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Abstract. This work presents a method for simulating axisymmetric free surface flows dominated
by surface tension forces. The surface tension effects are incorporated into the free surface
boundary conditions through the computation of the capillary pressure. The required curvature
is evaluated by fitting a least squares arc of circunference to the free surface using the tracking
markers in the cell and in its closest neighbours. To avoid short wavelength perturbations
on the free surface, a mass-conserving local 4-point stencil filter is employed. This filter is a
combination of the Trapezoidal Sub-grid Undulations Removal (TSUR) method (Castelo et al.,
1999), which conserves area, and an appropriate mapping, in order to conserve volume and
therefore mass. The TSUR technique consists of modifying the positions of the two “internal”
markers of the stencil in such a way that the surface length and the curvature are minimized,
while still preserving area. This technique was implemented in the GENSMAC code (Tome
& McKee, 1994), and it has been proved to be robust. The code is shown to produce accurate
results when compared with exact solutions of selected fluid dynamic problems involving surface
tension. Additionally, it is demonstrated that the method is applicable to complex free-surface
flows.

Keywords: Numerical simulation, Axisymmetric flows, Free-surface flows, Surface tension.

1. INTRODUCTION

Surface tension effects are relevant to many industrial problems, for example, coating, paint
drying and moving drops occurring for instance in ink jet printing. GENSMAC (Tome & Mc-
Kee, 1994) is a code designed for simulating two-dimensional free surface flows and was mo-
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tivated by the need to simulate container filling in the food industry. Food material tends to
be a high viscosity, usually shear-thinning, fluid and as such surface tension could be disre-
garded without any serious loss of accuracy. In the present work we describe a method which
allows the incorporation of surface tension into the GENSMAC axisymmetric code, enabling
the application of the code to a much larger variety of industrial problems. We consider incom-
pressible, axisymmetric, constant properties, Newtonian flows. The governing equations are
the non-dimensional mass and momentum equations in conservative form which in cylindrical
coordinates may be written as (Tom´e et al. 2000)
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where Re= UL=� and Fr= U=
p
Lg denote the Reynolds number and the Froude number re-

spectively. HereL andU are the length and velocity scales respectively,� is the kinematic vis-
cosity andg denotes the gravitational constant,g = jgj, andgz = �1. Furthermore,u = (u; v)t

are the radial and vertical components of velocity whilep is the non-dimensional pressure.
These equations are solved as follows: it is supposed that at a given timet0, the velocity field
u(r; z; t0) is known and boundary conditions for the velocity and pressure are given. The up-
dated velocity fieldu(r; z; t) at t = t0 + Æt is calculated as follows:

1. Let ~p(r; z; t) be a pressure field which satisfies the correct pressure condition on the free
surface. This pressure field is computed according to the required boundary stress condi-
tions

2. Calculate the intermediate velocity field~u(r; z; t) from the explicitly discretised form of
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with ~u(r; z; t0) = u(r; z; t0) using the correct boundary conditions foru(r; z; t0). It
can be shown (Tom´e et al. 2000) that~u(r; z; t) possesses the correct vorticity at time t.
However,~u(r; z; t) does not satisfy Eq. (1). Let

u(r; z; t) = ~u(r; z; t)�r (r; z; t) (6)

with r2 (r; z; t) = r � ~u(r; z; t) : (7)

Thus,u(r; z; t) now satisfies (1) and the vorticity remains unchanged. Therefore,u(r; z; t)

is identified as the updated velocity field at timet.

3. Solve the Poisson equation, Eq. (7).

4. Compute the velocity Eq. (6).
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5. Compute the pressure using

p(r; z; t) = ~p(r; z; t) +  (r; z; t)=Æt: (8)

6. Update the positions of the marker particles.

The last step in the calculation involves moving the marker particles to their new positions.
These are virtual particles whose coordinates are stored and updated at the end of each cycle by
solving

dr

dt
= u ;

dz

dt
= v

by Euler’s method. This provides the particle with its new coordinates, allowing us to determine
whether or not it moved to a new computational cell or if it left the containment region through
an outlet. Only marker particles on the free surface are considered.

For the solution of Eqs. (4) and (5), appropriate boundary conditions are applied. At
solid walls null velocities are enforced. At the free surface, the boundary conditions need to
satisfy mass conservation. The Poisson equation Eq. (7) is solved satisfying Dirichlet boundary
conditions at the free surface and Neumann at the solid boundaries.

At the free surface the boundary conditions for pressure and velocity, assuming zero viscous
stress in the gas phase, are given by(T:n):m = 0 and(T:n):n = pcap, wheren andm are the
normal and tangential vectors to the free surface.T is the viscous stress tensor andpcap = �=We
is the capillary pressure, originating from the effects of surface tension�. Here We= �L0U

2
0 =�

is the Weber number, and� is the non-dimensional curvature. The computation ofpcap and�
will be discussed in more detail in the following sections.

Similarly to MAC (Welchet al., 1965), and SMAC (Amsden & Harlow, 1970), in GENS-
MAC (Tome & McKee, 1994) method, the Eqs. (3)–(6) are discretized by finite differences in
a staggered grid. However, in GENSMAC, the fluid domain is tracked using particles only at
the free surface. Additionally, the nonlinear terms in the momentum equation are discretized
using high order upwind schemes (Cuminatoet al., 1999). Using the tracking particles, the
free surface is approximated by a piecewise linear surface and represented by the “halfedge2d”
structure. The flow properties are represented in a grid of square cells which are classified as:
[B] (Boundary) if more than half of its volume belongs to a rigid boundary; [I] (Inflow) if more
than half of its volume belongs to an inflow boundary; [E] (Empty) if it does not contain fluid
nor more than half of its volume belongs to the fluid inflow or a rigid boundary; [S] (Surface) if
it contains part of the free surface and it is in contact with aE cell; and [F] (Full) if it contains
fluid, and is not in contact withE cells. Figure 1 shows an example of the cell structure of a
flow at a given time. For clarity, the empty cells have not been marked.

In the computation of the free surface boundary conditions in eachS cell, we need to have
approximations for the surface normals. These are usually obtained according to the classifica-
tion of the neighboring cells, as follows:n = (1; 0) if only the right neighbour isE; n = (�1; 0)
if only the left neighbour isE; n = (0; 1) if only the top neighbour isE; n = (0;�1) if only
the bottom neighbour isE; n = (

p
2
2
;
p
2
2
) if only right and top neighbour areE; and so on.

For the implementation of the surface tension effects it is also necessary to estimate the sur-
face curvature at the center of each surface cell, and to take into account sub-cell surface tension
effects. In the following sections we describe the methodology employed in the implementa-
tion of the surface tension effects. This methodology results in a better estimate of the surface
normal. This normal is used in the computation of the capillary pressure. Additionally, it can
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Figure 1: Domain, grid and cells.

be used to improve the accuracy of the approximation of the free surface boundary conditions
employed by the code.

2. SURFACE TENSION EFFECTS

Surface tension effects are incorporated using an approach very similar to the one described
by Casteloet al. (1999) for the two-dimensional case. In this section we will stress the mod-
ifications required for the axisymmetric geometry. The computation of the surface tension is
performed at two levels: first at sub-grid level, where small undulations on the free surface
are eliminated, and second at cell level, where the free surface curvature at eachS cell is ap-
proximated. This approximation will be used in the implementation of the pressure boundary
condition at the free surface.

2.1 Elimination of small undulations

In many applications small undulations may appear at the free surface due to variations
in the velocity field from cell to cell, and be amplified in regions where the surface area is
shrinking. These undulations are frequently much smaller than a cell, and usually they are not
present in laboratory experiments because they are physically removed by a combination of
surface tension and viscous effects. A numerical surface tension implementation that acts at the
cell level cannot take into account these sub-cell undulations, and correctly suppress them.

There are several techniques that can be used to suppress these unphysical undulations, such
as substitution of the position of each particle in the surface by the average of its neighbours,
among others. However, in fluid flow simulations it is important that the applied technique does
not change the mass of the flow (and hence the volume in the case of incompressible flow).

In the technique implemented in GENSMAC2D, denominated Trapezoidal Sub-grid Undu-
lations Removal (TSUR) (Casteloet al., 1999), the position of two adjacent particles is changed
simultaneously, in such a way that the area delimited by these two particles and its neighbours
does not change. Consider four consecutive particles at the free surface, given by the points
xi;xi+1;xi+2, andxi+3, as shown in Fig. 2. Particlesxi+1 andxi+2 will be repositioned in
such a way thatL1=L2=L3, h1 = h2, and the final area of the polygon formed by the points
xi;xi+1;xi+2, andxi+3 be equal to the area of the same polygon before modification.

The TSUR method just described as originally proposed is anarea conserving filtering
method. In order to be able to use it in axisymmetric problems we employed a mapping from
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Figure 2: Trapezoidal Sub-grid Undulations Removal (TSUR) method.

the r � z space to a transformed�(r; z) � �(r; z) space such that a constant volume in the
r � z space corresponds to a constant area in the� � � space. The required mapping is quite
staightforward to obtain. An element in ther � z space will have a volumedv = 2�rdr dz,
while an element in the� � � space will have areada = d� d�. We require that the volume
dv corresponds numerically (up to an arbitrary constant) to the areada: 2�rdr dz = c d� d�.
We choosec = �, anddz = d� for simplicity, and obtain� = r2 as the required mapping
transformation. The subgrid filtering process for axisymmetric flows can be summarized by
the following steps: 1. Obtain coordinates of the particles�i;�i+1;�i+2, and�i+3, in the
transformed space using the transformation(�j; �j) = (r2

j
; zj). 2. Apply TSUR to the particles

with coordinates in the transformed space(�j; �j). 3. Obtain new coordinates in the physical
r � z space, reversing the mapping using(rj; zj) = (�

1=2
j ; �j). This method is applied to all

the adjacent pairs of points on the free surface. However, particles are allowed to move only
when their destination cells are the same that their original cells, so that cell classification is not
modified.

2.2 Curvature approximation

The total curvature of the surface is given by

� = �1 + �2 (9)

where�1 and�2 are the curvatures in two planes orthogonal to the surface, and to each other.
In the case of axisymmetric surfaces, the total curvature can be obtained by

� = �1 +
1

r(1 + n2
z

n2
r

)(1=2)
(10)

where�1 is the curvature of the surface in the planer � z, r is the distance from the axis, and
n = (nr; nz)

t is the surface unit normal. Therefore, to compute the total curvature, we need to
estimate�1, r, andn accurately for each surface cell. This is done on a cell by cell basis, which
is compatible with a finite difference approach utilized for the discretization of the governing
equations. The free surface in a surface cell is approximated by the arc of circumference that
best fits the surface points in that cell and its neighbours, using the least squares method.

The circumference equation is(r�r0)2+(z�z0)2 = %2, where(r0; z0) are the coordinates
of the center, and% = 1=�1 is the radius, which need to be determined. This expression can be
written as2ar + 2bz + c = r2 + z2, wherea = r0, b = z0, andc = %2 � r20 � z20 .

To compute the approximation of the curvature we need to determinea; b andc such that the
surfaceS approximates the free surface. To find this approximation we consider the particles
xi = (ri; zi)

t, i = 1; : : : ; m, at the surface in the neighbourhood of the cellS.
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For eachxi we have the equation2ari+2bzi+ c = r2
i
+z2

i
, i = 1; : : : ; m. The least square

approximation can be obtained solving the normal equations:
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The value of the curvature�1 is then given by�1 = 1
%
= (c+a2+b2)�

1

2 . In case the system
(11) is singular, a best fit line is computed usingAt � A, At � B, At � C, Bt � B, andBt � C,
and the curvature is set to zero. This procedure determines�1 but for the signal, which can be
determined comparing the normal at the center of the cell�c determined based on neighbouring
cell classification, and the normal of the circumference at the point closest to the center of the
cell �s. If �t

c
� �s > 0 the surface is considered convex.

2.3 Contact angle approximation

The influence of the contact angle is introduced in the boundary conditions via the capillary
pressure, by a modification on the computation of the curvature in the surface cells adjacent
to boundary cells. The tracking particles in these surface cells are not directly used for the
computation of the curvature in these cells. Instead, the curvature in this case is estimated using
only the free surface normaln1 computed at a pointx1 of the surface in the neigbourhood of
the cell and the coordinates ofx1, previously obtained using the methods described in the last
section, the normal of the free surface at the wall, (which is prescribed in the case of a constant
contact angle), and the normal distance from the wall�. The details of the method can be better
explained by considering the situation depicted in Fig. 3.
Cell S1 is a surface cell, which is adjacent to a boundary
cell B, and for which we need to compute the capillary
pressure.n1 is the free surface normal, computed at the
centerx1 of the adjacent surface cellS2. n3 is the wall
normal, andn2 is the normal of the free surface at the
contact point, which is obtained adding the (prescribed)
contact angle� to the wall angle. We proceed to con-
struct a circle with normaln1 at the pointx1, and having
normaln2 at a point along the wall. Callingx0 the cen-
ter of this circle,% the radius of this circle, we have the
following identities:x1 � x0 = %n1; x2 � x0 = %n2.
Therefore

x1 � x2 = %(n1 � n2) (12)
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Figure 3: Method for the
approximation of the contact angle.

On the other hand, if we call� the normal distance fromx1 to the wall, we have that

� = (x1 � x2) � n3 (13)
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Hence, substituting eq (12 in eq (13) we obtain%(n1 � n2) � n3 = �, and finally

�1 =
1

%
=

(n1 � n2) � n3
�

(14)

We do not explicitly impose a slip boundary condition at the contact line. For theB cells
adjacent to aS cell we apply standard no-slip boundary conditions, and the computed capillary
pressure is applied at theS cell. This is due to the fact that the slip region is restricted to a
microscopic region in the proximity of the contact point, while in most of the cell the no-slip
conditions will still prevail. Therefore the position of the marker particles, which should be
updated using the contact point velocity is not correct close to the wall. However, since we
do not use the position of the marker particles at this cell for the computation of the surface
tension, this inaccuracy does not have any consequence in the numerical results, save for a
visual rounding of the surface at this cell close to the wall. Hence, for the analysis of the results,
the position of the surface given by the traking points at the cell closest to the wall are only
approximated and may be disregarded, while the effective extension of the free surface and the
contact point are given by the approximation described in this section. The above procedure
is quite general, and in principle can be applied to impose any contact angle. In the case of a
variable dynamic contact angle, the value of the contact angle can be prescribed, for instance,
such that the empirically determined “Tanner’s Law”uc = F (�) is satisfied. Hereuc is the
velocity of the contact point, and� is the contact angle, requiring, in general, the solution of a
nonlinear system of equations. In this work, for simplicity, we have restricted our interest to the
case of constant contact angles.

3. VALIDATION OF THE CODE

A number of tests were performed to validate the code and to assess its robustness and pre-
cision. In this section some representative results will be presented. In the following subsection
the numerical results obtained with this code will be compared with analytical solutions in the
case of the sessile drop for various angles of contact. Additionally, splashing drop simulations
show the robustness and applicability of the code to complex free surface flows.

3.1 Sessile drops

To validate the computation of the capillary pressure using the method described in Section
2.2, and show the robustness of the method we simulated sessile drops with various contact
angles and compared the numerical assymptotic steady state results with semi-analytical static
equilibrium solutions. The numerical solutions were obtained from the assymptotic steady state
solutions of the transient solution, starting from a spherical drop initially at rest over the wall.
The semi-analytical solutions were obtained by the numerical integration of the equations for
the equilibrium position of an axisymmetric free surface, in non-dimensional form

d�

ds
= Bo (p0 � z)�

cos �

r
;

dr

ds
= � sin �;

dz

ds
= cos � (15)

where� is the angle between the surface outward normal and ther axis, s is the coordinate
along the surface, Bo is the Bond number, andp0 is a non-dimensional reference pressure

Bo =
�gL2

�
; p0 =

p̂0

�gL
(16)
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A fourth-order Runge-Kutta method was used to integrate equations 15, adopting a very
small integration step�s = 0:0001. Hence the semi-analytical solutions can be regarded as
beeing very accurate, aside from the region in the vicinity of the axisr = 0, where the singular-
ity sin �=r may degrade the accuracy of the solution. To avoid integrating close to the singular-
ity, we start the integration from the point of maximumr, and integrate up to the meniscus, and
down to the contact point, from this initial position. The loss of accuracy of the semi-analytical
solution is therefore restricted to a very small region in the vicinity of the axis, and is therefore
innocuous for our purposes. A quantitative comparison of the two results can be obtained com-
paring the numerical and the analytical value of the contact angle and the pressure at the point
of maximumr. Results of this comparison, summarized in Fig. 4 and Table 1, show a very
good agreement between the analytical and numerical values. It is remarkable that the above
results were obtained using just about12� 15 computational cells in the range of the drop.

0.0

0.5

0.0 0.5

Analytical
Numerical

0.0

0.5

0.0 0.5

Analytical
Numerical

45 degrees

0.0

0.5

0.0 0.5

Analytical
Numerical

a)

b)

c)

Figure 4: Comparison between numer-
ical solution (dashed line), and analyt-
ical solution (solid line) for a sessile
drop with the same volume and vari-
ous contact angles. Sessile drop: Bond
numberBo = �gL2=� = 3:942, and
dx = dy = 0:05L. Contact angle
a):� = �; b) � = 3�=4; c) � = �=2.

Table 1. Comparison of numerical and analytical predictions of the contact angle and the
pressure at the point of maximumr for sessile drops with various contact angles.

Contact angle Contact angle Contact angle Pressure Pressure Pressure
�numerical �analytical Relative error pnumerical panalytical Relative Error
� 0.928� 7.1% 0.237 0.238 0.42%

3�=4 0.7222� 3.7% 0.236 0.232 1.6%
�=2 0.534� 6.9% 0.223 0.218 2.3%
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3.2 Water drop inpinging on a pool of water

The motion of a free surface after the impact of a raindrop has been used as a benchmark
for comparison of numerical results by various authors (Sussman and Smereka, 1997).

In Fig. 5 we present results from calculations with Re= 2000, Fr= 26:12, and We= 21:95.
This corresponds to a2:5 mm water drop hitting the water surface at0:8 m/s, which is a surface
tension and inertia dominated flow.

a)

b)

c)

Figure 5: Splashing drop simulation, at times (from left to right)t = 0; 0:4; 0:8; and 1:2,
Re= 2000, Fr= 26:12, and We=21:95, discretized using three different grids: (a), (b), and (c)
with 20� 40, 30� 60, and with60� 120 computational cells, respectively.

Computations were performed using a domain
 = f(r; z)0 � r � 2 and0 � z � 4g,
discretized using three different grids: (a), (b), and (c) with20� 40, 30� 60, and with60� 120

cells, respectively. Comparing the results with grids (a), (b) and (c), shows that the solutions are
almost grid-independent and that results with the coarsest grid (a) are already quite accurate.

Comparisons with results from the literature for a numerical experiment with very similar
parameters (not shown, Sussman and Smereka, 1997) also reveal a very good agreement. It is
important to stress that using the approach described in this work we obtain results physically
consistent using a grid with just20�40 cells, comparing with a63�126 grid typically required
in a level-set simulation for the same accuracy.

4. CONCLUSIONS

In the present work we describe a method which allows the incorporation of surface ten-
sion into the GENSMAC axisymmetric code. The adopted approach is a modification for the
axisymmetric geometry of the numerical procedure described by Casteloet al. (1999). The
surface tension effects are incorporated separately on two diferent scales. First on the scale of
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a cell, the surface tension effects were incorporated into the free surface boundary conditions
through the computation of the capillary pressure. The required curvature was estimated by
fitting a least square circle to the free surface using the tracking particles in the cell and in its
close neighbours. This approximation resulted in improved surface normal estimates which can
be used in a more accurate implementation of the boundary conditions. On a sub-cell scale,
short wavelength perturbations were filtered out using a local 4-point stencil which, applied in
combination with a coordinate transformation, is mass (volume) conservative. The technique
consist of modifying the positions of the two “internal” particles of the stencil such that the
surface length and curvature are minimized, while still preserving volume. The influence of the
contact angle is introduced in the boundary conditionsvia the capillary pressure, by a modifi-
cation on the computation of the curvature in the surface cells adjacent to boundary cells. The
resulting code was shown to be robust, and to produce accurate results when compared with
exact solutions of selected fluid dynamic problems involving surface tension and contact angle
conditions. In particular, sessile drops for various contact angle conditions were simulated.

Comparisons between low and high resolution simulations of the collision of a water drop
on a pool of water showed that the algorithm produces physically consistent results in complex,
surface tension dominated and inertia dominated, free surface flows, even when using sparingly
low resolution. Therefore, it can result in significant savings in terms of required computational
resources in complex free surface flow simulations.
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