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Abstract: The flight dynamics of an aircraft can be represented through a set of nonlinear ordinary differential 
equations, as described in literature. The system formed by these equations, involves aerodynamic forces and moments 
of the aircraft and these can be found substituting the stability derivatives in the set of equations. But, the 
determination of these derivatives requires a difficult and high cost work, since normally they are obtained 
experimentally, either through flight tests either in wind tunnel. With the technological advance of the computers, 
some methods in the time and frequency domains have been considered for identification and estimation of these 
derivatives. In this context, the objective of this work is the implementation of neural networks for the estimation of the 
longitudinal stability derivatives of an aircraft. Several tests will be presented and discussed and in all them various 
inputs will be supplied. Such inputs are: for example, static inputs - aircraft mass, air density, moments of inertia, and 
dynamic inputs - variation of angle of attack, variation of vertical and horizontal velocity and pitching velocity. For 
this study the data of the A4-d aircraft, supplied in literature, will be used. The non-linear mathematical model was 
implemented in Simulink and was based on the equations presented by Etkin, 1996. Seven different flight conditions 
had been simulated, aiming to close a representative flight envelope of this aircraft. To get the responses of the 
aircraft, geometric, aerodynamic, stability derivatives and aerodynamic coefficients of the aircraft are used as input 
parameters. In a work previously done, the mapping of the aircraft in all flight envelope was accomplished, using 
recurrent neural networks, with sufficient success. Being thus, in this work, it is desired to solve the inverse problem, 
or in other words, from the answers obtained using the simulator, to esteem the stability derivatives of the aircraft. 
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NOMENCLATURE 
M = Mach number, dimensionless 
m = Aircraft’s mass, Kg 
U0 = Initial velocity of aircraft, m/s 
I = Moment of inertia about axis, 

Kg/m2 
X = Longitudinal Force, N 
Y = Vertical Force, N 
Z = Lateral Force, N 
L = Roll aerodynamic moment 
M = Pitch aerodynamic moment 
N = Sideslip aerodynamic moment 

Greek Symbols 
ρ  = air density, dimensionless 

∆  = relative to variations 
δ  = control surface deflexion, 

degree 

Subscripts 
r relative to rudder 
e relative to elevator 
a relative to aileron 

u relative to linear velocity u 
w relative to linear velocity w 
y relative to lateral direction 
z relative to vertical direction 
q relative to pitch velocity 
p relative to lateral velocity 
r relative to roll velocity 

 

INTRODUCTION 
The stability and control derivatives, created to represent the aerodynamics forces and moments, are of extreme 

importance in the study of the aircraft flight dynamics. In Vasconcelos (2002), an approach to attain the control and 
stability derivatives can be found. The existing methods in this area are sufficiently efficient, but, for example, the 
attainment of derivatives from flight test data, presents high financial cost. 

Sim (1997) presented the correlation between the flight-determined derivatives and wind-tunnel predictions for the 
first 21 flights of the X-24B research aircraft. The flight derivatives were obtained with a modified maximum likelihood 
estimation method used at the NASA Flight Research Center. Two aircraft configurations were used to obtain the data 
presented in this report. A subsonic configuration was used to achieve good aerodynamic performance with adequate 
stability at subsonic speeds, and a transonic configuration was used to achieve good stability at transonic and supersonic 
speeds. The flight derivatives were consistent and provided a good documentation of the aircraft’s characteristics. 
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Mendonça and Góes (2003) had applied the output error method to identify parameters of a linear model of the 
longitudinal dynamics of a regional aircraft. They used data produced by “3-2-1-1” elevator input and identified the 
angle of attack of the aircraft, the acceleration of the aircraft and the pitch velocity. The assumption of a linear model 
showed to be reasonable, since the results of the model and the data of the flight test were coherent.  

Raisinghani and Ghosh (2000) had shown artificial neural networks application to aeroelastic aircraft modeling and 
parameters estimation, without needing measures of elastic deflections or its derivatives. Specifically, a feedforward 
neural network was proposed associating the two developed methods called method Zero and method Delta to predict 
force and moment coefficients using only measured variables of movement and control. In this work, the results for 
different conditions of aircraft flexibility were sufficiently coherent, leaving clear the applicability of the neural 
networks for modelling and parameters estimation. 

Neto et al. (2005) had presented an adaptive optimal linear estimation algorithm for the architecture known as 
Functional Link Network. To illustrate the proposed technique, a case study of longitudinal dynamic model using the 
model of an F-16 aircraft was shown, using simulated data, focusing on its aerodynamic derivatives estimation. For the 
simulation, non-linear modelling was used and as network input, it was supplied: aerodynamic speed, pitch velocity, 
angle attack variation, elevator deflection and sideslip angle. The obtained results had been sufficiently satisfactory and 
had shown that this method can be applied to control and identification problems. They had also concluded that this 
algorithm can easily be implanted in an on board computer for in flight identification of the derivatives. 

In this context, the aim of this work is to show the accuracy of the artificial neural networks, with simple topologies 
for aerodynamic stability derivatives estimation. The methodology will be applied to an A-4D aircraft, using simulated 
data. Knowing the aerodynamic derivatives in some points of a flight envelope and using them to train the neural 
network, it is possible to estimate the derivatives in any another point of the envelope. This methodology implies in a 
reduction of sufficiently great cost in the derivatives estimation. 

Stability Derivatives and Aircraft Forces and Moments 
The aircraft stability derivatives relate the elementary variations of the force and moment vectors for small 

disturbances of the movement variables and the control inputs (Faria, 2002). The expressions of the stability derivatives 
are obtained through linearization techniques using the Small Disturbances Theory. They are functions of the 
aerodynamic incidence angles α and β, Euler angles and velocities, i.e., the stability derivatives are functions of the 
aerodynamic coefficients. In such a way, the dynamic equations of an aircraft can analytically be written as functions of 
the aerodynamic coefficients and this development can be found in Etkin and Reid, (1996). 

Aerodynamic Forces and Moments Equations 
Souza et al. (2005) shown the full development and implementation of an aircraft dynamic simulator. The non-linear 

mathematical model presented by Etkin and Reid (1996) was used, because, this model, although the use of some 
simplifications, presents coherent results. The developed software was applied in the simulation of the A4-D aircraft 
under some flight conditions. A recurrent neural network was trained using 3 of these flight conditions on 3 different 
points of the flight envelope and later it was applied to estimate the answers of the aircraft on other 4 points of the flight 
envelope. The work was carried through with sufficient success. As said previously, in this work the inverse problem 
will be solve, that is, from the answers, the aerodynamic derivatives will be obtained. For this, only the equations of 
forces and moments of an aircraft will be presented. 

As it is known, the aerodynamic forces and moments acting on the aircraft are functions of the angle of attack and 
velocity components, and their variations are represented by the following equations: 

 eqwwu e
XqXwXwXuXX δδ ∆⋅+∆⋅+∆⋅+∆⋅+∆⋅=∆ &&   (1) 

 ralpv ra
YYlYpYvYY δδ   (2) δδ ∆⋅+∆⋅+∆⋅+∆⋅+∆⋅=∆

 eqwwu e
ZqZwZwZuZZ δδ&   (3) ∆⋅+∆⋅+∆⋅+∆⋅+∆⋅=∆ &

 rarpv ra
LLrLpLvLL δδ δδ ∆⋅+∆⋅+∆⋅+∆⋅+∆⋅=∆   (4) 

 eqwwu e
MqMwMwMuMM δδ ∆⋅+∆⋅+∆⋅+∆⋅+∆⋅=∆ &&   (5) 

 rarpv ra
NNrNpNvNN δδ δδ ∆⋅+∆⋅+∆⋅+∆⋅+∆⋅=∆   (6) 

where , , , , , , , Y , Y , Y , , , , , , , , , , , , , , 
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instantaneous values of the linear velocities perturbations, p∆ , q∆  and r∆  represent the instantaneous values of the angular 
velocities perturbations and eδ∆ , aδ∆  and rδ∆  represent variations of the control surfaces. 
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For the simulation of the flight dynamics, the altitude, the density in function of the altitude and the total velocity of 
the aircraft are defined. After the aerodynamic derivatives are supplied, the values of the forces and aerodynamic 
moments in equations (1) to (6) are calculated, using the initial values for the velocities (u, v, w, p, q and r). In this 
work, the longitudinal behavior of the A4-D aircraft was simulated with data given in MacRuer (1973). These data was 
used to train the artificial neural networks and to identify a flight envelope. 

The resolution of inverse problem of that presented in Souza et al. (2005) is considered now. From the velocities 
responses and data of the aircraft, the stability derivatives will be estimated using static neural networks. Figure 1 shows 
a representative block diagram of the problem to be solved. In this paper, results of some tests will be shown, showing 
the capacity of the neural networks to estimate parameters with computational low cost. 
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Figure 1 – Representative Block Diagram of the problem. 

Artificial Neural Networks 
Artificial neural networks are information processing systems with the capability of learning through examples 

(Haykin, 1994). Based on concepts derived from neuro-biology, neural networks are composed by a set of 
interconnected processing units, called neurons. The neurons process the signals presented to the neural network by 
accumulating each stimulus and by transforming the total value using a function; that is, the activation function. The 
stimuli to and from a neuron are modified by the real value called synaptic weight, which characterises the respective 
connection between neurons. 

Figure 2 shows a typical representation for a generic neuron j, where x1, x2, ..., xp are the stimulus signals, 
wj1,wj2,...,wjp, are the synaptic weights, θj is a bias value, vj is the activation potential, oj is the neuron output signal, and 
ϕ(.) is the activation function (generally adopted as a non-linear sigmoid function). 

 

Figure 2. Typical neuron representation. 

Then, from Figure 2, one can observe that the neuron output is given by: 

  (7) 






+= ijijj xwo θϕ

Network architecture is the name given to the arrangements of neurons into layers and how they are connected. 
Typical neural networks have the following architecture: (1) input layer – where the input stimulus is presented to the 
network; (2) hidden layers – internal layers of a network, and (3) output layer – the last layer of the network, where the 
outputs are given. Such typical network architecture is commonly referred to as a multi-layer neural network.  

Once trained, one can assume that the network stored the knowledge supplied to it. However, the knowledge in a 
neural network is not stored in a particular localization. It depends on its topology and the magnitude of the weights in 
the input layer. 
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The generalization of an artificial neural network is the capacity to reproduce desired signals for different input 
signals that have not been used during the network training, or either, that it is able to catch the dynamics of the system 
being emulated (Saravanan and Duyear, 1994). 

Neural Network Training 
To achieve a desirable set of synaptic weights of a pre-defined network architecture, a training process is needed. A 

training process is generally based on an optimisation scheme to adjust the network parameters (mainly, the weights) in 
relation to a set of input-to-output to be matched by the neural network model (supervised learning scheme). The 
backpropagation algorithm based on a gradient descent technique (Haykin, 1994) has been widely applied for general 
neural network training. A more efficient training scheme can be achieved by using the Levenberg-Marquardt 
Algorithm (LMA). 

Levenberg-Marquardt Algorithm (LMA) 
This algorithm is a variation of the Newton’s method for minimizing functions that are sums of squares of other 

non-linear functions (Hagan et al., 1996). The LMA provides better performance when compared with typical 
backpropagation algorithms. 

From Newton’s method the network update rule is: 

 , (8) nnnn gHww 1
1

−
+ −=

where, w is the network weight matrix, n is a step of iteration, H is the Hessian matrix and g is the gradient matrix. 

For the performance index as a sum of square functions, the Hessian matrix can be approximated in terms of the 
Jacobian matrix, J, which contains first derivatives of the network errors with respect to the weights and biases. Thus, 

 . (9) JJH T≅

When the approximation in Eq. (9) is substituted into Eq. (8), the Gauss-Newton method is obtained, that is: 

 [ ] nnnnn gJJww
1T

1
−

+ −= . (10) 

A problem that may arise in the Gauss-Newton method is that the matrix [JTJ] may not have an inverse. This can be 
overcome by assuming a modification to the matrix [JTJ] that leads to the LMA: 

 [ ] nnnnnn gIJJww
1T

1
−

+ +−= µ , (11) 

where, I is the identity matrix and µ  is a scalar. 

The scalar µ presents an important role to the LMA. When µn is zero, the weight update is basically the Gauss-
Newton method. When µn is sufficiently large, Eq. (11) becomes gradient descent with small step size. By choosing the 
proper value of µ the LMA provides an efficient compromise between the great performance of the Newton’s method 
and the guaranteed convergence of the gradient descent approach. 

Aerodynamic Derivatives Estimation of the A4-D Aircraft 
First, it was thought to implement only one neural network to estimate the longitudinal aerodynamic derivatives of 

the aircraft, but due to the great number of inputs the network had to have and to the consequent high computational 
cost, it was decided to implement separate networks to estimate the derivatives. One neural network was implemented 
to estimate the u derivatives, in the case, ,  e , another to estimate the w derivatives, ,  e M  and 
another to estimate the derivatives  e . 

uX

qM
uZ uM wX wZ w

wM &

For the attainment of all these derivatives, static neural networks were used. They were of the type feedforward, 
with two hidden layers of neurons and to train them, the backpropagation algorithm with the Levenberg-Marquardt 
optimization technique was used. In all the networks, two types of inputs had been used: the dynamic ones, which in the 
case are the velocity responses of the aircraft and the static ones, which correspond to the aircraft characteristics and air 
density, specifically m, ρ , U0, M, , ,  and . xI yI zI zxI

Estimation Results of the Longitudinal Aerodynamics Derivatives ,  e  uX uZ uM

First, the estimation results of the derivatives Xu, Zu and Mu will be presented. As said previously, beyond the static 
inputs, dynamic inputs had been used also, in this in case, the time responses of the variations of linear speed u and 
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angular speed q. These signals in time had been discretized and taken 1 point at each 1000 of the total of 30000 points. 
That is, with these signals two vectors of size 30 had been formed to be supplied as input to the neural network. It could 
be verified that the signal continued to be characterized, making this discretization. Figure 3 shows a representative 
block diagram of the neural network used in this case. These inputs had been chosen after an analytical study on which 
ones have more influence on the results. 
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Figure 3 - Block Diagram showing the neural network used to estimate the longitudinal u derivatives. 

Chosen the inputs, the next step was then to choose the topology of the neural networks to be used. First a neural 
network with 3 layers of neurons was implemented: the first one to receive the net inputs, an hidden layer and an output 
one with respectively 68, 20 and 3 neurons, using the activation functions sigmoidal and linear tangents. To use these 
functions, as all the data were very different, it was necessary to normalize them, dividing each one of the data sets by 
its maximum absolute value, therefore the function of sigmoidal tangent activation, always varies between –1 and 1. 
Chosen the topology, training tests had been carried out, successfully. The training time was around 15 minutes. Aiming 
to an optimization of the training time, it was added another hidden layer and the result was sufficiently satisfactory, 
resulting on a training time of around 2 minutes. In this first test, the numbers of neurons used in the input, the two 
intermediate and the output layers respectively, was 68, 12, 9 and 3. It could be verified then, that with two hidden 
layers, the training time was well lesser. The results of two training and generalization tests will be presented. The used 
data for training had been that of points 3, 6, 1 and 7 of the flight envelope studied in this work, whose scheme is 
presented in Figure 4. 
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Figure 4 - Scheme showing the flight envelope. 

After the training, the “real” results correspondent to cases 4, 5 and 2 had been calculated in order to verify the 
network capacity of generalization. The obtained results are presented in the Tab. 1, Tab. 2 and Tab. 3. 

Table 1. – Comparison of  estimated and real. uX

uX  Case 4 Case 5 Case 2 
Real -108.9554 -847.3290 -125.9797 

Estimated -101.4711 -33.7752 -123.9310 
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Table 2. - Comparison of  estimated and real. uZ

uZ  Case 4 Case 5 Case 2 
Real -0.9704(103) -2.6671(103) -1.3619(103) 

Estimated -0.9634(103) 4.3821(103) -1.2949(103) 

Table 3. - Comparison of  estimated and real. uM

uM  Case 4 Case 5 Case 2 
Real 46.0713 377.8643 57.5891 

Estimated 47.2230 294.4156 56.8199 

 

For a better visualization of the results, the real ones were plotted against the estimated ones and shown in Figure 5. 
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Figure 5 - Comparison between the real and estimated values of ,  and . uX uZ uM

Estimation Result of the Longitudinal Aerodynamics Derivatives  e wM & qM  

Again, the answers of the aircraft in points 3, 6, 1 and 7 of the flight envelope will be used for training and 
verification of the time responses of the network for cases 4, 5 and 2 respectively. As input for the neural network to get 
the derivatives  and , the discrete w and q time histories and the static data representing the characteristics of 
the aircraft in each point of the envelope will be used for network training. Figure 6 shows the representative diagram of 
this neural network. 
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Figura 6 - Block Diagram showing the neural network used to estimate the derivatives  and M . wM & q

 

Some tests had been carried out and some of the results will be presented. The neural network used in this first test 
presented 11, 8 and 2 neurons in the intermediate and output layers and the results were sufficiently satisfactory. First 
the results used for the training of this network had been tested in the neural network and could be verified that the 
training was good. After that, the estimations for cases 4, 5 and 2 were done and these generalization results were 
satisfactory, as can be observed in Tab. 4 and Tab 5. 
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Table 4. Comparison of  estimated and real. wM &

wM &  Case 4 Case 5 Case 2 
Real -31.5557 -84.1725 -55.5469 

Estimated -27.8213   -93.6557 -55.0157 

Table 5. Comparison of  estimated and real. qM

qM  Case 4 Case 5 Case 2 
Real -1.6991 (104) -1.9063 (104) -2.3521 (104) 

Estimated -2.0508 (104) -1.7013 (104) -2.3733 (104) 

 

Figure 7 shows a comparison between the real and estimated derivatives. 
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Figure 7 - Comparison between the  and  “real” derivatives and those estimated by the neural network. wM & qM

Estimation Results of the Longitudinal Aerodynamics Derivatives ,  e  wX wZ wM

To esteem the derivatives ,  e , in a first test, a neural network was implemented, using as dynamic 
input w and q time histories and as static input all the data used in the previous tests. Figure 8 presents a representative 
block diagram of the neural network used. 

wX wZ wM

NN

m
ρ

U0

M
xI
yI
zI
zxI

w
q

wX

wZ

wM

m
ρ

U0

M
xI
yI
zI
zxI

w
q

wX

wZ

wM
NN

m
ρ

U0

M
xI
yI
zI
zxI

w
q

wX

wZ

wM

m
ρ

U0

M
xI
yI
zI
zxI

w
q

wX

wZ

wM
NN

m
ρ

U0

M
xI xI
yI yI
zI zI
zxI zxI

w
q

wX wX

wZ wZ

wM wM

m
ρ

U0

M
xI xI
yI yI
zI zI
zxI zxI

w
q

wX wX

wZ wZ

wM wM

 

Figure 8 - Block Diagram showing the neural network used to estimate the derivatives ,  and  wX wZ wM

 

Again, a feedforward and static neural network is used, that is, without delays in the time. The results obtained in the 
training of a neural network with 68, 12, 8 and 3 neurons respectively in the layers will be presented. Again the answers 
of the training had been very good and the results of generalization for cases 4, 5 and 2 respectively, are presented in 
Tab..6, Tab. 7 and Tab. 8. 
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Table 6. Results of  estimated and real. wX

wX  Case 4 Case 5 Case 2 
Real -300.4027   -320.0565 -250.7358 

Estimated -305.2752   -162.3623 -305.7163 

Table 7. Results of estimated and real. wZ

wZ  Case 4 Case 5 Case 2 
Real -3.1818 (103) -3.1493 (103) -4.4191 (103) 

Estimated -2.9792 (103) -2.6338 (103) -4.3454 (103) 

Table 8. Results of  estimated and real. wM

wM  Case 4 Case 5 Case 2 
Real -1.0654 (103) -1.3290 (103) -1.5354 (103) 

Estimated -1.4561 (103) -2.2865 (103) -1.6545 (103) 

 

Figure 9 shows o gráfico representativo dos resultados obtidos por esta rede. 
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Figure 9 - Comparison between “real” ,  and  and those estimated by neural network model. wX wZ wM

Aircraft simulation using “real” and estimated derivatives for Case 4 
To validate the estimation process, the “real” and estimated derivatives were separately loaded into the aircraft 

simulator to obtain time histories responses corresponding to “real” and estimated derivatives. Then, these time histories 
were accordingly plotted to carry out a comparison between them. In this work the results only Case 4 of the flight 
envelope will be presented in order to not to extend the paper, although other cases had been tested presenting 
satisfactory results. 

Figure 10.a shows the input elevator used, which was obtained adding noise to the step input and Figure 10.b shows 
the u time histories responses using the real derivatives and the estimated ones loaded separately into the simulator. 
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Figure 10.a – Elevator step input used for simulation. 
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Figure 10.b - u time histories obtain using “real” and 
estimated derivatives for Case 4. 

 

Figure 11.a and Fig. 11.b show the w and q (pitch) velocities also due to input presented in Fig. 10.a. 
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Figure 11.a - w time histories obtain using “real” and 
estimated derivatives for Case 4. 
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Figura 11.b - q time histories obtain using “real” and 
estimated derivatives for Case 4. 

CONCLUSIONS 
Neural networks had been presented to esteem stability derivatives of the A4-D aircraft. Networks with relatively 

simple topologies had been used, that is, multilayer perceptron with two hidden layers and statics. The results had been 
satisfactory. Other tests will be carried out, training the nets for other points of the envelope and will be presented 
future. 

These first results had encouraged the authors to continue the research and, as soon as possible, to use real flight 
tests data to obtain aerodynamic derivatives of a real aircraft. 
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