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Abstract. Forced convection heat transfer problem for liquid flow in circular tubes is
studied. The solution methodology follows the hybrid analytical-numerical Generalized
Integral Transform Technique (GITT). A fully developed velocity profile at tube inlet is
considered in the presence of a thermally developing temperature profile. Moreover,
thermophysical properties are held constant while dynamic viscosity is allowed to vary.
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1. INTRODUCTION

Diffusion problems with non-linear characteristics are generally found within the context
of variable thermophysical properties. Usually, these variations are associated to intense
temperature gradients within the medium such as the non-linear heat diffusion in solids. A
similar situation can be found when the forced internal convection of liquids in considered.
Here, the viscosity variation with respect to the fluid temperature strongly influences the
velocity and temperature profiles sometimes presenting meaningful deviations from the
standard constant property problem. It seems that Yang (1962) was one of the earlier
researchers to acknowledge these differences when studying the laminar forced convection of
liquids with temperature dependent viscosity. In his work, an analytical solution is sought
through an improved integral method and consequently, these results are dependent upon the
degree of the polynomial approximation for the temperature field. In order to draw
comparisons with other published results, the fluid viscosity follows an inverse linear relation
with the temperature field and problems associated to step changes in tube wall temperature
and in wall heat flux are studied. Various results, such as the Nusselt numbers and friction
factor, are presented for both the heating and cooling situations and, as expected, they indicate
that both the velocity and temperature distributions are affected by the variable viscosity
coefficient.

Test (1968) also considers the laminar flow heat transfer and fluid flow in forced internal
convection problems. This problem is modeled with a more robust formulation than that of
Yang and a finite difference scheme is employed to solve the continuity, axial direction
momentum and energy equations. Moreover, data from an experimental setup is used to
establish comparisons with the numerical results. In this study, the viscosity coefficient is
taken to vary in an exponentially fashion with respect to the temperature. Among other
findings, the research mentioned above shows that the effect of wall temperature on local



Nusselt number is not relevant when the fluid is heated but is very pronounced for the case of
cooling. Also, expressions for the local Nusselt number and for the friction factor are
established from the numerical simulations and compared to others obtained from purely
experimental correlations.

Herwig and his collaborators investigated the effect of variable viscosity in channel flow
under both the prescribed temperature (Herwig,1989) and flux (Herwig,1985,1990)
conditions. A common trait to all these works is that the viscosity varies linearly with respect
to the temperature and first order perturbation techniques are employed to solve the governing
equations. The required zero order solution is that associated to constant viscosity and these
problems are modeled either by a velocity – enthalpy or a stream function – vorticity
formulation. Due to the very nature of the chosen solution procedure, these results should be
interpreted with care especially in regions close to the tube inlet. In fact, the majority of the
reported results center around asymptotic Nusselt numbers and friction coefficients.
Nevertheless, comparisons with previously published data show that these predictions are
accurate for low and moderate Prandtl numbers.

Therefore, this contribution seeks to further explore the internal forced convection
problem in situations where a temperature dependent viscosity coefficient is taken into
account. The formulation reported by Yang (1962) is chosen due to its simplicity and these
governing equations are solved using the Generalized Integral Transform Technique (Cotta,
1993). This extremely reliable methodology has been used for other type of linear and non-
linear diffusion problems (Cotta, 1998) and its application to this research is expected to
clarify some aspects of the whole hydrodynamic and thermal entry regions for the heating and
cooling situations.

2. ANALYSIS

Liquid flowing inside a semi-infinite tube is considered. The walls are subjected to a
prescribed temperature Tw while, at the tube inlet, the temperature profile Te is constant and
the velocity profile is fully developed.

2.1 Problem formulation

After considering the above simplifications as well as the formulation proposed by Yang
(1962), the governing equations, in dimensional form, are given by:

Momentum equation in the axial direction:
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Energy equation:
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The initial and boundary conditions are:
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By taking into account the problem symmetry and by integrating the momentum equation
(1) twice with respect to the radial variable r, and by utilizing the average velocity
formulation (Shah & London, 1978), the following expression for the axial velocity in
dimensionless form is obtained
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where various dimensionless variables are defined as:
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As far as viscosity dependence on temperature is concerned, the following expression
(Yang, 1962 ) is adopted :
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Velocity profile (5) is rewritten in terms of the above expression as:


















++= ∫∫∫ dRdRRRdRRRXU

RR

.)..1('.)..1('
2

1
),( '

11

0

'
1

θγθγ (8)

where γ  is a viscosity parameter which depends on the fluid, its value being negative for
heating and positive for cooling.

Now, governing equations (1) and (2), in dimensionless form, are reduced to a single
equation for the temperature potential )R,X(θ :
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Subjected to the following initial and boundary conditions:
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2.2 Solution through integral transform (GITT)

Definition of  an Auxiliary Eigenvalue Problem

Following the ideas in the Generalized Integral Transform Technique, an auxiliary
eigenvalue problem must be chosen in such a manner to contain the maximum amount of
information on the diffusive operator from the original problem, as well as on the boundary
conditions. Therefore, the following Sturm-Liouville problem is chosen:
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Solution to the above problem furnishes the following eigenvalues, eigenfunctions and
norm, in terms of the zero order Bessel function )R(J0  as:

Eigenvalues iβ : positive roots of  0)(J io =β i = 1,2,3,....

 Eigenfunctions: )R(J)R( ioi βψ = ,i = 1,2,3,....  (14)
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The Transform – Inversion pair

By using the orthogonality property for a regular Sturm-Liouville problem (Boyce &
Diprima, 1992), it is a simple matter to show that the transform-inversion pair for the problem
here considered, Mikhailov and Ozisik (1993), is:
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System of Ordinary Differential Equations

The main objective in the methodology here adopted consists in the integral
transformation of the original problem. In other words, the system described by Eq. (9) – (11)
shall be rewritten in terms of the transformed temperature potentials. As a result, a system of
ordinary differential equations will be obtained for the determination of the unknown
transformed potentials.  In order to accomplish this task, several mathematical operations
need to be performed and will be briefly discussed  below:

Equation (9) is integrated with respect to the radial coordinate in the interval ranging
from 0 to R and, again, from R to 1, with the aid of  boundary conditions (11) , resulting in:



``dR.'dR.
X

)R,X(
).R,X(U'.R

R

1
)R,X(

``R

0
``

1

R






−= ∫∫ ∂

∂θθ (17)

Following, Eq. (17) is substituted in  Eq. (15), to yield:
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Then, Eq. (8) is substituted into Eq. (18) and integration by parts are performed, yielding:
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Next, Inversion formulae, Eq. (16) is substituted into Eq. (19) followed by several
algebraic manipulations to finally yield:
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where,
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At this point, well established numerical integration schemes, such as the DIVPAG from
IMSL subroutines library, are employed to solve a truncated version of the denumerable
system represented by Eq. (20) together with its initial conditions. Once this problem is
solved, we invoke the inversion formulae, Eq. (16), to obtain the desired original potential .
The truncated version of Eq. (20) and its transformed initial conditions are given by:
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Determination of Axial  Velocity  U(X,Y)

After substitution for the inversion formulae, Eq. (16),  Eq. (8) becomes the following
expression for the determination of  axial velocity U(X,R) in terms of the transformed
potentials, which are in their turn, obtained from the numerical solution of Eq.(23), as
described above:
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Determination of Average Temperature

From the definition of average temperature (Shah & London, 1978), the following
expression is obtained in terms of the transformed variables:
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Determination of Local Nusselt Number

The local Nusselt number for internal tube flow is defined as (Shah & London, 1978):
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3.    RESULTS AND DISCUSSION

In order to study the effects of viscosity variation on liquid flow in tubes with fully
developed velocity profile at inlet and developing temperature profile, subjected to a
prescribed temperature at the tube wall, numerical simulations were carried based on the
model originally proposed by Yang (1962) and following the GITT approach.

The numerical code was written in FORTRAN, and the computations were performed in
a PC PENTIUM 200 MMX. Also, the eigenvalues and related eigenquantities were efficiently
calculated by the “Sign-Count Method” (Mikhailov and Ozisik, 1993) providing as many
expansion terms, N,  in Eq. (23) as desired.

The solution of the O.D.E.’s system (23) was obtained through the subroutine DIVPAG
from IMSL library, which performs an automatic local error control with user prescribed
tolerance, and is suitable for the solution of stiff O.D.E.’s systems. For all cases studied a 10-6

precision was imposed. A convergence of at least 3 digits was obtained when truncating the
series in Eq. (23) at N =30 terms. For the sake of simulation, values of  γ  equals to 9.0 , 6.0
and 3.0 were selected for the case of cooling the liquid while the values –0.9 , -0.6 and –0.3
were chosen for the case of heating.

Figures 1 and 2 show, respectively , the evolution of velocity profile U(X,R) along axial
position X , for the cases of fluid heating and cooling. It is noticed that, by heating the liquid,
the accompanying viscosity variation flattens the initially parabolic velocity profile, especially
at the entrance region.

For the case of cooling, viscosity variation extends the velocity profile. In the asymptotic
region, the velocity profile recovers its parabolic shape.

Figures 3 and 4 present axial velocity profile evolution at the center line in the X direction
for the cases of liquid heating and cooling, respectively. From these figures one observes that
the higher the absolute value for the viscosity parameter, the higher the deviation of axial
velocity with respect to the fully developed condition ( γ =0). Also, entry length increases
proportionally to the increase of the absolute value of parameter γ.

 Figures 5 and 6 depict local Nusselt number behavior for the cases of heating and
cooling, respectively. For heating, Fig. 5 shows that, for a fixed position X, as γ  decrease in
absolute value the local Nusselt number decreases. The heating of the liquid causes the
decrease in the value of viscosity near the tube wall, thus accelerating the flow in this region
when compared to the isothermal situation ( γ  = 0). The higher the absolute value of γ , the
higher the influence of viscosity on Nusselt number and flow velocity. Its also noticeable
from this figure the asymptotic behavior of Nusselt number, which tends to the classical value
of   3.657 reported in the literature (Shah & London, 1978).

Thermal entry length is also affected by viscosity variation, but in a weaker fashion than
that for the case of axial velocity profile. The variation of viscosity, as measured by γ ,
progressively extends the thermal entry length.

For the situation when the liquid is being cooled, Fig. 6 illustrates the behavior of local
Nusselt number as a result of variations in viscosity parameter γ. Such a behavior is similar to



the one encountered in the case of heating discussed above, where the decrease in Nusselt
number follows the decrease in the absolute value of parameter γ. It is also noticeable the
attainment of the asymptotic value  3.657.

Figure 1:  Axial velocity profile evolution – fluid heating

Figure 2: Axial velocity profile evolution – fluid cooling

Figure 3: Axial velocity at the centerline -  fluid heating



Figure 4: Axial velocity at the centerline -  fluid cooling

Figure 5: Local Nusselt number variation – fluid heating

Figure 6: Local Nusselt number variation  - fluid cooling



The analysis of the figures shows that, for the case of heating, Nusselt number decreases
monotonically,  while for the case of cooling it reaches a minimum value and then increases
toward the asymptotic value. This characteristic is due to the influence of viscosity variation
specially in the neighborhood of the tube walls, which alters the velocity in this region and
consequently propagates this effect up to the centerline. This modification in velocity profile
differs from heating to cooling situations.

The results displayed in figures 3 to 6 show good agreement when compared with the
previously reported contributions of Yang (1962) and Gryglaszewski et al. (1980).

As a conclusion, the GITT approach has been successfully extended to handle internal
forced convection problems of non-linear nature. The investigation has produced viscosity
dependent hydrodynamic and thermal entry solutions for both cases of cooling and heating the
liquid flowing in the tube. Results are in good agreement with the literature.
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