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Abstract: In the mid-frequency range, numerical methods such as the finite and boundary element methods are not the 

most suitable for structural dynamic analysis as mesh refinement leads to models that are often too large. Semi-

analytical methods such as the spectral element method do not need mesh refinement at higher frequencies, but, until 

now, they were very limited in the geometries and boundary conditions that could be treated. This paper develops a 

spectral element for thin plates based on a high precision finite element proposed by Kulla, which can be used to 

model plates with any boundary conditions. The results obtained are compared with others from different methods 

presented in the literature. 
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NOMENCLATURE 

a = plate dimension on x direction 

b = plate dimension on y direction 

c = vector of constants 

d, d�  = vector of displacements at the 

boundary  

D = flexural rigidity 

D, D� = matrix of displacements 

E = Young modulus 

f, f�  = vector of forces at the 

boundary 

F, F� = matrix of forces 

h = plate thickness 

i = imaginary number  

kx = wave number in x direction 

ky =  wave number in y direction 

m = bending moment 

P = transverse dynamic load 

S = dynamic stiffness matrix 

t = time 

T = diagonal matrix of trigonometric 

terms of Fourier series  

v = shear force  

w = plate out of plane displacement 

W = work done by external forces 

Greek Symbols 

ω = circular frequency 

ρ = density 

ν = Poison coefficient 

∇4 = biharmonic operator 

ΨΨΨΨ = vector of basis functions 

η = damping coefficient 

φ = plate slope 

Subscripts 

m, n = number of a Fourier series 

coefficient 

AA = antisymmetric-antisymmetric 

AS = antisymmetric-symmetric 

SA = symmetric-antisymmetric 

SS = symmetric-symmetric 

INTRODUCTION 

Nowadays, the most commonly used methods for dynamic simulations of mechanical structures are the Finite 

Element Method (FEM) (Zienkiewicz and Taylor, 2000) and the Boundary Element Method (BEM) (Banerjee and 

Butterfield, 1981), which are deterministic methods. Both are based on the discretization of the structure into small 

elements, in which the dynamic field variables are expressed in terms of approximated shape functions. As a 

consequence of this characteristic, the modeling for medium and high frequencies using these techniques will require 

that the size of the elements becomes smaller as the frequency increases, while its number needs to be increased. For 

structures that are usual in some areas, like the aerospace industry, this will be possible only with an unreasonable 

computational effort, which is responsible for restricting the use of these methods practically to low-frequency 

applications.  

For high-frequency modeling, probabilistic techniques such as the Statistical Energy Analysis (SEA) (Lyon and 

DeJong, 1995) have been developed. In this technique, the model is divided in a number of subdomains, for which only 

averaged energy levels are predicted. Therefore, it is unable to give results at discrete points of the problem domain. As 

any other method, its accuracy depends on the validity of the assumptions that were made, and in the case of SEA, these 

assumptions are high modal density and light coupling between subsystems in the frequency range of interest. Often, 

they are not valid in the middle frequency range or in structures with stiff members connected to thin shells, which 

limits the use of the method to the high-frequency range.  

For applications at mid-frequency range, adequate prediction techniques are still not available. In this frequency 

range, the computational efforts of conventional element based techniques become already prohibitively large, while the 

basic assumptions of the probabilistic techniques are not yet valid.  

In an attempt to overcome these difficulties, it have recently been developed many attractive methodologies based 

on an indirect Trefftz approach (Jin et al., 1993, Desmet et al., 2001), which can be classified as wave based methods. 

These methods do not require mesh discretization to model a domain with constant geometric and physical properties, 

since the pressure or displacement fields are described by wave functions that exactly satisfy the differential equation of 
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the problem. The solutions, obtained as an infinite series truncated accordingly to the desired precision, are able to 

describe an infinite number of modes and are obtained by determining the unknown contribution of the wave factors, 

what is done by introducing the boundary conditions of the problem. The matrices produced are smaller than the ones 

from FEM and BEM, and in spite of the fact that they are fully populated and frequency dependent, it has proven that 

the methods are computationally more efficient for the analysis of steady-state vibroacoustic problems. 

A comprehensive overview of the methodologies used in the wave based methods is presented by Desmet (2002). 

Among them, in the area of structural dynamics, it should be mentioned the superposition method, developed by 

Gorman (1999), and applied mainly to model free-free plates. The image method, first used in modeling acoustic 

problems, was extended by Gunda et al. (1995) to treat beams and plates. Kulla (1997) presented a high precision finite 

element method, which was able to model beams and plates with arbitrary boundary conditions. The same approach was 

used by Kevorkian and Pascal (2001) and Casemir et al. (2005) on the continuous element method. Lee and Lee (1999) 

applied the spectral element method to model Levy type plates and Doyle (1997) gave a Fourier approach to it. Arruda 

et al. (2004) extended the work of Lee and Doyle, developing a spectral element for reinforced panels. 

In this paper, the spectral element method is extended to treat thin plates with any boundary conditions. The 

dynamic stiffness matrix for a spectral plate element is developed and the problem is solved both for the homogeneous 

and forced cases. It is presented a technique based in the energy concept to introduce any kind of load distribution. In 

order to make the method readily understandable, its aspects that are not essential were omitted on the development of 

the formulation. Numerical examples were developed to demonstrate the accuracy of the method and the results were 

compared with those obtained with other methods. 

SERIES SOLUTION FOR THE KIRCHHOFF PLATE EQUATION 

Let’s consider a Kirchhoff plate subject to a transverse dynamic load. The governing equation of the forced 

vibration of this kind of plate can be expressed as 
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Considering just the case of steady-state bending vibration in which is acting a time harmonic force, it can be 

assumed that the force has the form P(x,y;t)=P(x,y) e
 iω t

. Accordingly, the transversal displacements will be expressed 

as w(x,y,t)=w(x,y) e
 iω t

. Introducing these expressions into eq. (1), it becomes 
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In order to solve eq. (3), in its homogenous form 

 
4 4 0fw k w∇ − =  (5) 

it will be assumed a solution of the form  

 ( , ; ) p x q y
w x y C e eω =  (6) 

for a rectangular plate with dimensions Lx = 2a and Ly=2b. 

Introducing eq. (6) into eq.(5), it will be obtained the characteristic equation or the homogeneous biharmonic 

differential equation as 
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There are infinite values of p and q that satisfy Eq. (7). Let’s assume that the solution in the x direction can be 

expanded as an exponential Fourier series. A general term of  this series for a given m∈ �, will be expressed as 
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Introducing the expression for pm into eq. (7), it will define qm as 
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which can be rewritten as 
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and, therefore, a given m will yield eight basis solutions for eq. (5), which grouped in a set can be expressed as 
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where 
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Appling the same approach to the solution in the y direction, q can be expressed as 
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Introducing the expression for qm into eq. (7), it will define pm as 
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which can be rewritten as 
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and, therefore, a given n will yield another eight basis solutions for eq. (5), which grouped in a set can be expressed as 
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The solution for the homogenous differential equation (5) will be therefore 
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whose explicit form for a given n is 
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and the general expression for the displacement, in matricial form is 

 ( , ; )w x y ω = ⋅T
Ψ c  (20) 

As pointed out by Casimir et al. (2005), this solution is valid within the theoretical limits required by Kirchhoff 

theory. This means that the ratio between the thickness of the plate and the wavelength should be far less than unity, 

which will restrict the frequency range of validity of eq. (19). Assuming a ratio less than 0.1, it can be shown that the 

frequency limit is 
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SPECTRAL DYNAMIC STIFFNESS MATRIX 

In order to develop an elemental spectral stiffness matrix for thin plates, the trigonometric form of eq. (19), split into 

its four cases of symmetry, was used.  
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where for sine functions 
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For n = 0, eq. (22) becomes 
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The thin plate spectral dynamic stiffness matrix can be obtained by writing the shear forces and the moments as a 

function of the displacements and slopes at the boundaries along the x and y directions. These terms are defined by the 

well known relations 
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Evaluating eq. (22), (30) and (31) at the boundaries and assembling the results, a vector d�  of displacements on the 

boundaries, is obtained 
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Proceeding in the same way in relation to the forces at the boundaries, it will be obtained 
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where 
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In order to eliminate the dependence on x and y of , ,d D f�� � and F� , they will be expanded in a trigonometric Fourier 

series and the coefficients of the sine and cosine terms will be placed in two different lines. Truncating this series at an 

adequate number of terms m, the resulting constant matrices will be square. In this way, we will have 
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with T0 an 8x8 identity matrix and 
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Eliminating c from eq. (45) and (46), it yields 

 ⋅ =S d f  (51) 

where  

 
1−= ⋅S F D  (52) 

For plates with free-free or clamped-clamped boundary conditions, its natural frequencies and modes can be 

obtained by setting respectively the vectors f or d equal to zero on eq. (51) and solving the resulting eigenproblem. 

SOLUTION OF THE NONHOMOGENEOUS CASE 

In order to treat the nonhomogeneous case, a technique to relate the external forces with the force coefficients on the 

boundary will be utilized. If W is the work done by the external forces applied to the plate, it must equal the work done 

by the “nodal” spectral forces at the boundaries and this equality can be expressed as  
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If the forces are applied only at the boundary, w can still be obtained with the homogeneous formulation by using eq. 
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with 
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it leads to determine f as 

 
T−= ⋅ ⋅p pf T D c  (60) 

Using the value of f provided by eq. (60) and introducing the boundary conditions on eq. (51), in the same way as it 

is done in the finite element method, one obtain the value of d which introduced in equation (54) will completely 

determine the displacement field. In order to obtain a more general formulation, suitable to treat the case of general 

loading applied to the domain, the general solution of eq. (1) should be used in generating eq. (36) and (41), but as it 

will be shown in the second numerical example, the use of the approach presented in this section can give accurate 

results even when the loads are applied in the domain, provided that the points of  application are near the boundary.  

NUMERICAL EXAMPLES 

In this section it is presented numerical implementations of the SEM to validate its formulation. Similar examples 

can be found in the works of Lee and Lee (1999), Casimir et al. (2005), and Kevorkian and Pascal (2001), but in these 

works different settings of basis functions are used to model each boundary condition. Here, it is shown that a unique 

formulation can be used to model any boundary condition.  

Levy type plate 

In order to verify the agreement of the SEM developed in this work with other formulations found in the literature, a 

Levy type plate with two edges simply supported and two edges free was modeled. This kind of plate can also be 

modeled with the spectral solution presented by Lee and Lee (1999).  
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Figure 1 – FRFs obtained with SEM formulated in this work and with a spectral formulation for Levy type plates. 
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A unitary harmonic concentrated load is applied at the mid span of a free edge and the frequency response functions 

obtained were compared in the interval between 0 e 1000 Hz, as shown in Fig. 1. Both methods used five terms of the 

expansion in Fourier series. The agreement between then is nearly perfect. 

The plate modeled has the following properties: dimensions: 0.5 x 0.5 m, ρ = 2800 kg/m
3
, h = 0.001 m, ν = 0.3,  

η = 0.003, E = 73.5 Mpa. 

Simply supported plate 

To verify the accuracy of the method, a simply supported plate was modeled with SEM and the resulting FRFs were 

compared with those from a solution obtained by modal superposition.  The excitation with a unitary harmonic punctual 

load was done at (x=0.49, y=0.24) and the response point taken at (x=0.2, y=0.1). The modal superposition solution was 

obtained taking into account 400 modes and the SEM solution was obtained taking 5 terms of the Fourier series. The 

plate modeled has the following properties: dimensions: Lx = 1.0, Ly = 0.5 m, ρ = 7800 kg/m
3
, h = 0.002 m, ν = 0.3, 

E = 210 MPa. Even considering the fact that the load was applied in the domain (but near the boundary), a good 

agreement was achieved (Fig. 2).  
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Figure 2 – FRFs obtained with SEM and with a modal superposition solution. 

Free-free-free-free plate 

The same model of SEM used in the previous example, with five terms of the Fourier series expansion, but with a 

free-free-free-free boundary condition, is now compared with a FEM model of 1050 four-node quadrilateral elements 

(Przemieniecki, 1985). A Guyan reduction was used to compute a reduced number of normal modes, but the residual 

flexibility of the truncated modes was taken into account. The unitary load is applied at a corner and its response is 

measured at the same position. The results are in good agreement (fig. 3) in all the plotted frequency range, except in 

the region where the last antiresonance appears. This is due to the fact that, at higher frequencies, the effect of modal 

truncation becomes more relevant in the FE model. Considering the number of finite elements needed to achieve this 

accuracy, the use of the SEM, although it yields a fully populated stiffness matrix, is fully justified. 
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Figure 3 – FRFs obtained with SEM and FEM 
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Modeling Kirchhoff plates with arbitrary boundary conditions by the spectral element method  

CONCLUSION 

It was developed a spectral element for thin plates which can be used to model plates with any kind of boundary 

conditions and a detailed description on how to obtain all the terms needed to implement it was presented. The results 

obtained using this element proved to be appealing and its accuracy (comparable to the accuracy obtained with modal 

superposition) makes it a potential tool for structural analysis of thin plates in mid and high frequency ranges. Further 

development of this method to allow the application of any kind of loads in the domain and the modeling of domains 

with polygonal shapes should be carried out in order to make it possible to apply it to structures with shapes other than 

rectangular. The introduction of reinforcements in the SEM element is also desirable, since this characteristic is usual at 

high frequencies in plate structures such as aerospace panels. 
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