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Abstract. The atmospheric flow over low isolated hills has attracted considerable attention in
the past 25 years. The ability to predict the height where there is a maximum speed-up, often
called l, has been of particular interest to meteorologists, engineers and wind energy
researchers. In this paper, we propose a new expression for calculating l under neutral
stability conditions, based on a modified logarithmic law for the vertical wind distribution,
recently proposed. The results are compared with the Askervein hill experimental data and
good agreement is observed. We also tentatively study how other expressions for l can be
obtained from other pre-existing vertical distributions of wind velocity.
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1. INTRODUCTION

There is a considerable technological interest in knowing the height of maximum wind
speed-up in the atmospheric boundary layer over low hills. An important application is the
siting of wind turbines in regions of enhanced flow. Because the power generated by the
turbine is proportional to the cube of the wind velocity, a small wind speed-up corresponds to
a large power increase. The correct calculation of the height of maximum wind speed-up is
also important in itself, since it allows for the adequate prediction of the value of maximum
wind speed-up by simple substitution in the appropriate expression for the vertical distribution
of the wind speed.

A number of expressions for estimating the height of maximum speed-up, often denoted
by l, are available in the literature. A comparative study of the relative merits of the mostly
well known expressions for l can be found in Walmsley and Taylor (1996). Pellegrini and
Bodstein (2000a) (hereafter referred as PBa) also present a short review of these expressions
and propose a new one, which reads

+++ = hLll 22 4.2)(ln κ , (1)



with 0zll =+  and 0zLL hh =+ , where z0 is the roughness length and k the von Karman’s

constant, adopted here as 0.39, as suggested by a recent result from Frenzen and Voguel
(1995). Lh is the half-length of the hill, defined following Jackson and Hunt (1975) as ‘the
distance from the hilltop to the upstream point where the elevation is half its maximum’ (see
fig. 1 ahead).

In the present work, we use the equation for the vertical profile of the wind speed-up
recently obtained by Pellegrini and Bodstein (2000b), hereafter referred to as PBb, to propose
a new expression for l. It is obtained through a formal analysis of the behaviour of the speed-
up function. We compare this expression with all available results from the Askervein field
experiment (Taylor and Teunissen, 1983, 1985) and find fairly good agreement. We also
compare it with Eq. (1) and, again, good results are found. Finally, we use the vertical
distribution of the wind velocity proposed by Taylor and Lee (1984) to obtain another
expression for l, and we show this expression to be formally identical to the one early
proposed by Jackson and Hunt (1975).

2. DEFINITION OF THE PROBLEM

Because the present analysis is built upon the results established in a previous work
(PBb), the restrictions for the case under study are the same as for that case, which we state
below. Consider an isolated 2D hill in the middle of an otherwise flat terrain, of constant
roughness and under a neutrally stratified atmosphere. For our purposes, we consider a hill to
be a topographical variation with characteristic length of the order of 5 Km and height less
than 500m. A hill is called low when its slope never exceeds 20o. The vertical co-ordinate z is
defined as the height above the local terrain. For the cases of very large roughness elements, z
is considered to be the displaced height above the local terrain. Fig. 1 illustrates the main
features of a typical low hill.

Fig.1. Definitions of h, Lh, ∆u, u0 and z.

We assume that the vertical profile of the mean horizontal wind velocity is essentially
logarithmic far from the hill and refer to it, hereafter, as )(0 zu . Further, we refer to the

location upwind of the hilltop (HT) where )(0 zu  is observed as the reference site (RS). In the

atmospheric flow over low hills, the RS mean profile is influenced by the hill in such a way
that it is modified by a speed-up quantity ),( zxu∆  and becomes ),( zxu  at a given point over

the hill. Thus, we can write ),,()(),( 0 zxuzuzxu ∆+≡  where u∆ is positive at HT, because
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the flow is accelerated to satisfy the continuity equation. If we divide the speed-up by the RS
velocity, we have the relative speed-up, defined as

1),(),(),( 0 −≡∆ zxuzxuzxS . (2)

Following the work of PBb, we adopt the streamline co-ordinate system here. In this
system, z is now the height above the local terrain measured normally to the local streamline,
x is the distance along the local streamline, u  and 0u  are the mean velocities in the x direction

and the other former definitions are kept unchanged.

3. ANALYSIS

A direct way to obtain an expression for the height of maximum speed-up in flows over
hills is to calculate 0≡∂∆∂ zu , for z=l, as long as ),( zxu∆  is known. In spite of that, this
method was, however, seldom used in the literature. If some expressions for ),( zxu∆  are in
fact not suitable to this end, others present no real difficulty. Jackson and Hunt’s (1975) and
Finnigan’s (1992) solutions, for example, cannot be not easily differentiated, the former
because it depends on a generic function and the latter because it is implicit in u . On the
other hand, the result proposed by Taylor and Lee (1984), which is essentially an empirical
exponentially damping function of the maximum speed-up with height, is easily
differentiated, as we show below. In what follows, we calculate 0≡∂∆∂ zu  to determine l
from the expression for ),( zxu∆  obtained by PBb and Taylor and Lee (1984) and analyse the
results.

3.1. The height of maximum speed-up based on PBb’s vertical profile of the wind

We start by writing down the expression for ),( zxu∆  recently proposed by PBb:

( ) ( )∑
∞

= ⋅
−

+
−

≈∆
1

0*

0

0**

!

//
ln

n

n
h

n
h

nn

RzRz

k

u

z

z

k

uu
u . (3)

In the equation above, *u  is the friction velocity at the site, defined as u
*
=(�s /�)1/2,

where τs is the surface stress, and 0*u  is the friction velocity at the RS. The parameter Rh,

called radius length, appeared due to the presence of R, the radius of curvature of the
streamlines, in the momentum equations written in streamline coordinates (Finnigan, 1983),
which was used to obtain equation (3). As proposed by PBb, Rh is neither identical to R nor to
Rh0, the radius of curvature of the hill. It is related to Rh0  in the same way as the roughness
length, z0, is related to the real height of the roughness elements. In other words, Rh0 is a
theoretical lenght used to integrate the equation of motion in the streamwise direction. In their
work, PBb also shows that Rh seems to be proportional to Rh0, which, in turn, is dependent on
the geometry of the hill.

The approximation sign in expression (3) is due to the assumption that hRz <<0 , made

during the calculation of one of the integration constants.
To begin the analysis, we recall from PBb that the power series in Eq. (3) can be shown

to converge for all z. Therefore, the function ),( zxu∆  is analytical and (consequently)
continuous for all z. We also recall that Eq. (3) is defined in the closed interval [z0 ,z*], being
z* the upper limit where the approximations made during the derivation of Eq. (3) still holds.



Therefore, we conclude that ),( zxu∆  must have absolute maximum and minimum in the
interval [z0 ,z*].

An important step in obtaining the height of maximum ),( zxu∆  is searching for the zeros
of ),( zxu∆ , which enables us to distinguish between points of maximum and minimum.
Simple inspection shows that z=z0 is one zero of ),( zxu∆ . Other zeros are not trivially
obtained. Another important step is to calculate the critical points of the function. For that, we
need the expression for the derivative of the profile, which can also be obtained from the
original work of PBb:
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The critical points, if any, can be obtained by solving
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for critzz = . Considering that 00* >u  and 00 >> zz , we have 1)( /
0** ≈hcrit Rzeuu , which has

the unique solution
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So far, we have shown that expression (3) has just one critical point, given by Eq. (7).
However, since the x-dependent functions *u  and hR  of Eq. (7) can have positive as well as

negative values, this relation must be interpreted with some caution. Indeed, 0* >u  in

general, but we may observe 0* <u  in regions of reversed flow. Furthermore, we have

0>hR  if the centre of curvature of the surface lies in the direction of increasing z whereas

0<hR  otherwise (see PBb). Theoretically, four possibilities exist: 0* >u  and 0>hR ,

0* <u  and 0<hR , 0* <u  and 0>hR  and 0* >u  and 0<hR . However, the function

)/exp( hcrit Rz  in Eq. (5) is always positive, implying that expression (7) does not hold for

0* <u . This is probably due to the fact that the approximations made on the derivation of Eq.

(3) do not hold for reversed flow either. In addition, eq (7) means that if 0** uu > , then 0<hR

and 0** uu < , then 0>hR  (remember that 00 >> zzcrit ). This is exactly what is generally

observed in the real case. Over the HT, where 0<hR , the speed-up is always positive and,

consequently, 0** uu > . Over the upwind slope, where we must have 0>hR  at some point, a



deceleration of the flow is often observed, implying that 0** uu < . Thus, in fact, only two

possibilities exist, both for 0* >u : 0>hR  (for 0** uu < ) and 0<hR  (for 0** uu > ).

We must now determine in which case zcrit, defined by Eq. (7), is a point of maximum or
minimum. Let us return to Eq. (4) to calculate the intervals where the function increases or
decreases. We know that if 0>∂∆∂ zu , then u∆  increases and, conversely, if 0<∂∆∂ zu ,

then u∆  decreases. Recalling that 0>k , 00 >z  and 00* >u , these conditions allows us to

write:

uueu hRz ∆⇒> 0*
/

*  increasing, (8)

uueu hRz ∆⇒< 0*
/

*  decreasing. (9)

Expressions (8) and (9) are easier to analyse if we rewrite them in terms of zcrit. From Eq. (6)
we have 1)( /

0** ≈hcrit Rzeuu , which means hcrit Rzeuu /
*0* ≈ . Substitution of this into eqns. (8)

and (9), recalling that 0* >u  always, yields

uee hcrith RzRz ∆⇒> //  increasing, (10)
uee hcrith RzRz ∆⇒< //  decreasing. (11)

Now, we have the two possibilities sketched before:

Case 1. 0>hR , for 0** uu < .

In this case, solution to eqns. (10) and (11) is simply

uzz crit ∆⇒>  increasing, (12)

uzz crit ∆⇒<  decreasing, (13)

and as zcrit is the only critical point of the function, it is an absolute minimum.

Case 2. 0<hR  for 0** uu > .

uzz crit ∆⇒<  increasing, (14)

uzz crit ∆⇒>  decreasing, (15)

and as zcrit is the only critical point of the function, it is an absolute maximum.

In the far more common case, where we are interested in the value of l over the top of the
hill, we have 0<hR . Thus, it is a case of absolute maximum and l can be calculated from Eq.

(7). At the upwind slope, in cases where there is no reversed flow, we always have 0>hR

somewhere. In this region, an absolute minimum occurs and the corresponding height is again
calculated from Eq. (7). Because Eq. (6) is the expression for the critical value of z, we adopt
the symbol l for both the cases of minimum and maximum and write
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This is the new expression for the critical height of the speed-up on neutral flows over low
hills. For practical purposes, careful distinction must be made between the maximum and
minimum speed-up cases. A thorough analysis of this expression is presented at section 4.

3.2. The height of maximum speed-up based on Taylor’s and Lee (1984) vertical profile

This derivation is included here to show that the method is valid for other expressions for u∆
found in the literature. A complete analysis of all the expressions currently available is not
intended.

We consider the work of Taylor and Lee (1984), which proposes that

hLAzeSzS /
max)( −∆=∆ , (17)

where A=4 for 3-D hills and A=3 for 2-D hills. For 3-D hills that are elongated in shape, the
authors suggest A=3.5. The definition of S∆  implies that

hLAzeSzuzu /
max0 )()( −∆=∆ . (18)

Differentiating Eq. (17) with respect to z and setting it equal to zero at the critical points,
we obtain ])/([0 /
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Substituting zcrit for l, multiplying and dividing by κ2 and rearranging, we finally obtain
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We recognise this expression to be almost identical to the one found in Jackson and Hunt
(1975), which reads 2

0 2)ln()( κ=zlLl h . The only difference is the value of the constant

multiplying 2κ . Considering a value of 39.0=κ , as stated earlier, we have 6.1)/1( 2 =κA

for 3-D hills, 2.2)/1( 2 =κA  for 2-D hills and 9.1)/1( 2 =κA , for 3-D elongated hills. The
values for the 2-D and elongated 3-D hills are very close to Jackson and Hunt’s value of 2. In
all cases, however, the conclusion is that Taylor and Lee’s (1984) wind profile implies
Jackson and Hunt’s (1975) law for the height of maximum speed-up. This conclusion, is spite
of being very easy to draw, has apparently passed unnoticed through the years.

4. COMPARISON WITH FIELD DATA AND DISCUSSION

The results of expression (16) were compared with all available results of the Askervein hill
experiment, conducted in 1982 and 1983 (Taylor and Teunissen, 1983, 1985). The Askervein
results were chosen because they are believed to be ‘the most complete field experiment to
date’ (Kaimal and Finnigan, 1994) and to ‘still represent a benchmark for such studies’,
according to a rather recent evaluation by Walmsley and Taylor (1996). The original data



were directly obtained from the authors in the form of tables for the vertical velocity profiles.
The processing of the data is described below and the results are summarised at Table 1.

The first column in Table 1 is the designation of the run. Following Mickle et al. (1988),
the letters TU mean ‘turbulence’ and refer to the data obtained during the year of 1983 and the
letters MF denote ‘mean flow’ and refer to 1982 data. The numbers refer to the day the run
was made. When more than one run was made on the same day, letters ‘A’ for the first run,
‘B’ for the second and so on were added. All runs obtained on October 5th, 1983, were not
included because they were considered suspicious by the authors. In fact, we verified that no
coherent results could be derived from those runs.

Table1. Height of maximum speed-up.

Run
Number

φ
( 0)

z0

(mm)
Lh

(m)
Rh

(m)
l Eq.(16)

(m)
l Eq.(1)

(m)
Exp. l
(m)

% diff.
Eq.(16)

% diff.
Eq.(1)

TU25 210 12 200 5,3 4,58 2,56 4,5 1,9 -43,6
TU30A 135 41 700 5,3 4,01 8,90 5,0 -19,8 77,6
TU30B 130 59 700 3,9 1,89 9,84 2,0 -5,7 390,9
TU01A 170 23 315 6,0 4,66 4,25 5,0 -6,8 -12,2
TU01B 180 15 280 7,6 5,33 3,48 5,0 6,5 -30,2
TU01C 185 22 260 5,6 4,86 3,66 5,0 -2,9 -26,7
TU01D 200 54 210 3,0 2,96 4,12 4,0 -26,0 2,3
TU02 165 28 380 5,9 4,29 5,15 5,0 -14,2 2,9

TU03A 210 18 200 4,3 3,84 2,86 4,0 -4,0 -28,4
TU03B 210 27 200 3,9 3,65 3,22 5,0 -26,9 -35,9
TU06A 215 31 200 3,2 3,00 3,36 5,0 -40,0 -32,7
TU06B 230 42 220 2,9 2,76 3,93 5,0 -44,8 -21,5
TO07A 240 31 230 4,1 3,16 3,70 5,0 -36,8 -25,6
TU07B 260 23 300 5,2 3,42 4,11 5,0 -31,5 -17,6
MF25 120 30 650 4,1 2,19 7,75 1,5 46,0 417,0
MF28 175 32 300 3,5 2,95 4,51 3,5 -15,7 29,0

MF29A 225 39 210 1,99 1,70 3,72 1,8 -11,2 107,0
MF29B 235 29 220 2,45 2,16 3,52 2,0 8,1 76,2
MF01A 155 24 530 12,4 6,02 6,29 6,0 0,4 4,3
MF02 200 35 210 2,5 2,42 3,60 2,0 20,8 79,7
MF03 155 17 520 6,3 3,59 5,67 5,1 -29,6 11,6

Average absolute % difference 20,0 67,0
Average % difference -10,0 44,0

Average absolute % difference, �=120o—135o excluded 18,2 32,6
Average % difference, �=120o—135o excluded -12,8 2,1

The direction of the wind is presented in the second column of Table 1. The estimates for
z0 and Rh are obtained by fitting the modified log law to the field data, as explained in PBb.
The values of Lh are obtained from a curve fit to the values presented by Taylor and Lee
(1984), for a limited range of directions, which brings a certain amount of arbitrariness to the
interpolation process. The columns designated by ‘l  Eq.(16)’, ‘l  Eq.(1)’ and ‘Exp. l’
represent l calculated from Eq. (16), Eq. (1) and the experimental value of l, respectively. The
last two columns are the relative difference between Eq. (16) and Eq. (1) with respect to the
experimental value of l, respectively. The last four lines of Table 1 are four different kinds of



average values, calculated with those differences. Before those values are analised, a word of
caution is necessary about the experimental value of l, however.

Experimental values of l were estimated directly from the raw data received from the
authors. These estimates were made (whenever a plausible one could be made) by computing
the difference between the wind velocities at HT and RS, i.e. calculating u∆ , and searching
for its maximum. However, the limited number of measurement points and the fact that there
was often just one point between the supposed maximum and the ground, made it very
difficult to establish the real point of maximum u∆ . The strategy adopted to overcome this
difficulty was to draw a best-fit line for u∆  and to estimate the maximum directly from it.
We recognise that this approach is limited to the amount of data points available (and to the
curve fit itself) but we believe that our conclusions still hold. In all but a few cases, the value
estimated for l coincided with the largest experimental value of u∆ . In a small number of
exceptions, we thought a better estimate could be made. Those were the cases where two
neighbouring values were very close to each other, suggesting that the maximum might be
somewhere between them or cases where the difference was still growing at the measurement
point closest to the ground.

As an additional possible source of scattering for the estimations of l, the MF
observations (1982’s measurements) were not taken at the same levels at the RS and HT
towers. Therefore, to calculate u∆  we needed to interpolate the values of the wind velocity at
RS logarithmically at the measuring heights used at HT.

The values of the last two columns of Table 1 shows that Eq. (16) provides a better
description of the field data than Eq. (1). The two values in the first of the last four lines,
20.0% and 67.0%, are the average of the absolute values of the differences, which tend to
confirm this conclusion. The averages of the differences (sign included) are –10.0%, for Eq.
(16), and 44.0%, for Eq. (1), and are shown in the second of the last four lines. They suggest
that Eq. (1) tends to overestimate l whereas Eq. (16) tends to underestimate it slightly. The
last two columns also suggest that Eq. (1) does not predict l correctly when the wind is
blowing from the 120o-135o  direction range, probably because the estimate of Lh is difficult
to perform in this case. In fact, if such cases are excluded, the average of the absolute
difference for Eq. (1) goes down to 32.6% (third line), whereas the average difference (sign
included) goes down to 2.1% (fourth line), indicating only a very slight tendency to
overestimate it. No recognisable dependence of the results obtained from Eq. (16) with
direction was detected. The scatter of the results appear to be a simple consequence of the
scatter in the determination of *u  and 0*u  and of the measurement limitations mentioned

above. In all cases, Eq. (16) seems to furnish the best available description of the phenomena.
Indeed, in a previous work, PBa have shown Eq. (1) to describe experimental data better than
any other expression, including Eq. (20) or its similar, proposed by Jackson and Hunt (1975).
As we have shown that Eq. (16) describes field data better than Eq. (1), we conclude that Eq.
(16) is the best available at the moment, as far as the Askervein data is concerned. However,
expressions of the kind of Eq. (1) are easier to use than Eq. (16), because the former is purely
geometrical while the latter is essentially dynamic. Therefore, no use can be made of Eq. (16)
unless z0, *u  and Rh are calculated. However, one should consider that:

•  most equations of the kind of Eq. (1) also depend on the dynamics of the flow because
they include )(0 zu  implicitly in them. This is usually where the term )ln( 0zl  comes

from;
•  because most equations of the kind of Eq. (1) come from order of magnitude analysis,

they generally include constants to be determined against experimental data. Eq. (16)
includes none, which is a clear advantage;



•  l is indeed to be expected to depend on the dynamics of the flow and the detailed
geometry of the hill and not only on the ratio 0zLL h ≡+ .

•  the need to calculate z0, and *u  is typical of boundary layer solutions using flux-profile
relationships, like Eq. (2). Our description is, therefore, coherent with the results of PBb,
upon which it is based.

As we have shown in section 3.2, different expressions for l can be obtained using
different author’s expressions for u∆ . One was used as an example and we suggest others to
be tried. We have shown that Taylor and Lee’s (1984) expression for u∆  implies Jackson and
Hunt’s (1975) expression for l. Consequently, as Eq. (16) give better results than Jackson and
Hunt’s (1975), it is suggested that our expression for u∆  is also better than Taylor and Lee’s
(1984). This conclusion has also been confirmed by direct comparison made in PBb
previously.

Finally, we stress that careful distinction must be made between the minimum and
maximum cases when using Eq. (16). If we recall the fact that z0 is a zero of the speed-up
function, we see that, in the minimum case, the value of speed-up at l is negative. Misuse of
Eq. (16) in that sense can lead, for example, to a wind turbine being sited at the height of
minimum (and negative) speed-up in a region where 0>hR . This can be very important in

siting arrays of wind turbines on the upwind slope at the top of a hill. Implicit in this
discussion is the fact that we expect Eq. (16) to hold on the slopes of the hill as well as on the
HT. This is due to the fact that Eq. (3) is expected to also hold in those regions, according to
PBb. At the moment, however, this claim cannot be proved nor refuted due to the lack of
complete vertical wind profiles on the slopes.

5. CONCLUSIONS

We have obtained a new expression for the height of maximum speed-up in flows over
low isolated hills under neutral atmosphere. The task was accomplished by analysing the
behaviour of the speed-up function proposed by PBb. Although we have shown the resulting
expression to describe the Askervein field data better than any other expression available in
the literature, we point out that it is essentially dynamic in nature and, therefore, demands the
atmospheric boundary layer to be fully resolved. We tentatively obtained another expression
for l by the same method, analysing Taylor and Lee’s (1984) expression for the speed-up. We
also suggest that other available expressions for u∆  should be analysed to yield new
expressions for l.

Our results also pointed out the need of a greater density of velocity measurements at the
HT, obtained at the same measuring levels of the RS, so that the position of l can be more
firmly established.

Acknowledgements

The authors wish to thank Dr. Peter A. Taylor, Dr. John L. Walmsley and Dr. Wensong
Weng of the Dept. of Earth and Atm. Sciences, York university, Canada, for their kind help.
Dr. Taylor sent us the original tables of wind velocity data from the Askervein hill
experiment, Dr. John L. Walmsley sent the digital data and some reference suggestions and
Dr. Wensong Weng sent the copies of the ‘Guidelines’ works. One of the authors would like
to acknowledge the financial support from CNPq, through grant No. 143041/97-5 and
FAPERJ, through grant No. E-26/171.284/99.



REFERENCES

Finnigan, J. J.: 1992, ‘The logarithmic wind profile in complex terrain’, CSIRO
environmental mechanics technical report No. T44, CSIRO, Canberra, Australia, 69 pp.

Finnigan, J. J.: 1983, ‘A streamline coordinate system for distorted two-dimensional shear
flows’, J. Fluid Mech., 130, 241—258.

Frenzen, P. and Voguel, C. A.: 1995, ‘On the magnitude and apparent range of variation of
von Karman constant in the atmospheric surface layer’, Boundary Layer Meteorology,
72, 371—392.

Jackson, P. S., and Hunt, J. C. R.: 1975, ‘Turbulent wind flow over a low hill’, Quart. J. Roy.
Meteorol. Soc.,106, 929—955.

Kaimal, J. C. and Finnigan, J. J.: 1994, ‘Atmospheric boundary layer flows: their structure
and measurement’, Oxford Univ. Press, New York, 289 pp.

Mickle, R. E., Cook, N. J., Hoff, A M., Jensen, N. O., Salmon, J. R., Taylor, P.A., Tetzlaff, G.
and Teunissen, H.W.:1988, ‘The Askervein hill project: vertical profiles of wind and
turbulence’, Boundary Layer Meteorology, 43, 143—169.

Pellegrini, C.C. and Bodstein, G.C.R.: 2000a, ‘On the Height of Maximum Speed-up in
Atmospheric Boundary layers over low hills’, to appear in the proceedings of the
Congresso Nacional de Engenharia Mecânica 2000, 07-11/08/2000, Natal, RN, Brasil.

Pellegrini, C.C. and Bodstein, G.C.R.: 2000b, ‘A Modified logarithmic law for flows over
low hills under neutral atmosphere’, to appear in the proceedings of the Congresso
Nacional de Engenharia Mecânica 2000, 07-11/08/2000, Natal, RN, Brasil.

Taylor, P. A., and Teunissen, H. W.:1983, ‘Askervein ’82: an initial report on the
September/October 1982 experiment to study boundary-layer flow over Askervein, South
Uist, Scotland’, Internal report MSRB—83—8, Atm. Environ. Service, Downsview,
Ontario.

Taylor, P. A. and Lee : 1984, ‘Simple guidelines for estimating wind speed variations due to
small scale topographic features’, Climatological bulletin, 18(2), 3—22.

Taylor, P. A., and Teunissen, H. W.:1985, ‘The Askervein hill project: report on the
September/October 1983 main field experiment, Internal report MSRB—84—6, Atm.
Environ. Service, Downsview, Ontario.

Walmsley, J. L and Taylor, P. A.: 1996, ‘Boundary layer flow over topography: impacts of
the Askervein study’, Boundary Layer Meteorology, 78, 291—320.


