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Abstract: The advantage of adopting ceramic materials to build the bearing casings of ultra precision machines lies
on the fact that these materials present high resistance to wear and temperature, which can be severe under the high
velocity and low bearing gap conditions of such machines (bearing gap below 20 microns and spindle rotating velocity
above 10,000 rpm). In this work, an aerostatic bearing with porous ceramic bearing case is proposed and analyzed.
The governing equation of the bearing (modified Reynolds equation) is presented considering not only the axial and
tangential air velocity profiles in the bearing gap (aerodynamic effects), but also the radial air velocity profile of the
injected air through the capillary porous all over the bearing sliding surface (aerostatic effects). By integrating the mod-
ified Reynolds equation, the static and dynamic characteristics of the system are analyzed as function of adimensional
parameters. The results show that the adimensional parameter related to porous medium (Γ) strongly affects the load
capacity and stiffness of the bearing. A case study in a grinding machine spindle is also performed, where static and
dynamic deflection maps are presented as a function of the bearing supply pressure, grinding force and depth of cut,
helping defining the best operational ranges of the grinding machine.
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NOMENCLATURE

a = distance from bearing to tool, m
b = distance between bearings, m
c = assembled clearance, m
d = damping coefficient, N.s/m
D = damping matrix
d̄ = (2ωc)/(LaLtPs) = adimensional
damping
F = aerostatic/aerodynamic force, N
F̄ = 2F/(LaLtPs) = adimensional force
G = gyroscopic matrix
h = bearing clearance, m
h̄ = h/c = adimensional clearance
H = ro− ri = porous matrix thickness, m
k = stiffness coefficient, N/m
k̄ = (2c)/(LaLtPs) = adimensional
stiffness
K = stiffness matrix

k1 = permeability viscous coeffic., m2

La = bearing width, m
Lt = 2πri = bearing tangential length, m
M = inertia matrix
p = air film pressure, N/m2

p̄ = p/Ps = adimensional pressure
Ps = air supply pressure, N/m2

R = rotor radius, m
r = porous bearing radius, m
t = time, s
u,v,w = fluid velocity profiles, m/s
U = rotor surface velocity, m/s
Vin j = air injection velocity, m/s
X ,Y,Z = global coordinate system, m

Greek Symbols
Γ = (12k1L2

t )/(c3H) = porous matrix

adimensional parameter
δ = deflection at tooling edge, m
ε = rotor eccentricity, m
ε̄ = ε/c = adimensional eccentricity
ζ = axial direction coordinate, m
ζ̄ = 2ζ/La = adimensional coordinate
η = tangential direction coordinate, m
η̄ = η/Lt = adimensional coordinate
Λ = (12µωL2

t )/(c2Ps) = excitation
adimensional parameter
µ = air dynamic viscosity, N.s/m2

ξ = radial direction coordinate, m
τ = ωt = adimensional time
Ψ = (6µULt)/(c2Ps) = rotating velocity
adimensional parameter ω = excitation
frequency, rad/s
Ω = shaft rotating velocity, rad/s

INTRODUCTION

Machines and processes related to ultra precision are those capable to manufacture a component with a precision
of 1 µm and a resolution of 1 nm. The need for such tolerance ranges has been stimulated by the great demand of
microelectronic and micro-electromechanical components. The performance of a ultra precision machine tool depends
on the static and dynamic behavior of the mechanical subsystems that compose it. Among them, the bearing-shaft pair is
essential to the quality of the manufacturing process. Such important parameters as the control of the precision of rotation,
the repeatability of movements, and the machine load capacity depend on the bearing-shaft pair characteristics.

The bearing is an important component in the definition of the dynamic characteristics of rotating machines because it
is the interface element between the rotor and the other components of the machine (static parts and ground). Hence, the
operational range of the machine, which depends on the machine dynamic characteristics, will be defined by the appropri-
ated design of the bearings (Hamrock, 2004; Nicoletti and Santos, 2005). The design and construction of the bearing-shaft
pair are strongly related to dimensional conformity and quality of the component sliding surfaces, due to elastic bending
of the shaft and deflection of the bearings (Balestrero, 1997). According to Cheng and Rowe (1995), the selection of
the type of bearing basically depends on the type of application and the necessary operational parameters (stiffness, high
speed, low friction, repeatability of movements and resistance to high temperatures). The air bearings, when compared
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with others kinds of bearings such as the oil-lubricated bearings and the rolling bearings, have the advantage of offering
low heat generation, practically no contamination, and high precision of movements (Lo et al, 2005). Externally pressur-
ized air bearings held the characteristics of low noise, friction reduction and low heat generation, which is an indication
for applications that require high precision in high speeds (Powell, 1970).

Due to the low viscosity of the air, externally pressurized air bearings tend to be unstable. The choice of restriction type
in the air feeding can reduce this problem, and define the operation range and load capacity of the bearing. An alternative
way to improve the stability of the air film and to increase the bearing stiffness is the use of non-metallic materials
in the casing, e.g. porous ceramic materials. This design solution presents some additional advantages, such as low
manufacturing cost, low material density, low wear due to abrasion, high dimensional stability, high chemical inertia, and
tend to result in bearings with equal, or even higher, stiffness than those built with pockets or inherent orifices (Balestrero,
1997). Another important property of the ceramic materials is the machinability, where no ductile deformation and porous
re-covering occurs, because of the porous characteristics (open porous).

In this paper, an aerostatic ceramic porous bearing is studied. The modified Reynolds equation is presented by consid-
ering the Darcy’s equation of porous media applied to air journal bearings. The formulation is numerically solved by finite
differences to determine the pressure distribution profile of the air film, the bearing load capacity, and bearing equivalent
stiffness and damping coefficients, as a function of the adimensional parameters of the modified Reynolds equation. In
extension, the proposed ceramic porous bearing is applied to the spindle of a grinding machine, where static analysis
(deflection and flexibility of shaft edge) and dynamic analysis (frequency response functions) are performed, in order to
define the best operational ranges of the machine.

Literature Review

Literature provides many works related to the dynamic identification of externally pressurized bearings. For instance,
Sinhasan et al. (1989) investigated the effects of bearing shell deformation on the static and dynamic performance char-
acteristics of a four-pocket capillary-compensated hydrostatic journal bearing. This study stated that, to establish an
optimum design for the capillary-compensated hydrostatic journal bearing system, in order to support a particular exter-
nal load, a carefully selection of the geometry of bearing and capillary restrictor is necessary, as a function of the modulus
of elasticity of bearing material, supply pressure, thickness of bearing shell and radial clearance. Roblee and Mote Jr.
(1990) proposed a design method for flat and circular thrust gas bearings based on a dynamic model. This study presented
a selection strategy of stiffness and damping for high vibration environment applications. The poorly damped results of
the external pressurized gas bearing are attributed to the fact that these bearings exhibit damping only over a narrow fre-
quency range. In many applications, the damping of the machine is more important than the static stiffness of its bearings.
According to the authors, there is a compromise between high static stiffness and the values of damping in the gas bearing
performance.

Sun (1975) presented a linear model of gas-lubricated porous journal bearings, which combines the analytical solution
of whirl instability to the journal rotation and pneumatic hammer effects associated to the external pressurization. His
results are presented in terms of the variation of stability parameters, such as the threshold mass, the whirl frequency ratio
associated to compressibility number and eccentricity ratio. In the results, it was observed that when the permeability
parameter is zero, the analysis reduces to the case of a plain journal bearing. If the permeability increases from zero,
the nature of instability changes from a condition of hydrodynamic whirl to one that is basically hybrid. The pneumatic
hammer effect is identified as being inversely proportional to bearing compressibility number (Λ).

Majumdar (1976) proposed a design procedure to externally pressurized gas-lubricated metallic porous journal bearing
considering static loading. The static behavior is related to the effect of the feeding parameter. These studies verified that
the load capacity reaches a maximum value and decreases with further increase in feeding parameter (Γ). Yoshimoto and
Kohno (2001) studied aerostatic circular porous thrust bearings built with graphite porous material. Two feeding systems
were used: the annular grove air supply method and the orifice air supply method. In this study, it was observed that
the shape of supply area has little influence on the static stiffness when the outer diameter of the supply area remains
the same. The load capacity and damping coefficient of aerostatic thrust bearing with a restricted layer depends on the
dimensionless parameter that is related to the permeability coefficient in radial direction and thickness of porous material.
Fourka and Bonis (1995) investigated externally pressurized gas thrust bearings with different orifice and porous feeding
systems. The authors compared the optimum characteristics regarding load capacity, stiffness and flow rate of an air
thrust bearing using different kinds of multiple inlets designed with orifices or porous compensation. The study indicated
that a better performance may be achieved for each feeding system, which depends on an optimum number of inlets,
positioning of orifices or permeability coefficient of the porous material. Balestrero (1997) compared the bearing load
capacity and stiffness of two aerostatic bearings using pocket orifice restrictors and porous inserts. The results indicated
a best performance for the bearing with porous inserts regarding both load capacity and stiffness. The achieved bearing
stiffness was 120 N/µm for the bearing with pocket orifice restrictors and 300 N/µm for the bearing with porous inserts.

Plante et al. (2005) presented a design model for a circular porous air bearing using one-dimensional generalized
flow theory focusing on the essential physical phenomena governing the airflow. The authors compared the results of the
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one-dimensional model to the results generated by the three-dimensional model, regarding force versus bearing gap and
corresponding flow rates. The conclusion was that the one-dimensional model had a good agreement with experimental
data, because the physics of the flow in the porous media was properly considered. Majumdar (1973) presented a theoret-
ical procedure to derive the steady-state performance characteristics of stationary and rotating journals, by considering a
three-dimensional flow in the porous material of a bearing. In this way, he demonstrated that the dynamic characteristics
of the gas film is fundamental to response of gas bearing supported systems and that the important parameters are the
film stiffness, the damping, and the stability range. Majumdar (1980), on the other hand, presented a literature review on
theoretical models to obtain stiffness and damping values of external pressurized, rectangular and porous thrust bearings.

The geometry and intercommunication of the pores in advanced ceramics has direct correspondence to the permeability
property of the material, which is represented by the permeability viscous coefficient (k1) considering laminar flow in the
fluid. Kwan and Corbett (1998a,1998b), Fourka and Bonis (1995) and Yoshimoto and Kohno (2001) cite values of
permeability viscous coefficients between 10−16 and 10−12 m2 in experimental and numerical studies. The work of Kwan
and Corbett (1998a) involves the determination of permeability inertial coefficients and the effect of the slip velocities
in the porous media of air bearings, considering turbulent flow as well as surface roughness. This value estimation is
essential to design porous ceramic bearings that present acceptable operation range of high stiffness and damping.

MATHEMATICAL MODELLING

The aerostatic ceramic porous bearing in study is a plain journal bearing whose casing is made of porous ceramic
material (Fig. 1). Pressurized air at pressure Ps is injected into the bearing gap (h) trough the porous of the ceramic matrix
(H) that composes the bearing casing, thus forming an aerostatic pressure distribution in the bearing gap.

Figure 1 – Schematic view of the aerostatic ceramic porous bearing.

In order to calculate the aerostatic pressure distribution in the bearing gap, one assumes that the fluid is isoviscous,
Newtonian, incompressible, and operating in the laminar regime. Thus, one can simplify the Navier-Stokes equations,
and rewrite them in the reference frame fixed in the bearing, supposing that the considered bearing area for analysis is part
of a shallow and long channel (Fig. 2). The fluid flow nonslip boundary conditions in the bearing gap, shown in Fig. 2,
are given by:

u(ζ ,η ,0) = Vin j v(ζ ,η ,0) = 0 w(ζ ,η ,0) = 0

u(ζ ,η ,h) =
∂h
∂ t

v(ζ ,η ,h) = U = RΩ w(ζ ,η ,h) = 0
(1)

Integrating the Navier-Stokes equations subjected to the nonslip boundary conditions (Eq.(1)), one gets the expressions
for the fluid velocity profiles in the bearing gap shown in Fig. 2:



































u(ξ ) =
ξ
h

∂h
∂ t

+

(

h−ξ
h

)

Vin j

v(ξ ) =
1

2µ
∂ p
∂ζ

(

ξ 2
−hξ

)

+
U
h

ξ

w(ξ ) =
1

2µ
∂ p
∂ζ

(

ξ 2
−hξ

)

(2)

Inserting the expressions for the fluid velocity profiles (Eq.(2)) into the continuity equation, and integrating it between
the limits [0,h], one obtains the modified Reynolds equation as a function of the injection velocity Vin j, as follows:
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Figure 2 – Fluid flow kinematics, velocity profiles and nonslip
boundary conditions in the bearing gap.

Figure 3 – Aerostatic/aerodynamic forces
acting on the shaft.

The injection velocity can be estimated by the linearized Darcy equation, which relates the injection velocity with the
pressure difference between opposite sides of the porous medium:

µ
k1

Vin j =
∆p
H

=
Ps− p
ro− ri

(4)

Hence, by inserting Eq.(4) into Eq.(3), and manipulating it, one obtains the modified Reynolds equation as a function
of the porous bearing parameters, as follows:
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(5)

Equation (5) can be written in adimensional form, resulting in the following expression:
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where:

Γ =
12k1L2

t

c3H
Λ =

6µULt

c2Ps
Ψ =

12µωL2
t

c2Ps
(7)

The pressure distribution in the bearing gap can be calculated by integrating the modified Reynolds equation (Eq.(5)
or Eq.(6)). Both aerodynamic and aerostatic effects are computed by these equations, although the aerodynamic effects
be very small compared to the aerostatic ones due to low viscosity of the fluid. In Eq.(6), the adimensional parameter Λ
is related to the shaft rotating velocity; the adimensional parameter Ψ is related to the radial excitation frequency of the
shaft; and the adimensional parameter Γ is related to the porous medium characteristics of the bearing casing. By setting
these parameters, one can achieve specific pressure distributions in the bearing gap, thus affecting the resultant dynamic
characteristics of the bearing.

The aerostatic/aerodynamic forces acting on the shaft can be calculated by integrating the pressure distribution in the
inner surface area of the bearing casing (Fig.3):

F̄y =−
∫ 1

−1

∫ 1

0
p̄cosβ d̄η dζ̄

F̄z =−
∫ 1

−1

∫ 1

0
p̄sinβ d̄η dζ̄

(8)

By calculating the aerostatic/aerodynamic forces acting on the shaft, one can estimate the dynamic coefficients of the
bearing (stiffness and damping), and analyze the bearing dynamic characteristics.

NUMERICAL RESULTS

The adimensional modified Reynolds equation (Eq.(6)) is integrated by adopting the Finite Difference Method. Ambi-
ent pressure is considered at the bearing edges (null boundary condition). By solving the adimensional modified Reynolds
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equation, one obtains the pressure distribution in the bearing gap. By integrating the pressure distribution (Eq.(8)), one
calculates the bearing forces acting on the rotor (shaft). The static equilibrium position of the rotor in the bearing results
from the balance of forces between the aerostatic/aerodynamic forces and the external forces acting on the shaft. The
equivalent dynamic coefficients of the bearing are calculated by a simplification of the perturbation method proposed by
Allaire et al. (1981), considering a fixed pad configuration of the bearing.

Influence of Adimensional Parameters Γ, Λ and Ψ

In this section, one investigates the influence of the adimensional parameters of the modified Reynolds equation
(Eq.(6)) on the bearing load capacity and equivalent dynamic coefficients. The adopted operational conditions are listed
in Tab. 1.

Table 1 – Geometric characteristics and operational conditions of the porous bearing.

Constant Parameters Variation of Γ Variation of Λ Variation of Ψ
c = 15 µm 1×10−14 < k1 < 5×10−10 m2 k1 = 3×10−14 m2 k1 = 3×10−14 m2

H = 20 mm Ω = 250 Hz 20 < Ω < 500 Hz Ω = 250 Hz
R = 25 mm ω = 10 Hz ω = 10 Hz 5 < ω < 100 Hz

µ = 1.8 ×10−5 N.s/m2 43.9 < Γ < 2.2×106 Γ = 131.75 Γ = 131.75
Ps = 2.0 MPa Λ = 1.48 0.118 < Λ < 2.96 Λ = 1.48

Ψ = 0.745 Ψ = 0.745 0.372 < Ψ < 7.45

Figure 4 presents the results of bearing load capacity as a function of the adimensional parameters Γ, Λ and Ψ. In this
case, the bearing load capacity is the necessary force to zero the gap between the rotor and the bearing surface (ε̄ = 1).
As one can see in Fig. 4(a), the parameter Γ have a strong influence on the bearing load capacity. The maximum value
of load capacity is achieved for Γ = 65.9, but as Γ increases, the bearing load capacity presents a strong reduction. There
is also a reduction in load capacity for Γ < 65.9. Considering that Γ is the parameter that contains information of the
bearing porosity, the choice of k1 and H play an important role in defining the parameter Γ, and consequently the bearing
load capacity, as one can see in Fig. 4(a).

The effect of parameter Λ in the bearing load capacity is much lower than that of parameter Γ (Fig. 4(b)). As Λ
increases, there is a small increase of bearing load capacity. This is caused by the fact that Λ is the parameter related to
the shaft rotating velocity (U = RΩ). As the rotating velocity of the shaft increases, the aerodynamic effects in the air
film also increase (air film pressure increases), thus positively affecting the load capacity. Considering that the aerostatic
effects are predominant in the bearing in study, it is not a surprise that the aerodynamic effects cause such a slight change
in the load capacity.

As one can see in Fig. 4(c), the parameter Ψ has no effect on the bearing load capacity (constant load capacity). The
parameter Ψ is related to the excitation frequency that the shaft is subjected (ω), which is a dynamic quantity. Considering
that the bearing load capacity is a static quantity, it is clear that the bearing load capacity does not depend on the shaft
excitation frequency.

Figure 5 presents the results of bearing stiffness as a function of the adimensional parameters Γ, Λ and Ψ. As one can
see in Fig. 5(a), the bearing stiffness is strongly affected by the parameter Γ. A maximum value of the bearing stiffness is
achieved for Γ = 131.8. Similarly to the load capacity case, the choice of k1 and H play an important role in defining the
parameter Γ, and consequently the bearing equivalent stiffness.

As one can see in Fig. 5(b), the direct stiffness coefficients (k̄yy and k̄zz) are not influenced by the parameter Λ, which
is related to the rotating velocity of the shaft. The increase of air film aerodynamic effects does not contribute to the direct
stiffness of the bearing, but only to the cross coupling coefficients (k̄yz and k̄zy). Considering that the bearing stability is
strongly related to the values of cross coupling coefficients, care must be taken during bearing design in the choice of
parameter Λ.

The parameter Ψ does not affect the bearing stiffness, as one can see in Fig. 5(c). Again, parameter Ψ is related to the
excitation frequency that the shaft is subjected, which is a dynamic quantity. Considering that the bearing stiffness is a
static quantity, it is clear that the bearing load capacity does not depend on the shaft excitation frequency.

Figure 6 presents the results of bearing damping as a function of the adimensional parameters Γ, Λ and Ψ. The
obtained cross coupling damping coefficients (d̄yz and d̄zy) are very close to zero and can be neglected. As one can see
in Fig. 6(a), the bearing direct damping (d̄yy and d̄zz) is strongly affected by the parameter Γ. As Γ increases, the bearing
damping presents a strong reduction. Similarly to the load capacity and stiffness cases, the choice of k1 and H play an
important role in defining the bearing equivalent damping.

Parameter Λ does not affect the bearing damping coefficients, as one can see in Fig. 6(b). Parameter Λ is related to
the rotating velocity of the shaft, which increases the air film aerodynamic effects. It is clear, however, that the bearing
damping does not depend on the shaft rotating velocity.



Dynamic Characteristics of Aerostatic Ceramic Porous Bearings

10
2

10
4

10
6

0

0.1

0.2

0.3

0.4

0.5

Γ

Lo
ad

 C
ap

ac
ity

 (
ad

im
en

si
on

al
)

0 0.5 1 1.5 2 2.5 3
0.42

0.425

0.43

0.435

0.44

0.445

0.45

0.455

0.46

Λ

Lo
ad

 C
ap

ac
ity

 (
ad

im
en

si
on

al
)

0 2 4 6 8
0.42

0.425

0.43

0.435

0.44

0.445

0.45

0.455

0.46

Ψ

Lo
ad

 C
ap

ac
ity

 (
ad

im
en

si
on

al
)

(a) (b) (c)

Figure 4 – Bearing load capacity as a function of the adimensional parameters Γ, Λ and Ψ.
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Figure 5 – Bearing equivalent stiffness as a function of the adimensional parameters Γ, Λ and Ψ (ε̄ = 0).
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Figure 6 – Bearing equivalent damping as a function of the adimensional parameters Γ, Λ and Ψ (ε̄ = 0).

In Fig. 6(c), one can see that parameter Ψ has a strong influence on the direct damping coefficients (d̄yy and d̄zz).
These coefficients linearly vary as Ψ increases, and one achieves damping values much higher than those achieved with
parameter Γ. Hence, the bearing damping can be set by properly choosing parameter Ψ.

It is important to note that Figs. 4 to 6 present results for null rotor eccentricity (rotor centered in the bearing), and
different rotor eccentricities may alter the results. However, no significant changes in the bearing load capacity and
dynamic coefficients are observed for eccentricities up to ε̄ = 0.25, which is the range for normal operation of such
bearings.

Application to Grinding Machine Spindle

In order to investigate the dynamic behavior of a shaft supported by the ceramic porous bearing in study, one modeled
the spindle of a Whitnon grinding machine (Fig. 7(a)). Originally, the spindle is supported by two aerostatic bearings,
each one with two rows of twelve inherent orifices. In this study, the spindle is modeled by finite elements, adopting the
flexible shaft elements proposed by Nelson and McVaugh (1976), and the bearings are modeled by the equivalent dynamic
coefficients, calculated with the present theory (Fig. 7(b)). The ceramic porous bearing geometry was chosen in such a
way that one achieves maximum stiffness, i.e. 100 < Γ < 150, as shown in Fig 5(a). The chosen bearing parameters for
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this analysis are: R = 38 mm (original shaft radius), La = 96 mm (original width of the bearings), c = 25 µm, H = 30 mm,
and k1 = 10−13 m2, resulting in an adimensional parameter Γ = 146.1.

(a) (b)

Figure 7 – Grinding machine rotor spindle and equivalent model by flexible shaft elements.

As a reference for the involved forces in grinding procedures, one adopts the experimental data presented by Zhou et
al. (1992). In their work, Zhou et al. (1992) studied the effects of radial grinding force and depth of cut in the resultant
surface roughness of the work piece, by using a fine grit diamond wheel. Their results, shown in Fig. 8, are due to a wheel
surface velocity of 1000 m/min (spindle velocity of 909 rpm), work piece surface velocity of 30 m/min, infeed rate of 6
µm/min, and depths of cut of 0.1, 0.4 and 1.2 µm.
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Figure 8 – Work piece surface roughness as a function of the grinding force and depth of cut (Zhou et al., 1992).

The spindle-bearing system must have proper static and dynamic characteristics to keep the maximum deflection at the
grinding wheel of the spindle within the range of depth of cut, when subjected to the grinding forces. Once the maximum
deflection at the grinding wheel, for a certain grinding force, remains within the range of depth of cut, one can achieve the
expected surface finishing quality of the work piece, as shown in Fig. 8.

Static Analysis

The static deflection of the spindle at the grinding wheel location (node 10 - Fig. 7(b)) can be decomposed into the
structural deflection and the rigid body deflection due to the bearings (Fig. 9). The structural deflection (δ2) is caused by
the inherent flexibility of the spindle material. To calculate this deflection, one uses the finite element model of the shaft,
with rigid bearings (high stiffness at bearing locations) and a unitary force applied to the grinding wheel location. In this
case, the obtained structural deflection rate of the spindle is δ2/F = 5.47 nm/N.

Figure 9 – Combined structural and bearing deflections. Figure 10 – Reacting forces in the bearings.

The rigid body deflection (δ1) depends on the eccentricities at the bearings (ε1 and ε2), and on the distances a (bearing
to grinding wheel) and b (between bearings), as follows:

δ1 =
(a

b
+1

)

ε1 +
a
b

ε2 (9)
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The eccentricities at the bearings are obtained by calculating the equilibrium position of the shaft in the bearings, when
subjected to the reaction forces (FR1 and FR2 - Fig. 10). The reaction forces are given by the following relationship:

FR1 =
(a

b
+1

)

F FR2 =
a
b

F (10)

Figure 11 presents the total static deflection (δ1 + δ2) of the spindle at grinding wheel location as a function of the
bearing supply pressure (Ps) and grinding force. As one can see, the total static deflection is linearly proportional to the
grinding force, but inversely proportional to the supply pressure. As the bearing supply pressure increases, the bearing
stiffness also increases, resulting to lower eccentricities at the bearings and, consequently, lower rigid body deflections.
As a result, the deflection ratio δ2/δ1 tends to increase as the supply pressure value increases (for Ps = 0.3 MPa, δ2/δ1 =
7.7%; for Ps = 0.6 MPa, δ2/δ1 = 14.7%; for Ps = 1.0 MPa, δ2/δ1 = 24.6%).

Considering the results presented by Zhou et al. (1992) (Fig. 8), one has three different depths of cut: 0.1, 0.4 and 1.2
µm. In order to achieve the expected surface roughness in the work piece, it is necessary to keep the total static deflection
at the grinding wheel below these values. For that, a proper set of grinding force and bearing supply pressure values must
be chosen. To help this task, one has the static deflection map shown in Fig 12.
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Figure 11 – Static deflection as a function of the
force at the grinding wheel of the spindle.
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Figure 12 – Static deflection map as a function of the
bearing supply pressure and force at the grinding

wheel of the spindle.

As one can see in Fig. 12, given a certain value for the bearing supply pressure, there is a maximum acceptable value
for the grinding force to keep the total static deflection below the desired value of depth of cut. In this case, it is possible
to use a supply pressure of 1 MPa for the case of 1.2 µm depth of cut in the whole range of grinding forces (up to 40 N).
On the other hand, a precision of 0.1 µm can only be achieved by adopting low grinding forces (below 10 N), and not for
all possible values of supply pressure (only above 0.25 MPa).

Dynamic Analysis

Similarly to the static case, it is interesting to keep the dynamic deflections at the grinding wheel of the spindle below
the value of depth of cut, in order to achieve the desired finishing quality at work piece surface. For that, one has to
analyze the frequency response functions at the grinding wheel. By adopting the finite element model described above,
one calculates the frequency response functions of the system as follows:

FRF =
δ1 +δ2

F
=

1
−ω2M− iω(D−ΩG)+K

(11)

Figure 13 presents the frequency response and phase of the grinding wheel location of the spindle (node 10 of the
model) as a function of the excitation frequency (ω) and bearing pressure supply (Ps). The bearing pressure supply causes
the reduction of dynamic deflections by increasing the bearing stiffness. This can be clearly seen by comparing the results
for low frequency ranges (up to 200 Hz), where one has lower responses (deflections) for higher supply pressures. In
addition, the resonance peaks move to higher frequency values and also present a reduction in amplitude.

In order to keep the dynamic deflection below the value of depth of cut, one has to analyze the amplitude of grinding
forces involved. For that, a proper set of grinding force and bearing supply pressure values must be chosen. To help this
task, one has the dynamic deflection map shown in Fig 14. This map can be read by initially choosing the supply pressure
(Ps) and the grinding force. Each map refers to a specific value of depth of cut (maximum allowable dynamic deflection).
If the pressure supply is P3 and the grinding force is F2, then the system can be used for excitation frequencies between 0
and ω5, and frequencies above ω6 (Fig. 14(a)). If the pressure supply is P2 and the grinding force is F2, then the system can
only be used for excitation frequencies above ω4. However, this same supply pressure (P2) can be used with the grinding
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Figure 13 – Frequency response of the tooling edge of the spindle as a function of the excitation frequency and
bearing supply pressure: (a) FRF; (b) Phase.

force F1 in the whole range of frequencies. If the pressure supply is P1 and the grinding force is F1, then the system can
be used for excitation frequencies between 0 and ω1, and frequencies above ω2. The supply pressure P1 can only be used
with grinding force F2 for frequencies above ω3.
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Figure 14 – Dynamic deflection map as a function of the bearing supply pressure and excitation frequency: (a)
map view; (b) 1.2 µm depth of cut; (c) 0.4 µm depth of cut.

In Fig. 8, one can see that the minimum roughness values are obtained for grinding forces of 28 N (0.4 and 0.1 µm
depths of cut) and 40 N (1.2 µm depth of cut). Figures 14(b) and 14(c) present the dynamic deflection maps for the
values of depth of cut of 0.4 and 1.2 µm, respectively. Looking at Fig. 14(b) (1.2 µm depth of cut), one can see that it is
possible to work at the optimum grinding force (40 N) using bearing supply pressures above 1 MPa. However, there is a
limitation in the excitation frequency range, which depends on the adopted pressure (e.g. for Ps = 1.0 MPa, ω < 160 Hz;
for Ps = 1.5 MPa, ω < 426 Hz; for Ps = 2.0 MPa, ω < 568 Hz; and for Ps = 3.0 MPa, ω < 763 Hz). A grinding force of
30 N results in surface roughness close to the minimum one (Fig. 8 for 1.2 µm). Analyzing Fig. 14(b) for 30 N, one can
see that it is possible to work in the whole frequency range (from 0 to 1000 Hz) with supply pressures above 2 MPa.

In Fig. 14(c) (0.4 µm depth of cut), one can see that it is not possible to work in the whole frequency range (0 to
1000 Hz). There is always a limitation in frequency, whatever the grinding force or supply pressure be. This is caused
by the smaller value of the depth of cut, which strongly restricts the maximum dynamic deflection of the spindle. For the
optimum grinding force (28 N), only large supply pressures can be used (above 2.5 MPa), with small frequency ranges
(ω < 300 Hz). A grinding force of 20 N results in surface roughness close to the minimum one (Fig. 8 for 0.4 µm).
Analyzing Fig. 14(c) for 20 N, one can see that it is possible to work in larger frequency ranges (up to 500 Hz) with
supply pressures above 1.5 MPa.

No dynamic deflection map is presented for the 0.1 µm depth of cut because this value is too small for the system
is study. Under the adopted operational conditions, the system cannot present dynamic deflections below 0.1 µm, thus
representing a limitation in the use of such technology in these machines.

CONCLUSIONS

In this work, the modified Reynolds equation for a ceramic porous bearing is presented, and the static and dynamic
characteristics of the system are analyzed as function of adimensional parameters. One can conclude that the adimensional
parameter related to the porous medium (Γ) strongly affects the load capacity and stiffness of the bearing. The parameters
k1 and H are important variables in the bearing design process, regarding the definition of stiffness and bearing load
capacity.

Considering these results, one performed a case study in a grinding machine spindle, by modeling the shaft via finite



Dynamic Characteristics of Aerostatic Ceramic Porous Bearings

elements and the bearings with the present theory. Static and dynamic deflection maps are presented as a function of the
bearing supply pressure, grinding force and depth of cut (maximum allowable deflection). These maps are useful tools in
bearing design for defining the appropriated supply pressure and operational frequency range, given the values of grinding
force and desired surface roughness (depth of cut).

It is important to emphasize that, these are numerical results whose model strongly depends on the simplifying hy-
potheses. The main limitation of this model lies on the hypotheses of fluid incompressibility and laminar flow regime. It
is not certain, for instance, that the flow in the porous medium under a 2 or 3 MPa pressure supply condition still obeys
such simplifying hypotheses. For this reason, experimental verification is mandatory. The first experimental studies are
being carried out focusing on the identification of parameter k1. This is important to check the values of k1 adopted in the
numerical simulations, and is the natural next step in model validation.
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truturais”, Universidade de São Paulo, Escola de Engenharia de São Carlos, Departamento de Engenharia Mecânica
(D.Sc. thesis).

Fourka, M., Bonis, M, 1997, ”Comparison Between Externally Pressurized Gas Thrust Bearings with Different Orifice
and Porous Feeding Systems”, Wear, Vol.210, pp.311-317.

Hamrock, B.J., Schmid, S.R., Jacobson, B.O., 2004, ”Fundamentals of Fluid Film Lubrication”, McGraw-Hill Co., New
York, 750p.

Kwan, Y.B.P., Corbett, J., 1998a, ”A Simplified Method for the Correction of Velocity Slip and Inertia Effects in Porous
Aerostatic Thrust Bearings”, Tribology International, Vol.31, No.12, pp.779-786.

Kwan, Y.B.P., Corbett, J., 1998b, ”Porous Aerostatic Bearings - An Updated review”, Wear, Vol.222, pp.69-73.
Lo, C., Wang, C., Lee, Y., 2004, ”Performance Analysis of High Speed Spindle Aerostatic Bearings”, Tribology Inter-

national, Vol.38, No.1, pp.5-14.
Majumdar, B.C., 1973, ”Analysis of Externally Pressurized Gas Bearings with Journal Rotation”, Wear, Vol.24, No.1,

pp.15-22.
Majumdar, B.C., 1976, ”Design of Externally Pressurized Gas-Lubricated Porous Journal Bearings”, Tribology Interna-

tional, Vol.19, pp.71-74.
Majumdar, B.C., 1980, ”Externally Pressurized Gas Bearings: A Review”, Wear, Vol.62, pp.299-314.
Nelson, H.D., McVaugh, J.M., 1976, ”The Dynamics of Rotor-Bearing Systems Using Finite Element”, Trans. of ASME

- J. Engineering for Industry, Vol.98, No.2, pp.593-600.
Nicoletti, R., Santos, I.F., 2005, ”Frequency Response Analysis of an Actively Lubricated Rotor/Tilting-Pad Bearing

System”, Trans. of ASME - Journal of Engineering for Gas Turbine and Power, Vol.127, No.3, pp. 638-645.
Plante, J.S., Vogan, J., El-Aguizy, T., Slocum, A.H., 2005, ”A Design Model for Circular Porous Air Bearings Using the

1D Generalized Flow Method”, Precision Engineering, Vol.29, No.3, pp.336-346.
Powell, J.W., 1970, ”Design of Aerostatic Bearings”, The Machinery Publising Co., New York, 273p.
Roblee, J.W., Mote Jr., C.D., 1990, ”Design of Externally Pressurized Gas Bearings for Stiffness and Damping”, Tribol-

ogy International, Vol.23, No.5, pp.333-345.
Sinhasan, R., Sharma, S.C., Jain, S.C., 1989, ”Performance Characteristics of an Externally Pressurized Capillary-

Compensated Flexible Journal Bearing”, Tribology International, Vol.22, No.4, pp.282-293.
Sun, D.C., 1975, ”Stability of Gas-Lubricated Externally Pressurized Porous Journal Bearings”, Trans. of ASME - J. of

Lubrication Technology, Vol.97, pp. 494-505.
Yoshimoto, S., Kohno, K, 2001, ”Static and Dynamic Characteristics of Aerostatic Circular Porous Thrust Bearings”,

Trans. of ASME - J. of Tribology, Vol.123, No.3, pp.501-507.
Zhou, L., Syoji, K., Kuriyagawa, T., 1992, ”Ceramic Mirror Grinding: Using Extremely Fine Grit Diamond Wheel”,

Proc. of 7th. Annual Meeting of The American Society for Precision Engineering, Grenelefe, USA, pp.79-82.

RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.


