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Abstract. It is known that an underexpanded gas jet entering into a thin-wall cylindrical
cavity (resonance tube) can cause fast and strong heating of the walls, up to a temperature
which can exceed several times the gas jet stagnation temperature (Sprenger, 1954). Recently,
an application of this phenomenon used for ignition of rocket-engine gas and liquid
propellants was proposed by Niwa et al., 2000, since the temperature inside the resonance
tube can achieve values large enough to ignite the propellant mixture. In the present work, a
summary of the resonance tube theoretical model (Kessaev, 1990) is presented and not
obvious peculiarities of tube wall heating are revealed. Results from a theoretical model are
compared with those from experiments. Characteristics such as tube length effect,
temperature distributions along the tube wall and location of maximum temperature region
are studied in detail.
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1. INTRODUCTION

It was Hartmann (1922) who discovered that underexpanded gas jets could produce high
intensity wave oscillations by interaction with a cavity. Sprenger (1954) determined that
thermal effects accompany oscillations in deep cavities by. The temperature attained in the
bottom of the cavity was greater by several times the gas jet total temperature and could
achieve 1000 to 1200 K. Since that time a number scientists worked on this phenomenon and
investigations leading to different aspects of it were found. Some experimental results for the
resonance tube effect were presented by (Thompson, 1964). The fluid dynamics of resonance
tubes was presented by (Brocher et al., 1970). From 1970 to 1977 some applications of this
effect were proposed for rocket engine ignition (Phillips et al., 1970), (Marchese et al., 1973)
and (Przirembel et al., 1977). In 1990 a simplified model of the interaction jet-cavity was
described (Kessaev, 1990). Today the resonance tube gas-dynamical heating provokes again
considerable interest for rocket propellant ignition (Niwa et. Al., 2000), since the temperature
inside the resonance tube can quickly achieve values more than enough to provides oxygen
mixtures ignition.
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Figure 1 shows one of the possible ignition schemes based on the thermal effect of the
deep cavity. Gaseous oxidizer and fuel are injected through nozzle into the resonance tube and
are heated and ignited there. The flame leaves the resonator cavity and ignites the liquid
propellant in the engine combustion chamber.

Resonance Tube

Gasdynamical Igniter

Engine Combustion Chamber

Ignition Flame

Oxygen

Fuel

Figure 1 – One of the Possible Schemes of Gas-Dynamic Ignition

The idea in the use potential energy of compressed gas for multiple ignition of rocket
engine seems very attractive due to the simplicity of the gas-dynamic igniter scheme. A
fundamental understanding of the mechanisms of gas-dynamic heating and its correlation with
the geometric parameters of the “gas-cavity” system are very important tasks for the
calculation and design of engine igniters.

In the present work an attempt is made to experimentally verify some not obvious
peculiarities of the gas-dynamic heating, which were detected by the development of the
theoretical aspects described by Kessaev (1990).

2. THEORETICAL ASPECTS OF THE GAS-DYNAMICAL HEATING

Figure 2a shows the moment when the cavity inlet is already filled by the underexpanded
entering gas, pressing the internal gas as if it were a piston. CS (Contact Surface) marks the
surface of both gases interaction. It is assumed that there is no effect of mixing on the CS,
therefore the gas velocity and pressure have no discontinuity and are the same on both sides of
the CS. This can be possible if ahead of the CS the intensity of the shock wave velocity, Ww,
results in an increase of the internal gas pressure P1 to the external gas static pressure P2 and
increases the gas velocity from the initial value W1 to the invaded gas velocity value Wcs as the
CS moves downstream.
After reaching the blind end of the cylinder, the shock wave with velocity Ww is reflected and
moves in the opposite direction with velocity Wr (Figure 2b). It interacts with the disturbed
internal gas, meets the still entering gas and makes it stagnant. This is why there exists the
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cavity section ∆L located in the blind end region of the cylinder. It is filled with internal gas
compressed by the pressure P3, and the entering gas does not penetrate into it at all (Figure
2c). Moreover, if P3 is greater than the jet stagnation pressure P0, the internal gas will push the
external gas out, discharging the cavity with an ejection effect. When the ejection phase ends,
the pressure in the tube will fall to some value P1

(2) and the jet parameters P2 and W2 at the
tube inlet will be restored.The entering process will begin again with P1 = P1

(2), and so forth in
the form of self-sustained oscillations. The index (2) corresponds to the end of the first
“compression-expansion” cycle, in other words T1

(2)   and P1
(2) are the initial gas parameters

for the second cycle.
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Figure 2 – Process of Invaded and Enclosed Gases Interaction

That kind of interaction of the jet with the cylinder tube is expressed by following
equations (Kessaev, 1990):

Entering gas inlet velocity:

cs

k

k

W
P

P
TR

k

k
W ≡























−

−
=

−1

0

2
02 1.

1

2
(1)

Pressure ratio as a result of shock wave passage:

( )

1

1.2
2

1

1

2

+

−−






=
k

k
a

W
k

P

P
w

(2)



4

Internal gas sound velocity in:

11 kRTa = (3)

Shock wave velocity:
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Pressure ratio as a result of the reflected wave passage:
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With consideration that the shock wave can be born only when:
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and also that the external gas velocity inside the tube can not exceed the critical value:
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Equations (1) to (5) permit to calculate under what conditions the shock wave
oscillations will take place (i.e. P3 > P0). So, with T0 = T1 = 293 K and k = 1.4 the oscillations
occur for P0 / P1 ≥ 1.89 and die away for P0 / P1 ≥ 5.9. The relatively small range of
permissible values allows to call the cavity as “resonator” or “resonance tube”. Figure 3 shows
the rage of permissible solutions in the interval 1.89 ≤ P0  / P1 ≤ 5.9.

Both the generated and reflected shock waves heat the gas enclosed in the tube:
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Figure 3 – Diagram of Shock Wave Oscillations Occurrence
for T1 = T0  = 293 K and k = 1.4

By isoentropical expansion to P1
(2) the gas is cooled to some temperature T1
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The realization of “compression-expansion” cycles in consecutive order leads to gradual
heat accumulation.

Analysis of Equations (1) to (10) shows that the maximal rate of heating takes place
when:
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To achieve this the cavity inlet should be located in such place of the jet where the gas
velocity is critical, i.e. W2 = Wcr .
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3. PECULIARITIES OF THE GAS-DYNAMICAL HEATING

Further investigation of the above described model allows to emerge some features of
the jet-cavity interaction. The diagram on Figure 4 illustrates an idealized scheme of the
movement of the contact surface CS, generated shock wave with velocity Ww, and reflected
shock wave with velocity Wr, inside a cylinder of length Lr. Starting the process, the jet enters
the cylinder and travels the distance 0-L0.At the point L0, it is assumed that the shock wave is
completely formed. The entering gas continues its propagation until it is stopped by the
reflected shock wave in Ls cross-section in a time interval ts.

Wr

Ww

Wcs

t2

ts t1

L0 Ls Lr L

t

Leff

∆L

0

Figure 4 – Idealized Scheme of the Contact Surface and Shock Waves Movement Inside Tube

In this event:
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Where Leff : effective length of the tube.

The time interval ts is required for the shock wave reach the blind end of the tube and
return back to Ls as a reflected wave:
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where Wr is the reflected wave velocity relative to the tube walls:

W W Wr rg cs= − (14)

where Wrg is the reflected shock wave velocity relative to the gas flow coming through
it; from shock wave theory:
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From Equations (12) and (13) it follows:
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Figure 5 illustrates the dependence ∆L / Leff on T3 obtained from the system of
Equations (1) to (18) solved for air at T0 = 293 K, k = 1.4, and P2 / P0 = 0.529 and shows the
first gas-dynamic heating peculiarities:

a) the length of the cavity section ∆L occupied by the heated gas comprises 20-25%
of Leff at the initial stage of heating (T3 = 550 to 600 K).

b) the section ∆L grows up and reaches 35% of Leff with heating up to T3 = 900 K.
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Figure 5 – Dependence of ∆L / Leff  Ratio from Temperature T3
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In a real process the heat transfer takes place: gas heats the tube walls. At the cross -
section Ls the gas interacts with the wall surface during t1 + t2 time period required for the
shock and reflected waves to cover the distance from Ls to  Lr towards and back. The amount
of heat Qs absorbed by the surface in Ls is directly proportional to the temperature T2 and
duration of contact t1 + t2 :

( )Q T t ts ~ 2 1 2+

In section Lr the amount of heat Qr absorbed by the surface during a time interval equal
to t2 is directly proportional to the product of T3 by t2:

Q T tr = 3 2

Since t1 = ∆L / Ww  and  t2 = ∆L / Wr :
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Figure 6 shows the dependence of Qs / Qr on T3 obtained from the system of Equations (1)
to (19) solved for air. We can see that Qs / Qr > 1.0. In other words, in the tube cross section
Ls (where Wcs = 0) heat absorption is a maximum. So, Figure 6 demonstrates one more
peculiarity of heating:

c) the walls of the resonance tube in the section ∆L are heated non-uniformly
presenting a maximum temperature at the cross-section Ls.

From the joint analysis of Figure 5 and Figure 6 also follows:
d) the length of ∆L is decreased with short length resonance tubes and shock waves

heating becomes impossible when ∆L tends to 0;
e) during the gas heating the section ∆L expands, and the location of the maximum

temperature displaces to the cavity inlet side.
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Figure 6 – Dependence of Qs / Qr ratio from T3 Temperature

4. EXPERIMENTAL CHECKING OF THEORETICAL DEDUCTIONS

The above theoretical computations were confirmed by a simple experiment, which is shown
schematically in Figure 7. The test sample is composed by a stainless steel blind-end tube,
with internal diameter (dr) of 8.0 mm and the segmented design allows to vary its length.
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Figure 7 – Scheme of Test Apparatus
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The distance between the tube inlet and the nozzle was 8.0 mm. The diameter of the
nozzle (dn) was 5.0 mm. The cavity depths were 74 mm, 59 mm, 44 mm and 30 mm.
Thermocouples were fixed at a distance of 1.0 mm from the tube inner surface in order to
measure the wall temperature distribution along the tube. Air was supplied with a temperature
of 290 K and pressure of 5 bar.

Figure 8 presents the experimental wall temperature (Tw) distributions in the initial
stage of heating corresponding to different values of tube length. One can see that:

- the walls near the blind end of the tube are heated in a non-uniform manner and the
location of the temperature maximum is displaced from the blind end (peculiarity
“c”).

- the distance between the blind end and the temperature maximum location is
shortened as the tube depth Lr decrease (peculiarity “d”).

Figure 9 shows the experimental dependence of ∆L from the resonance tube depth Lr .
Extrapolation to a point where ∆L = 0 reveals the tube cross section L0 where shock wave is
formed. In such case Leff = Lr – L0 and ∆L / Leff  = 0.26 (peculiarity “a”).

5. CONCLUSION

Experimental observations reinforce the fundamental tenets of the theoretical model
described in (Kessaev, 1990). The peculiarities founded after calculation of the theoretical
model were confirmed by the experimental values. The main conclusions are that the walls
near the blind end of the tube are heated in a non-uniform manner and the location of the
temperature maximum is displaced from the blind end, and is located at a distance of ∆L. The
distance between the blind end and the temperature maximum location is shortened as the
tube depth Lr decreases, up to a limiting distance where the gas dynamic oscillations vanish.

ACKNOWLEDGEMENTS

The second and the third authors would like to acknowledge FAPESP for the financial support
during the conduction of the present work.

REFERENCES

Brocher, E., Maresca, C., Bournay, M.H., “Fluid Dynamics of the Resonance Tube, Journal of Flid Mechanics,
Vol 43, 1970, pp. 369-384

Hartmann, J., “On a New Method for the Generation of Sound Waves”, Physical Review, Vol.20, 1922, p.p.719-
727

Kessaev, K.V., “Theoretical Model of Resonance Tube”, Aviationnaja Technica, 1990, p.p. 49-52 (in Russian)
Marchese, V.P., Rakowsky, E.L., Bement, L.J., “A Fluidic Souding Rocket Motor Ignition System”, J.Spacecraft,

Vol. 10, No. 11, November 1973, pp. 731-734
Niwa, M., Santana Jr., A., Valle, M., Kessaev, K., “Development of a Resonance Igniter for GO2/Kerosene

Ignition”, AIAA 36th Joint Propulsion Conference, Huntsville, AL, 16-19 July 2000
Phillips, B., Pavli, A.J., Conrad, E.W., “A Resonance Igniter for Hydrogen-Oxygen Combustors”, J.Spacecraft,

Vol. 5, No. 5, 1970, pp. 620-622
Przirembel, C.E.G., Fletcher, L.S., “Aerothermodynamics of a Simple Resonance Tube”, AIAA Journal, Vol. 15,

No. 1, January 1977, pp. 101-104
Sprenger, H.S.,”Über Termische Effecte bei Rezonanzröhren”, Mitteilungs aus dem Institut für Aerodynamik,

E.T.H., Zurich, 1954, p.p. 18-35
Thompson, P.A., “Jet Driven Resonance Tubes”, AIAA Journal, Vol. 2 No. 7, July 1964, pp. 1230-1233


