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Abstract. The so-called generalized integral transform technique is employed in the hybrid
analytical-numerical solution of laminar forced convection to power-law fluids inside
rectangular ducts, allowing for the solution of this problem involving a non-separable
eigenvalue problem. Reference results are established for quantities of practical interest
within the thermal entry region, for a wide range of the axial variable, power law indices and
for the typical situation of a square duct. The accuracy of previously reported results from
older codes using the earlier mentioned method (for Newtonian fluids), as well as from direct
numerical approaches are then critically examined, for both the developing and fully
developed regions.

Keywords: Laminar rectangular duct flow, Power-law non-Newtonian fluids, Laminar forced
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1. INTRODUCTION

Industrial applications in which processing of materials behaving as non-Newtonian
fluids are those commonly encountered in the chemical, food processing, polymer and
petrochemical industries which undergo thermal processing in heat exchange equipment, and
in these applications the power-law model can describe adequately the rheology of such
fluids. Therefore, heat transfer solutions for laminar forced flow inside ducts of various
shapes is of great interest to the design of compact heat exchangers, solar collectors and
several other low Reynolds number flow heat exchange devices (Shah & London, 1978). In



this context, the establishment of benchmark results through numerical-analytical solutions is
desirable for reference purposes, validation of direct numerical schemes and validation of old
schemes using the hybrid numerical-analytical method (for Newtonian fluids), specially for
thermally developing flows (Aparecido & Cotta, 1990), and a survey of the literature reveals a
limited amount of works about heat and fluid flow of non-Newtonian fluids in rectangular and
irregular ducts is available, and most contributions deal with purely numerical or approximate
approaches (Chandrupatla & Sastri, 1977, Lawal & Mujumdar, 1985, Etemad & Mujumdar,
1994, Etemad, 1997 and 1998).

Particularly, the case of rectangular duct constitutes a typical example of the difficulties
associated with solving multidimensional convection problems, requiring costly numerical
solutions limited to regions away from the inlet (longer ducts). The exact solution of such a
problem, through classical analytical methods (Mikhailov & Ösizik, 1984) is inhibited due to
the non-separable nature of the related eigenvalue problem. The present work aims at
applying the so-called Generalized Integral Transform Technique (GITT) (Cotta, 1993) in
order to avoid the difficulties associated with the non-separable eigenvalue problem,
consequently to give an accurate and reliable analysis to allow for the solution of this formally
transformable but non-separable problem, providing an efficient algorithm for numerical
computations.

The problem considered is that of a rectangular duct subjected to a constant wall
temperature to illustrate the powerfulness of this hybrid approach. An analysis of
convergence is made and a set of benchmark results established for quantities of practical
interest, such as dimensionless average temperature, local Nusselt numbers, within a wide
range of the dimensionless axial coordinate, power-law indices and for the typical situation of
a square duct. Comparisons are then critically performed with previously reported results
(Chandrupatla & Sastri, 1977, Shah & London, 1978, Etemad, 1997) from direct numerical
approaches and from hybrid numerical-analytical approach (Cotta & Aparecido, 1990) for
both, fully developed and thermally developing regions.

2. ANALYSIS

Laminar flow of a non-Newtonian power-law fluid inside a rectangular duct of sides 2a
and 2b, according to Fig. 1, is considered. The velocity profile is taken as fully-developed and
the duct walls are subjected to a constant temperature, so that the dimensionless energy
equation for constant property flow, neglecting axial conduction and viscous dissipation, in
thermally developing flow is written as:
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with inlet and boundary conditions given, respectively, as follows:
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Figure 1 - Geometry and coordinates system for thermally developing rectangular duct flow.

where in Eqs. (1) above the following dimensionless groups were employed:
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The main dimensionless groups in Eqs. (2) above are: Pe (Péclet number), α (aspect
ratio), Re (Reynolds number) and Pr (Prandtl number). Dh is the hydraulic diameter defined as
Dh = 4b/(1+α). The dimensionless velocity profile is given from the solution of momentum
equations, for a non-Newtonian power-law fluid flowing within rectangular ducts, as an
infinite series in the form (Lima et al., 2000):
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In Eqs. (3), the quantities )Y(u~k  represent the transformed potentials for the velocity
field, which were obtained numerically by the application of the GITT approach (Lima et al.,
2000), so that the integral in Eq. (3.c) must also be obtained numerically through appropriate
subroutines to evaluate integrals of a cubic spline such as the CSITG from the IMSL Library
(1989).

Due to the non-separable nature of the velocity profile given in Eq. (3.a) and
consequently, of the related eigenvalue problem needed to solve the energy equation through
well-known analytical methods such as the classical integral transform technique (Mikhailov
& Ösizik, 1984), an exact solution of problem (1) is not possible. On the other hand, with the
advances on the so-called GITT approach for the hybrid analytical-numerical solution of this
class of non-separable eigenvalue problem, it is possible to avoid these difficulties as now
demonstrated (Cotta & Aparecido, 1990, Cotta, 1993). For this purpose, in order to alleviate
the difficulties related to the eigenvalue problem and to permit the employment of the
generalized integral transform technique, the following auxiliary eigenvalue problems are
chosen:
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which are readily solved to yield eigenfunctions, eigenvalues, and normalization integrals as
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Eigenvalue problems (4) and (5) allow the development of the following integral
transform pair:
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Equation (1.a) is now operated on with ∫∫
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employing the inversion formula (7.b), the following system of coupled differential equations
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while the transformed inlet condition becomes
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In Eq. (7.b) each summation is associated with the eigenfunction expansion in a
corresponding spatial coordinate, for computational purposes, the series solution given by Eq.
(7.b) is, in general, truncated to a finite number of terms for it summation, in order to compute
the potential )Z,Y,X(θ . The solution convergence is verified by comparing the values for the
potential obtained with the truncated series for different numbers of retained terms. Such
number of terms is commonly user-supplied and even taken as the same for each summation.
This procedure certainly results in unnecessary computational effort due to the fact that each
summation might be converged with a markedly different truncation order. Therefore, aiming
at reducing computational costs to solve system (8), an ordering scheme is proposed as
follows (Mikhailov & Cotta, 1996, Cotta & Mikhailov, 1997, Corrêa et al., 1997). Now, the
criteria selected for this ordering procedure involves the summation of the eigenvalues in each
direction, as:
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Then, the indices i and m related to the temperature field are reorganized into the single
index p, while the indices j and n are collapsed into the new index q. The associated double
sums are then rewritten as:
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The truncated version of system (8) is now written in terms of these new indices as:
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The coupled system of ordinary differential equations (11) is solved by efficient
numerical algorithms for initial value problems, such as in subroutine IVPAG from the IMSL
package (1989), with high accuracy. Then, after the transformed potentials are obtained,
quantities of practical interest are determined from the analytic inversion formula (7.b), such
as the dimensionless average temperature
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and the local Nusselt number can be calculated by making use of the temperature gradients at
the wall integrated over the perimeter, or utilizing the axial gradient of the average
temperature,
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3. RESULTS AND DISCUSSION

Now, results are presented in terms of dimensionless average temperature and Nusselt
numbers along the axial coordinate, within the range of Z = 10-4 – 1, for a square duct (α = 1).
System (11) was solved numerically with Nt ≤ 200 and a relative user-prescribed tolerance of
10-4 in subroutine IVPAG from the IMSL package (1989).

To illustrate the convergence behavior of the present approach is showed in Table 1 the
convergence of the Nusselt number in thermal entry region (i.e., Z = 10-2, 10-1 and 1) for
different power-law indices. It is observed in this table an excellent convergence ratio, with
practically three digits converged for all positions studied. The comparison among the values
of Nusselt numbers calculated in the present work and the values of Chandrupatla and Sastri
(1977) is also showed, and it can be noticed that the values are in good agreement with each
other, indicating that the numerical code developed here is well established.

In Fig. 2 the results of axial distribution of the dimensionless average temperature along
the thermal entry region of a square duct are presented, for various power-law indices. It can
be noticed a small influence of the power-law index in the dimensionless average temperature
along the thermal entry region. But, in Fig. 3, it is observed a higher influence of the power-
law index in Nusselt numbers in the thermal entry region. In the fully-developed region the
effect of the power-law index in Nusselt numbers tends to disappear where the curves are
practically coincident.

The effect of power-law index in the average temperature is small, as can be verified in
Fig. 2 by a slight increase in the average temperature when n > 1. However, in Fig. 3, it is
observed an opposite behavior for the Nusselt numbers. These aspects can be explained by the



fact when n > 1 the viscous effects near the wall diminish and, consequently, the thermal
exchange is less intensified resulting in lower values for the Nusselt numbers when compared
with those values for n < 1.

Table 1. Convergence of the local Nusselt number for a square duct
Nu(Z)

Z = 0.01
Nt n = 0.50 n = 0.75 n = 1.00 n = 1.25
50 4.6259 4.4479 4.3493 4.2887
100 4.6234 4.4456 4.3469 4.2868
150 4.6224 4.4446 4.3466 4.2859
200 4.6220 4.4445 4.3472 4.2858

a 4.604 4.446 4.357 NA
Z = 0.1

50 3.2121 3.0660 2.9826 2.9288
100 3.2120 3.0660 2.9826 2.9288
150 3.2120 3.0660 2.9825 2.9288
200 3.2120 3.0660 2.9825 2.9288

a 3.189 3.055 2.976 NA
Z = 1

50 3.2054 3.0630 2.9786 2.9241
100 3.2083 3.0615 2.9781 2.9237
150 3.1950 3.0618 2.9717 2.9238
200 3.2059 3.0620 2.9787 2.9232

a 3.184 3.050 2.975 NA
   NA – Not available,  a - Chandrupatla and Sastri (1977)
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Figure 2. Dimensionless average temperature for different power-law indices.
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Figure 3. Nusselt numbers along the thermal entry region for different power-law indices.

4. CONCLUSIONS

The present approach demonstrated to be relatively cheap, within the range of Nt
considered. Numerical results were tabulated and graphically presented providing sets of
benchmark for the local Nuselt numbers and dimensionless average temperature. The next
step in the application of the present methodology involving the flow of non-Newtonian fluids
will be concerned to the case of irregularly shaped duct geometries as described in Cotta
(1993).
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