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Abstract. An inverse heat convection problem is solved for the estimation of a nonuni-
form wall heat flux in a thermally developing, hydrodynamically developed turbulent
flow in a circular pipe based on temperature measurements obtained at several different
locations in the stream. The direct problem of turbulent forced convection is solved
with a finite difference method with appropriate algebraic turbulence modelling. The
unknown wall heat flux is represented by a one-dimensional finite element interpola-
tion. Nodal values at several chosen points are determined as unknown parameters by
the Levenberg-Marquardt algorithm. The effects of sensor number and position are
examined.
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1. Introduction

A wide variety of inverse heat conduction problems have been solved in the last two
decades for the estimation of initial or boundary conditions, physical properties, geo-
metric parameters, or heat source intensities. Beck et al. (1985), Hensel (1991), Murio
(1993), and Ozisik and Orlande (2000), among others, present some of the methods de-
veloped for the solution of such problems. Inverse radiative transfer problems have also
received the attention of many researchers (McCormick et al. (1981), Ho and Ozisik
(1988), Nicolau et al. (1994), Silva Neto and Ozisik (1993,1995), Kauati et al. (2000)).
Despite many potential applications, inverse convection problems have only received
some attention recently. Moutsoglou (1989) apparently was the first to address an in-

verse convection problem that has utilized a sequential function specification algorithm



for the estimation of the asymmetric heat flux in mixed convection in a vertical channel.
The same author (Moutsoglou, 1990) has also applied the whole domain regularization
technique in a similar forced convection problem. Raghunath (1993) has determined the
inlet temperature profile in steady state laminar forced convection by using the quasi-
Newton conjugate gradient method, which is a special case of the conjugate gradient
method. Huang and Ozisik (1992) have applied the conjugate gradient method with an
adjoint equation for the estimation of steady state wall heat flux in hydrodynamically
developed laminar flow in a parallel plate duct. The same method has been applied by
Bokar and Ozisik (1995) to estimate the time dependence of inlet temperature in similar
flow conditions. Liu and Ozisik (1996a) have used the Levenberg-Marquardt algorithm
for the minimization procedure for estimation of the thermal conductivity and specific
heat of laminar flow through a circular duct by utilizing transient temperature readings
at a single downstream location. Machado and Orlande (1997) have used the conjugate
gradient method with an adjoint equation to estimate the timewise and spacewise vari-
ation of the wall heat flux in a parallel plate channel. An inverse problem for estimating
the heat flux to a power-law non-Newtonian fluid in a parallel plate channel flow was
solved by Machado and Orlande (1998) by using the same method. Few work have been
done on inverse problems in turbulent flow despite its obvious technological relevance
(Liu and Ozisik, 1996b).

In this work, we solve an inverse heat convection problem to estimate spatially
nonuniform wall heat flux in a thermally developing, hydrodynamically developed tur-
bulent flow in a circular pipe based on temperature measurements obtained at several
different positions in the stream. We present firstly the mathematical formulation of
the direct problem of turbulent forced convection in a circular pipe. For the solution
of the inverse problem, we use the Levenberg-Marquardt algorithm for minimization
to estimate the unknown spatially nonuniform wall heat flux, which is represented by
an interpolation function with unknown coefficients to be determined. The effects of
sensor number and position, as well as magnitude of measurement errors, are examined
by using simulated experimental data.

2. Mathematical Formulation of the Direct Problem

We consider a thermally developing, hydrodynamically developed turbulent flow
through a circular pipe of a Newtonian fluid with constant properties. Fluid enters

Figure 1 - Schematic Representation of the Physical Problem



the circular pipe with a given uniform temperature 7y. The circular pipe is subjected
to an axisymmetric and longitudinally nonuniform wall heat flux. A schematic repre-
sentation of the physical problem is given in Fig. 1.

Assuming axisymmetry of the problem and neglecting axial conduction, the gov-
erning equation for the steady state temperature field, T'(r, z), is written as
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with the boundary conditions,
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where r and z are the radial and longitudinal coordinates, ¢(z) the unknown wall heat
flux, Ty the uniform inlet temperature, u(r) the hydrodynamically developed velocity
profile, « the thermal diffusivity, & the thermal conductivity, and ey the turbulent
thermal diffusivity. The fully developed velocity profile of turbulent flow of a Newtonian
fluid in a circular pipe is obtained from the following expression for the dimensionless
velocity in wall parameters,
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Equation (4) is in quite good agreement with experiment (Kays and Crawford, 1980)
and is obtained from an empirical equation proposed by Reichardt (1951) for the kinetic
turbulent viscosity,
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The turbulent thermal diffusity is obtained by using the concept of the turbulent
Prandtl number,
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The turbulent Prandtl number Pr; is given by the following expression, which fits
well available experimental data (Kays and Crawford, 1980),
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where,
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Pr,, =086, and (' =0.2.

The direct problem given by the equations (1-6) can be solved to obtain the temper-
ature field of the fluid inside the circular pipe when the wall heat flux ¢(z) and the inlet
temperature Ty are known. The direct problem defined by Eqs. (1-6) is solved by using
an implicit finite difference method. As the governing partial differential equation (1)
is a linear parabolic equation, the problem is solved by a spatially marching procedure
with inversion of a tri-diagonal matrix at each space marching step. No iteration is
needed in the solution of the direct problem.

3. Solution of the Inverse Problem

As defined by Machado and Orlande (1998), an Inverse Convection Heat Transfer
Problem is concerned with the estimation of at least one of the quantities required for the
well-posedness of the direct problem. In the inverse problem considered in this work, we
are looking for the unknown spatially nonuniform wall heat flux ¢(z) from temperature
measurements taken at several interior points in the flow field. The unknown wall heat
flux is represented as a linear combination of Np linearly independent functions defined
in the domain [0, 2;,4.] With coefficients as parameters to be determined. Although
any consistent set of base functions can be used, we choose to adopt a finite element
interpolation to represent the unknown wall heat flux. The domain [0, 2,4, is divided
into a set of subdomains, [z;, z;11], i=1,..,] — 1. In each subdomain, [z;, z;11], we have

Ge(z) =Y gy, (7)
j=1

where the coeflicients ¢; are taken to be the values of q(z) at the preselected nodes

in the element Q.. The interpolation or shape functions Y%, are given in standard
textbooks on finite element method. As we may have more experimental data than
unknowns, the inverse problem is solved as a finite dimensional optimization problem
(Silva Neto and Moura Neto, 1999). Consider the norm given by the summation of
the square of the residues between the calculated temperatures, T(r,, 2,,), and the
measured temperatures, Z,,("m, 2m), at the points (7, zm), m = 1,2, ..., M, with M

being the total number of sensors,

M
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or
R(q)=FTF with Fp, =T(rm,2m) — Zom (Fms 2zm),m = 1,2, ..., M. (9)

As the inverse problem is solved as an optimization problem it is seeked to minimize
the norm R,

— =——(FTF)=0, j=12 . Np. (10)



Making a Taylor’s expansion
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where Np is the number of unknown parameters. Keeping up only to the first order
terms in Eq. (11) and plugging the resulting expression into Eq. (10), we obtain the
following equation,

JTIAG" = —JTF, (12)
where the elements of the Jacobian matrix are

o7,
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Summing up with a dumping factor A to improve the convergence behaviour we
have the Levenberg-Marquardt Method,

m=1,2,... M and n=1,..., Np. (13)

(JTJ+AD)AG=—JTF, (14)

where D represents the diagonal matrix. Equation (14) is then written in a form con-
venient to be used in an iterative procedure,
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where k is the iteration index. A new estimation of the parameters, !

by

, is calculated

¢ = + A" (16)

It should be noticed that the problem given by Eq. (14) is different from that given
by Eq. (12). Nevertheless, it is seeked to reduce the value of the dumping factor through
the iterations so that when convergence is achieved, the solution obtained be the same as
that for original problem. The iterative procedure is initialized with an initial estimation
of the parameters, ¢°, and new estimates, *T* are sequentially obtained using Eq. (16)
with Ag® given by Eq. (15) until the convergence criterion

Agk
k

is satisfied, where € is a small real number, such as 107°. The elements of the Jacobian
matrix as well as the right hand term of Eq. (14) are calculated by using the solution
of the direct problem defined by Egs. (1-6), as described in the previous section.

|<e, n=1,2,..,Np,

4. Results and Discussion

The inverse analysis presented in the previous section is applied in testing cases to
estimate unknown wall heat flux in turbulent circular pipe flow. As real experimental
data were not available, we generated simulated temperature data, Z,,(rm, 2m), m =
1,2, ..., M, adding random errors to computed exact temperatures, Ty, (T, Zm),

I =T +0em, m=12 .. M,
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Figure 2 - Testing Case 1, with 60 measurement points.
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Figure 3 - Testing Case 2, with 60 measurement points.
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Figure 4 - Testing Case 3, with 60 measurement points.
12000
[ ] dAgma = 0.0%
&  sgma=05%
b 4 L |
B sema=10%
—  Exacd
BO00 —
4000 i | , | i ¥|
00 10.0 200 300
zim)

Figure 5 - Testing Case 1, with 80 measurement points.
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Figure 7 - Testing Case 3, with 80 measurement points.



where o is the standard deviation of measurement errors which is assumed to be the
same for all measurements and e, is a normally distributed random error. For normally
distributed error, there is a 99% probability of the value of e,, lying in the range

—2.576 < ¢y, < 2.576.

For the cases considered here, the fluid properties are taken as p=985.46 kg/m3,
cp=4184.3 J/kg°C, k=0.651 W/mK, u = 4.71 x 107° kg/(m s). The mean velocity is
taken as 2 m/s with a uniform inlet temperature of 60°C. The circular pipe considered
has an inner diameter of 0.05 m and a heated length of 30m.

In Figures 1 to 3, 60 measurement points are distributed with uniform longitudinal
spacings along the heated length, and increasing distance from the pipe wall. Figures
1 to 3 show comparison of estimated wall heat flux with 0=0.0%, 0.5%, and 1.0% for
three different wall heat flux distribution. In figures 4 to 6, 80 measurement points are
used with the same kind of wall heat flux distribution. In all cases, estimation errors
increased along the heated length with highest error always at the outlet of the pipe.
Better estimations are obtained with 80 sensors than with 60 sensors. The nonuniform
distribution of estimation error is due to downstream propagation of information. Wall
heat flux at the inlet of the pipe influences all downstream measurement temperature,
while wall heat flux at the outlet only influences the last measurement reading through
diffusion. More uniform error distribution could be obtained with a nonuniform distri-
bution of measurement points with more points near the outlet of the pipe.

5. Conclusion

An inverse analysis is presented for the estimation of unknown wall heat flux in tur-
bulent circular pipe flow. The direct problem of turbulent forced convection is solved
by using an implicit finite difference method with appropriate turbulence modelling. By
representing the unknown wall heat flux by finite element interpolation, the Levenberg-
Marquardt method is applied to obtain unknown coefficients in interpolation represen-
tation. The proposed method is tested against several cases. Numerical results are
encouraging. Better estimation is obtained in the entrance section of the pipe than in
downstream section.
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