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Abstract: The Finite Element Method has itself asserted ssaadard tool for the crash test numerical assessment of
complex vehicle structures. However, despites the demednpof computer power, the numerical computation remains
still very costly and time consuming activity. The problérar¢by is the creation of simplified (reduced complexity)
models destined for the analysis. This work considers teeofisoupled FEM and Atrtificial Neural Network (ANN)
models: ANN based models are used to replace some parts whible complex FEM model of the vehicle, providing
a significant simplification of the initial model. Two podsilbnses of ANN are considered herein in order to replace a
part of the whole structure. The first one consists in an AN&dder the identification of model behaviour. The second
ANN produce an evaluation of the accelerations field at therface between the two substructures. The approaches
are studied and validated on simple but significant nonlingadimensional situation. Then, the efficiency of the id/br
model is demonstrated on a real situation when used in catijpmwith an explicit crash test code. Initial results show
that using the hybrid FEM/ANN models may represent an istarg alternative for crash test simulation of complex
vehicle structures.
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INTRODUCTION

Crash is a strongly non linear dynamic phenomenon whichstakeentral place in vehicle design. Namely, it is
significant when analyzing the dynamic behavior of autoreostructures. The numerical simulation of crash test may
considerably speed up the design procedure and has beddearedsin many studies. In this framework, the compu-
tational cost is a severe limitation: the pioneer works hewesidered simple one-dimensional mass/spring simplified
models(see for example Mentzer, 1982, Mentzer, 1992, Cbesh 1996). These models are computationally cheap,
but they do not represent the vehicle CAD geometry and thaittizal use is not straightforward. Nowadays, the evolu-
tion of computational facilities makes that crashe siniatet may be more conveniently handled with commercial Einit
Element (FE) explicit sofwares (Hallquist and Tsay, 1999MPCRASH, 2000; RADIOSS, 2000,...). Nevertheless, an
important limitation of the current models remains the m&gk (which quickly becomes very large): in fact, the CAD
models used involve a detailed geometry, since a single hnodigt be used for the analysis of all types of crash (frontal,
side, offset or even “roll-over”).

More recently, another approach has been proposed for duetien of FE Models (FEM) destined to crash simula-
tions has been proposed, using simplified or complete asatyssolated parts of the vehicle, which are subsequently
assembled (Drazetic et al., 1993; Cornette et al., 1998} Work considers an analogous approach, but our main goal
is to construct a hybrid complete model where some partsiamgifed parts while others remain detailed. More pre-
cisely, we focus on the particular problem introduced byuse of Artificial Neural Network (ANN) in the simulation of
substructures of the global vehicle: ANN must be able toadpce a nonlinear mechanical behavior in a very efficient
calculation (much faster than FEM).

Crash tests consist generally in the projection of the Velsigainst a rigid wall or a deformable barrier with an iditia
speedVy. In practice, differents speeds going from 10km/h to 65karkh used. Each speed needs a complete crash
simulation. Thus, it appears that a significant improvennesy be obtained by a reduction of the number of speeds for
which a complete calculation is requested. This naturalygests the use of a hybrid FEM/ANN model generated as
follows:

1. the complete vehicle FEM simulation of the crash is cdrdat for some selected initial crash velocities. This
generates a database containing information about thexdgreehavior of the vehicle.

2. the database is used for training the ANN model.

3. the hybrid FEM/ANN model is used to simulate the crashftasthe velocities not included in the database.

So, the improvement introduced by the hybrid model growh Wit number of analysis in the third stage upper defined
since it has only a partial cost of the complete FE analydt\ji-carried out in the first stage.
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Hidden layers

Figure 1 — “Multi-layered” ANN with 5 input neurons, 2 hidden layers of n neurons and 1 output neuron.

In the sequel, we briefly present the guiding principles ef dperation of ANN networks. In order to generate an
ANN able to reproduce a typical signal functiag(t), we consider a simple but significant situation involvingreeo
Degree Of Freedom (DOF) system. The analysis of this siniplatioon leads to the definition of the general principles
for the generation of an efficient ANN model able to produeetémporal sequence predictionagft) based on its past
and initials conditions. Then, we analyze the behaviouhefiroposed ANN when additional ecxcitation is considered,
in order to take into account interface accelerations wimntérvenes when couplingo to other substructures must be
performed. Finally, an efficient application of the hybriddel on a real situation is performed, involving couplinghwi
an explicit crash test code.

ARTIFICIAL NEURAL NETWORKS

Artificial Neural Network are considered with a growing irgst in the field of computational mechanics. The basic
principles of ANN have been stated in the 40-s starting bytayawith a human nervous system. A large number of
different ANN models concerning complex processes may badan the literature. There is a strong analogy between
identification problems and ANN training, which is explaiten this work: if an arbitrary nonlinear function in time
domain is given, we may generate ANN in order to identify a@ified substructure having a dynamical behavior which
corresponds to an approximation of these function. The radirantage of ANN in such a case is the use of a small
number of parameters when compared to other methods.

We do not introduce here the various existing ANN models godthms and we focus on the generation of a “black
box” which replaces part of the complete FEM. ANN consistéweyal basic unities - usually called neurons - which
exchange information by weighted connections. ANN are fpaitharacterized by the type of the units used and the
topology of the connections - which is called the networki#ecture. The ANN performance is close connected to this
architecture, which generally must be adapted to the tadkeruconsideration. In this work, we use a “multi-layered”
architecture, illustrated in figure 1, which is one of the tregpular network architectures (Cichocki and Unbehauen,
1994).

The information flux between neurons involves weights wisigh; which characterize the importance of the con-
nections. Training an ANN consists in the determining thes@hts, by using optimization algorithms - this process is
also called "learning”. We use in this work a supervisednireg which requests the knowledge of all inputs and their
corresponding desired outputs. When the input data isdoted in the network, ANN perform a calculation and produce
an output. The difference between this output and the dksingout gives an measurement of the error to be reduced
by a modification of the weights, performed by the classiogdddient back-propagation” algorithm (Rumelhart, 1986).
This algorithm is based on the standard gradient descemhtotigt the derivatives of the error with respect to the waight
generate a gradient and the opposite direction leads to iawtion of the error.

ANN BASED PREDICTION OF AN ACCELERATION TEMPORAL SIGNAL

From the theoretical stand point, ANN are able to “predietfiture” of an arbitrary signal from known information
about its past (see, for instance, Box and Jenkins, 1976 amg)\991). For the prediction of the temporal acceleration
signalas(t) of a mechanical system, an ANN defines a nonlinear fungtigh = W(X(k)) wherey(k) = {as(t), t =
(k+1)At,k=N,N—1,...,n} is the desired output, whil¥ (k) = [y(k— 1), y(k—2),..., y(k—n) ] is the history of the
accelerations. We underline that this approach impligtipposes that the present value of the temporal sequence is
connected to thdl preceding values. The architecture diagram for trainiegdNN is illustrated in figure 2 (the operator
z 1 stands for accessing the preceding valzedy(k) = y(k — 1)).

In order to evaluate the ability of the ANN for the predictiohthe acceleration signal, let us consider a simple (1D)
but non linear dynamic system (figure 3), where the rigidsta ifunction of displacement K(x) = 1000e10¢ + 100
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Figure 2 — Diagram of the ANN training.
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Figure 3 — 1 D mass/spring system that describes crash behavi our.

N/m. With C =5 N/m/s andM = 1 kg, the acceleration response for two initial velocitigs= 8 andVy = 14 m/s is

illustrated in figure 4.

The training is supervised, since the fixed inpk— 1), y(k— 2), y(k— 3) is imposed ang(k) = as(t) is sought at
the ANN output. The training strategy consists of repeatarglomly the presentation of the 2 simulated functiond unti
they are conveniently approximated by the output of the ANINs prevents the ANN from an eventual dependence on
the order of introduction of the data. Different tests hagerbperformed, involving the learning of these two funcdion
by ANN with 2 and 3 layers of neurons. The target was a preghictirror threshold of 5% . The best results obtained

correspond to a success rate of only 3/20 and concern a Zlagavork having 10 neurons.

This situation is often found when using ANN and methods ef/pntion may be found in the literature. For instance,
supplementary variables may be introduced in the ANN inputecurrent” networks may be used. This last strategy
consists in presenting the history of the signal which hanlkadready carried out by the network, in its current state of
training, instead of the target signal history at the nekwioput (Narenda and Parthasarathy, 1990).

Recurrent learning is considered as more adapted to thdaioruof dynamic systems: for instance, it should be
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Figure 4 — Accelerations functions of the 1D system for 2 init ial velocities.
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Figure 5 — Block diagramm representing the equilibrium of 1D nonlinear system.
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Figure 6 — Optimal ANN architecture.

noted that our simple system can be described by 3 genatafipatsx(t), X(t) and, in generaFex(t), for one output
X(t). For a unit mass, the motion equation of this system can b&ewri

X(t) = Fext— CX(t) — KX(t) 1)

and it is thus possible to represent it by a block diagramwshao figure 5.

One of the main characteristics of this diagram is the presefnthe two closed loops representing two forces - their
sum is referred as the “recall force”. Thus, the identifimatof this system may be carried out by using convenient
approximations of these forces. In fact, the structurahpeaters (C and K) are taken into account in the “recall farce”
However, the ANN used to simulate the system must perforrthallmathematical operators present in the diagram 5,
including the double integration of the acceleration sigmal some inversions. These two last operators do not inted
significant difficulties, since only the stiffness of the t&ys is nonlinear. So, it appears that the architecture may be
simplified in order to let to the ANN the representation of theernal recall forces, while the simple mathematical
operators may be let to the circuit. Even if the proposedrdiagin figure 5 represents the state of the system at the
instantt, it is clear that the system parameters are also historyndkgme. In order to fully represent the dynamic behavior
of the part, the history of the loads must be also furnisheith¢oANN. Moreover, during the simulation of the crash,
recall forces depend on the position of the structure. Tbesgthe history of displacements should also appear at the
input furnished to the ANN. An ANN architecture correspargiio these ideas is proposed in figure 6 where the external
forces are kept to allow a generalization thereafter (altincthose are not present in the system now). It should b& note
that the “closed loop” in this diagram corresponds to theirgion introduced in recurrent network, what connects the
mathematical procedure to a physical characteristic o$yiseem.

Using such a strategy, the convergence is easily achievedifferent layer architecture. For instance, a 2 layers
network having 10 neurons each have now a full success 1@t2QpPwithin a 1% threshold error prediction. The following
series of experiments gives us an evaluation of the coneggef the training and the capacities of generalizatiomef t
considered ANN. To show the ANN performance, predictiontfer 1D system accelerations over the time 0-1 second
are superimpose to the finite difference simulation on figur@n this figure, 9 graphs are presented for 9 differentihiti
velocities:Vp =2, 6, 8, 10, 12, 14, 16, 18 and 20 m/s respectively. The stréiigdhconcern the ANN prediction while
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Figure 7 — Discrepancies between ANN responses and exact sol utions when varying initial velocities for the free
1D system.

the line with circle marker concern the finite difference siation. Since the ANN is train with the finite difference
simulation for the 8 and 14 m/s initial velocities, good agnent is achieve in this case. We notice that the ANN behaves
perfectly in the case of interpolatiare. for initial velocitiesVy =10, 12 m/s. It performs well also the extrapolation for
the low velocities:\Vy =2, 4, 6 m/s. However, in the case of extrapolation with higredocities {/o =16, 18, 20 m/s)
the ANN provides erroneous answers, but as soon as the tyetmas down up to the learned level, the ANN provides a
correct response. Another experiments show that the sem@tmuch better when we use the high velocity cuvges14

m/s andvp =18 m/s as a training base of the ANN. It also comes out fromsihiges of experimentations that the training
time of the ANN is much longer (8 times) for high velocity cess This is certainly explained by the fact that the ANN
must learn how to simulate the behavior of the nonlineaesysh a wider domain of amplitudes. In order to decrease the
learning time, we may increase the number of neurons: thedsslts obtained show that learning time is much longer
for the networks whose size is not large enough (2x6, 2x7)jthlecreases quickly when the number of the neurons
becomes higher.

ANN SUBJECT TO EXCITATIONS

The strategy for obtaining a simplified FE crash model is 8asethe coupling of the two substructures, where the less
loaded is replaced by ANN. Thus, it is necessary to evall@NN behaviour not only for different initial conditions,
but also for different loads, since this is essential in otdeoupling substructures. Moreover, such an approchastifie
couplings realised by load or acceleration transfer. Ia wrk, substructure FEM model to be simplified is considered
as a system having an inpEix(t) or a4(t) and an outpugs(t). According to the previous strategy, the external force
Fex(t) is furnished by measurements, while displacements anditie are obtained by numerical integration of the
accelerations. Then, it is possible to get an approximatfdhe recall force functiog(x(t),x(t)) by the ANN.

To evaluate the capacity of the previously proposed ANNisgcture, the previous 1D system (using the same para-
meters) is loaded by 2 external arbitrary accelerafps 100sir(100-t) anda3 = 100c0$10-t) (see figure 8a) . Then,
4 functions from each 2 initial velocitié = 8 andVp = 14 m/s and the 2 external accelerations constitute the da&@ b
of training (figure 8b). Here, the ANN has 2x20 neurons andrthiaing converges to an acceptable level of error )0
after 81100 presentations.
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Figure 8 — External excitation and recall force functions fo r the 1D system.
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Figure 9 — Discrepancies between ANN responses and referenc e signal for Vo =20m/s and aé(left), and Vp=6.5
m/s and a3 (right) for the 1D system.

Figure 9 shows the discrepancies between the network resf@omd the reference signal for the worst ca¥gs=(20
m/s foraé andVp = 6.5 m/s foraﬁ) showing that a good prediction confidence could be assigmnA8IN responses when
varying initial velocities for theaé anda(zj external loading. In order to check the abilities of this ANNe system has
been excited by the 3 random Ioaaﬁ afj andag (illustrated in figure 10) and the differences between thé\&Bisponses
and exact results are presented in figure 11. These graplvsashood aggreement.

HYBRID FEM/ANN MODEL

The preceding considerations show that the ANN is able toodice a nonlinear crash for an one DOF system.
Therefore, it is necessary to consider a more realistic gordtion where the ANN and the FEM interact at once for a
multiple DOF on the interface. Using one large multi-port)b replace the entire part of the model is not effective to
calculate, since ANN apply badly to the problems of large iz a number of inputs, outputs and neurons). This diffjcult
is known as “scaling effect” in the literature (Haykin, 199Zhus, we consider the use a number of independent, small
size and single input ANN for each interface DOF. Trainingpdar the corresponding network are obtained directly at
these DOF.

In order to accelerate the learning, we have introducedrtining “in order”, where the training is sequentially
performed for the nodes and the weights determined for nodeeNised as starting values for the training of concerning
node N+1. This technique introduces some continuity betwesghbour nodes (their weights are often very similar),
while leaving the ANN free to independently reproduce thiedwéor for each interface DOF. The diagram illustratingthi
strategy is presented in figure 12.
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Figure 10 — External random loads applied for the ANN model of the 1D system validation.
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Figure 12 — Trained in order representation using one ANN per DOF.
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Figure 13 — Explode substructures view for the body-in-whit e.
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Figure 14 — Crash kinematics of the body-in-white structure for Vé“) =15m/s.

CRASH SIMULATION APPLICATION

The application concerns the crash simulation of a bodydiite structure vehicle against a rigid wall with four
different initial velocities\/o(l) = 8,V(§2> = 12,V0(3) =14 and\/o(4) = 15 m/s. The FEM mesh of the vehicle is composed
of 8114 triangular elements. It is subdivided into two sulxsures at the roof interface (figure 13). This decompositi
is intuitive since the roof is linked to the remainder of threusture only by four thin pillars. Nevertheless, its total
suppression greatly influences the structure deformatidodel parameters are a Young modulustof 210 GPa, a
Poisson ratiov = 0.3, a yield stressy = 220 MPa for a densitp = 7900 kg/n? and a thickness of.5 mm.

The used explicit FEA takes into account a two slopes plastiterial behaviour with an isotropic hardening and a
Coulomb law. The coupling is achieved with methods ofterduse the parallelization of the explicit simulation codes
(Fahmy and Namini, 1994). By reasons of efficiency, the comioation between substructures is carried out at every
instantt by the exchange of acceleratiomgt) andas(t) at each interface degree of freedom. Thus, a partition girole
elements of the physical border is requested in this sdogthey are duplicated during the decomposition procd$sgn,
time integration of the dynamic equilibrium could be cadr@ut independently for each sub-domain and the coupling is
made at each time step after evaluating accelerationsgiytthnsfer between the substructures.

The first step consists in a FEA for two initial velocities\léiz) andvé“) with the complete FE model. The kinematics

of the crash foNo(A') is illustrated in figure 14. Then, each interface node fuumdgiof roof are learned by the ANN to
produce an hybrid FEM/ANN model. Training is carried out éaich 102 ANN composed of 2x20 neurons (34 nodes at
the interface).

In order to validate the procedure proposed, we comparertsh ulses resulting from the complete model and
hybrid model FEM/ANN on the tunnel for the chosen velocitieEgure 15. The results are very satisfactory. It has to be
noticed that in a real experiment, the use of such hybrid W model allows a reduction of 15% of CPU time.
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Figure 15 — Crash pulses discrepancies between original and hybrid (roof ANN) model. Four velocities are
represented: Vél> = 8 m/s (extrapolation) V0<2) =12m/s (learned) VO(3> = 14 m/s (interpolation) and Vé4> =15ml/s
(learned).

CONCLUDING REMARKS

We have presented a strategy for the simplification of theraabile crash simulation by a coupled FEM/ANN ap-
proach. This approach is original and interesting sinceaik@s possible to introduce a different precision level tone
model part without difficulty.

Since the ANN identifies structural parameters, its archites is derived from physical laws (in nonlinear dynamics
equations form) for a system representing the simplifietl @r using a simple nonlinear system, we have analyzed the
ANN ability for the reproduction of a significant nonlineaghmvior and the connections between ANN design and the
quality of the results. Then, the approach has been apgiadbdmplex situation, concerning a real crash simulation.

The results show the interest of coupling the FEM and the ANhe FEM use for a detailed substructure makes
possible the preservation of the traditional design of tiniglel part. The ANN is used to predict a temporal accelanatio
sequence at the interface with the FEM detailed substreiciithie initial results show that the hybrid FEM/ANN models
may represent an interesting alternative for crash testlaiion of complex vehicle structures. Moreover, the ANNdab
brings a speed of calculation and flexibility, with a promgspossibility of generalization.

The results show also the influence of the network architecthich has to be connected to the physical problem
under consideration. Nevertheless, in spite of the limitsked (network size, training convergence, extrapolasionu-
lation,...), the results emphasize that:

e The use of ANN in hybrid system FEM/ ANN has led to a significgain in the computation time.

e The simulation experiments furnished positive resultsciwtshow the interest of the approach and suggest an
exploration of the connection between identification ofatyic systems and ANN.

e The identification approach has made possible the generafian algorithm, easily translatable to the ANN
framework.
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