm except the density used in the fluid dynamics equations, where
a value equal to the water density was used.

The SIMPLER algorithm has been developed for moderate changes of the fluid density.
Since the values for water and polystyrene densities are similar, this algorithm is capable of
solving our system of equations. However, the energy balance used the real value of ρCp
product, as given by Table 1, what means that the real value for the polystyrene density is
always used  in the energy equation.

Table 2 lists the conditions used in the simulations. Case 1 refers to simulations without
heat transfer, when the whole system is adiabatic and kept at the inlet temperature of 373 K.
In this case, all properties were considered constant and evaluated at mean temperature of
325K. Cases 2 and 3 correspond to polystyrene injection at inlet temperature of 373 K. The
fluid inside the mold is assumed to have an initial temperature equal to the inlet temperature
and the mold walls are kept at 283 K. For these simulations, polystyrene properties are
evaluated as given in Table 1. Cases 1 and 2 assume that, initially, the fluid inside the mold is
flowing at steady-state conditions. Case 3 assumes an initial stagnant fluid inside the mold.

For all simulations, a 15 × 15 grid has been used. Although quite coarse, we believe  that
this mesh captures the mold filling pattern. For the water-polystyrene injection simulations,
due to the large differences in viscosity between the two fluids, it was necessary to use quite
small time steps (10-5 to 10-6) to guarantee the mass balance closure. Although the 3rd-order
TVD scheme has low numerical diffusion, it is present in the following results due to the
coarse mesh used.

All the results that are presented below for the mold filling patterns are shown in a
contour-level plot where only the F = 0.5 level was plotted. The black region is filled with



polystyrene and the white region represents the other fluid. Unless otherwise stated, these and
the following figures show water-polystyrene simulations results at t = 5s.

Table 2 – Simulation conditions.

Case Mold Cooling Initial Condition

1 No Steady-State
2 Yes Steady-State
3 Yes Stagnant Fluid

Figure 1- Two-dimensional rectangular mold.

Figure 2 compares filling patterns and streamlines for Case 1 simulations for the water-
polystyrene system. In Figure 2-a the correct value for water viscosity was used, but in Figure
2-b its value was two orders of magnitude smaller (even smaller than the air viscosity value).
The same filling patterns are achieved. This justify the usage of a constant value for the
viscosity for fluid 1.
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Figure 2 – Filling patterns and streamlines for water-polystyrene injection: case 1.

(a)  Water   (b) Fluid A
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Figure 3 - Filling patterns and streamlines for water-polystyrene injection:

(a) case 2 and (b) case 3.

Figure 3 compares water-polystyrene simulations for Cases 2 and 3 of Table 2, showing
that there exists some difference in the filling patterns for the two limiting cases for the initial
flow condition inside the mold. However, the difference in the filling patterns is small. Since
the use of a steady-state initial condition leads to a much smaller computation effort, it seems
useful to use it for mold-filling simulations.

Figure 4 compares water-polystyrene simulations for Cases 1 and 2 of Table 2. It clearly
shows that, for this 2-D simulation, mold cooling modifies appreciably the filling pattern,
which happens due to the dependence of polymer viscosity on temperature. Figure 5 shows
the temperature profile for the moment described at Figure 4-b.

Our results have shown that there is no significant solidification during the filling unless
you use very low wall temperatures. In order to evaluate this situation and the code capability
to predict it, a simulation was performed for fluid A-polystyrene injection (see Table 1). The
magnitude of the ρCp product for fluid A is the same for air, what means that there is much
less thermal inertia and the internal mold temperature decreases faster in this  system,  leading
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Figure 4 - Filling patterns and streamlines for water-polystyrene injection:

(a) case 1 and (b) case 2.
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Figure 5 - Temperature profile for Figure 4-b

to polymer freezing. Figure 6 shows that the inlet flow of the mold may be disturbed by
polymer solidification near the injection point for fluid A-polystyrene mold filling for Case 2
conditions. The wall temperature was 250 K. This figure was produced at t = 2 s.

The above results show that the heat transfer effect during the mold filling may be very
important even in these 2-D simulations. The reduction of flow cross section area due to
polymer solidification close to the wall, could be verified in these 2-D simulations (Figure 6).
However, its effect on fluid flow was small. Actual molds need 3-D simulations, where the
fountain flow is a phenomena that cannot be forgotten.
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Figure 6 - Fluid A-polystyrene injection: (a) temperature profile, (b) viscosity profile.

6. CONCLUSIONS

Simulations of polystyrene injection in a 2-D mold were performed. The displaced fluid
was water or a fictitious fluid with all properties, but the density, similar to those of air. The
effects of initial flow condition, the displaced fluid viscosity and mold cooling in the filling
patterns were analyzed. Our results have shown that the value used for the displaced fluid
viscosity does not affect appreciable the filling pattern. Steady-state initial flow condition or
stagnant fluid initial condition lead to filling patterns slightly different. This implies that the
flow in the whole equipment should be modeled for a more accurate description of the mold



filling. Injection with mold cooling leads to quite different filling patterns due to viscosity
changes. Moreover, when the polymer freezes, flow cross-section area contraction can modify
appreciably the filling patterns.
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