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Abstract. This paper deals with the use of the conjugate gradient method of function
estimation for the identification of two unknown boundary heat fluxes in a parallel plate
channel. The fluid flow is assumed to be laminar and hydrodynamically developed. The
boundary heat fluxes are supposed to vary in time and along the channel. Temperature
measurements taken  inside the channel are used in the inverse analysis. The accuracy of the
present solution approach is examined by using simulated measurements containing random
errors, for strict cases involving functional forms with discontinuities or sharp-corners for the
boundary heat fluxes.
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1.     INTRODUCTION

The interest on the solution of inverse heat convection problems is more recent than on
the solution of inverse heat conduction problems. To the best of the authors’ knowledge, the
first article dealing with an inverse heat convection problem is the one due to
Moutsoglou (1989).Afterwards, several other articles involving inverse convection appeared
in the literature (Moutsouglou, 1990; Huang and Özisik, 1992; Raghunath, 1993; Bokar and
Özisik, 1995; Liu and Özisik, 1996a; Liu and Özisik, 1996b; Li et al, 1996; Machado and
Orlande, 1996; Machado and Orlande, 1997; Szczygiel, 1997; Moaveni, 1997; Machado and
Orlande, 1998; Aparecido and Ozisik, 1999; Colaço and Orlande, 2000). However, in all
those works, a single unknown function was considered in the analysis.

In this paper, we present the solution of the inverse problem of estimating simultaneously
the boundary heat fluxes at the two walls of a parallel plate channel. As the solution
technique, we apply the conjugate gradient method of function estimation (Alifanov, 1974;
Alifanov, 1994; Huang and Özisik, 1992; Bokar and Özisik, 1995; Liu and Özisik, 1996a; Liu
and Özisik, 1996b; Machado and Orlande, 1996; Machado and Orlande, 1997; Machado and
Orlande, 1998; Colaço and Orlande, 2000, Özisik and Orlande, 2000), by assuming that no



information is available regarding the time and spatial variations of the unknown function.
Simulated temperature measurements taken inside the channel are used in the inverse
analysis, in order to address the accuracy of the present solution technique. Basic steps of the
conjugate gradient method of function estimation include: (i) The Direct Problem, (ii) The
Inverse Problem, (iii) The Sensitivity Problem, (iv) The Adjoint Problem, (v) The Gradient
Equation, (vi) The Iterative Procedure, (vii) The Stopping Criterion and (viii) The
Computational Algorithm. Details of such steps, as applied to the present inverse problem, are
described next.

2.     DIRECT PROBLEM

The physical problem considered here involves the laminar hydrodynamically–developed
forced convection of a Newtonian fluid in a parallel plate channel. The fluid is initially at the
temperature T0, which is also the inlet temperature. The channel walls, separated by a distance
h, are subject to different heat fluxes varying in time and also along the channel. In this work,
we use the formulation of such physical problem in terms of generalized spatial coordinates
(ξ,η) in a boundary-fitted coordinate system. The mathematical formulation is then given by:
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where the boundaries η=1 and η=N correspond to the channel walls at y=0 and y=h,
respectively, while the boundaries ξ=1 and ξ=M, correspond to the channel inlet and outlet,
respectively. Different parameters appearing above are defined as

( )2
y

2
x

2
22 J;yxyxJ η+η=α−= ξηηξ (2.a,b)

( ) ( )2
y

2
x

p
22

2
y

2
x

p
11 C

kJ
D;

C

kJ
D η+η=ξ+ξ= (2.c,d)

( )yyxx
p

2112 C

kJ
DD ηξ+ηξ== (2.e)

( ) ( )yxyx vuJV
~

;vuJU
~ η+η=ξ+ξ= (2.f,g)



where the subscripts ξ, η, x and y denote derivatives and the velocity profile is given by:
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where u  is the mean velocity of the fluid.
The direct problem is concerned with the determination of the temperature distribution

inside the channel, from the knowledge of the velocity profile (2.p), initial and inlet
temperature T0, thermophysical properties and boundary heat fluxes q1(ξ,t) and q2(ξ,t).

3.     INVERSE PROBLEM

The inverse problem under picture in this paper is concerned with the simultaneous
estimation of the time and spatial variations of the boundary heat fluxes q1(ξ,t) and q2(ξ,t), by
using temperature measurements taken inside the channel. The inverse problem is
reformulated as a minimization problem involving the following objective functional:
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where S is the number of sensors used in the analysis, µs(t) are the measured temperatures at
the position (ξs,ηs), while T[ξs,ηs,t; q] are the estimated temperatures at the measurement
positions.

The minimization of the objective functional (3) is obtained through the conjugate
gradient method (Alifanov, 1974; Alifanov, 1995; Huang and Özisik, 1992; Raghunath, 1993;
Machado and Orlande, 1996; Machado and Orlande, 1997; Machado and Orlande; 1998;
Bokar and Özisik, 1995; Liu and Özisik, 1996a; Liu and Özisik, 1996b; Colaço and Orlande,
2000; Özisik and Orlande, 2000). Auxiliary problems, known as the sensitivity and adjoint
problems, are required for the implementation of the iterative procedure of such a method, as
described next.

4.     SENSITIVITY PROBLEM

The sensitivity problem is used to determine the temperature variation due to changes in
the unknown quantity. Since the present work deals with the estimation of two unknown
functions, two sensitivity problems are required in the analysis. They are derived by
considering perturbations of the boundary heat fluxes each at a time, as described next.

Let us consider that the temperature T1(ξ,η,t) undergoes a variation ε∆T1(ξ,η,t), when the
boundary heat flux q1(ξ,t) is perturbed by ε∆q1(ξ,t), where ε is a small real number. In order
to derive the sensitivity problem for ∆T1(ξ,η,t), we write the direct problem in operator form
and apply the following limiting process (Alifanov, 1994; Özisik and Orlande, 2000):
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where Lε(q1ε) and L(q1) are the operator forms of the direct problem written for the perturbed
[q1(ξ,t) + ε∆q1(ξ,t)] and unperturbed q1(ξ,t) heat flux at the boundary η=1, respectively. A
similar procedure is used for the derivation of the sensitivity problem for the function



∆T2(ξ,η,t), resultant from the perturbation of the heat flux q2(ξ,t) by ε∆q2(ξ,t), at the boundary
η=N. We then obtain the sensitivity problems for the determination of the functions
∆Tj(ξ,η,t), j=1,2, respectively as:
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5.     ADJOINT PROBLEM

The adjoint problem is obtained by multiplying equation (1.a) by the Lagrange Multiplier
λ(ξ,η,t), integrating the resulting expression over the time and space domains and adding the
result to the functional given by equation (3). We obtain:
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where δ(⋅) is the Dirac delta function.



We now perturb q1(ξ,t) by  ε∆q1(ξ,t) and T1(ξ,η,t) by ε∆T1(ξ,η,t) in equation (7) and
apply the following limiting process to obtain the directional derivative of the functional
S[q1(ξ,t), q2(ξ,t)] in the direction of the perturbation ε∆q1(ξ,t):
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where Sε(q1ε) and S(q1) denote the functional (7) written for the perturbed and unperturbed
heat flux q1(ξ,t), respectively.

By employing integration by parts, utilizing the initial and boundary conditions of the
sensitivity problem for ∆T1(ξ,η,t) and also requiring that the coefficients of ∆T1(ξ,η,t) in the
resulting equation vanish, the following adjoint problem is obtained:
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A limiting process analogous to equation (8) is used in order to obtain the directional
derivative of the functional S[q1(ξ,t),q2(ξ,t)] in the direction of the perturbation ε∆q2(ξ,t).
After performing similar manipulations, we obtain an adjoint problem resulting from the
perturbation in q2(ξ,t) identical to that given by equations (9), resulting from the perturbation
in q1(ξ,t). Therefore, one single adjoint problem needs to be solved at each iteration of the
conjugate gradient method, despite the fact that two unknown functions are to be estimated.

6.     GRADIENT EQUATION

In the process of obtaining the adjoint problem resulting from the perturbation in q1(ξ,t),
the directional derivative of the functional in the direction ε∆q1(ξ,t) reduces to
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By assuming that the function q1(ξ,t) belongs to the space of square integrable functions
in 0 < t < tf , 1 < ξ < M, we can obtain the gradient equation of the functional for the
estimation of the function q1(ξ,t) as:
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An analogous procedure is used in order to obtain the gradient equation of the functional
for the estimation of the function q2(ξ,t) as:
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7.     ITERATIVE PROCEDURE

The iterative procedure of the conjugate gradient method, as applied to the simultaneous
estimation of qj(ξ,t), j=1,2, is given by:
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where k is the number of iterations. The directions of descent dj
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The conjugation coefficients γj
k  , j=1,2, can be obtained from the Fletcher-Reeves

expression as
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8.     STOPPING CRITERION

The use of the stopping criterion based on the Discrepancy Principle gives the conjugate
gradient method an iterative regularization character (Alifanov, 1974; Alifanov, 1994). In this
case, the stopping criterion is given by

( )[ ] ε<ξ t,qS (14)

where S[q(ξ,t)] is computed with equation (3). The tolerance ε is chosen so that smooth
solutions are obtained with measurements containing random errors. It is assumed that the
solution is sufficiently accurate when
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where σ is the constant standard deviation of the measurement errors.
Thus, ε  is obtained from equation (3) as

ftS 2σ=ε (16)

For cases involving errorless measurements, ε can be specified a priori as a sufficiently
small number, if the sensors are appropriately located.

9.     RESULTS AND DISCUSSIONS

We consider here a test-case involving the laminar hydrodynamically developed flow of
water with Re=100, in a channel of height 0.05 m. Direct, sensitivity and adjoint problems
were solved with finite-volumes, by using a discretization with 100 and 200 volumes in the ξ
and η directions, respectively. The final time was taken as 1000 s and 1000 time-steps were
used for the finite-volume solution. For the inverse analysis, one measurement was assumed
available per sensor at each time step.

In order to illustrate the accuracy of the present function estimation approach, we used
simulated measurements containing random errors, normally distributed, with zero mean and
constant standard-deviation (σ). Such simulated measurements were obtained by adding a
random noise to the solution of the direct problem for a priori established functional forms
for the boundary heat fluxes q1(ξ,t) and q2(ξ,t). For the results presented below, the boundary
heat fluxes were taken as qj(ξ,t)=q0Fξj(ξ)Ftj(t), for j=1,2. The value of q0 was taken as 100
W/m2. Functional forms containing discontinuities and sharp-corners were examined for
Fξj(ξ) and Ftj(t), because they represent the most difficult functions to be recovered by inverse
analysis. Let us consider a test-case with Fξj(ξ) and Ftj(t) taken, respectively, in the form:
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Figures 1.a-c present the results for the spatial variations of q1(ξ,t) and q2(ξ,t) at selected
times, by using simulated measurements with standard deviation σ=0.05. Such results were
obtained by using the measurements of sensors located uniformly along the channel at 2.625
mm far from the walls at η=0 and η=N, respectively. Thirty-four sensors were located near
each of the boundaries. Initial guesses of q1

0(ξ,t)=q2
0(ξ,t)=0 were used for the iterative

procedure of the conjugate gradient method. Figures 1.a-c show that very accurate estimates
can be obtained for the spatial and time variations of q1(ξ,t) and q2(ξ,t), even for such initial
guesses far from the exact functions and by considering measurements containing random
errors.
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Figure 1.a. Estimation of q1(ξ,t) and q2(ξ,t) along the channel for t=116 s.
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Figure 1.b. Estimation of q1(ξ,t) and q2(ξ,t) along the channel for t=500 s.
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Figure 1.c. Estimation of q1(ξ,t) and q2(ξ,t) along the channel for t=833 s.

10.    CONCLUSIONS

In this paper we applied the conjugate gradient method for the simultaneous identification
of two boundary heat fluxes in a parallel plate channel. A function estimation approach was
utilized, where no information was assumed available regarding the functional form of the
unknown.  The more difficult case of boundary heat fluxes varying in time and along the
channel was examined in the paper. Results obtained with simulated temperature
measurements reveal that quite accurate estimates can be obtained for the time and spatial
variations of the unknown function.
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