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Abstract: Localized faults and transverse cracks are common faults in rotating shafts. The present paper presents the 
formulation of the damage in a shaft, taking into account that the damage introduces changes in the shaft deformation 
energy and, hence, changes in the stiffness matrix at the element in which the damage is located. The methodology of 
fault diagnosis in a flexible rotor with damage supported by active magnetic bearings, provided with an active control 
system excited by unbalance and white noise is applied. The diagnostic uses correlations functions based on the 
Ljapunov matrix formulation, and an artificial neural network. The procedure is convenient because it uses only a 
limited number of easily measurable state variables, computing the correlation between the output variables. It is 
possible to derive specific relations involving the physical parameters of the system and the correlation matrices of the 
measured variables. An artificial neural network is used to map the correlations involving variables which are 
difficult to measure. The proposed fault diagnosis method can detect the faults and find their location in the system.  
Keywords: Fault Diagnosis, Magnetic Bearings, Rotor Dynamics, Neural Networks  

INTRODUCTION  
With recent advances in materials, various kinds, such as the heat resisting alloys and composites, which possess a 

high strength to weight ratio are increasingly used in high-speed rotating machinery in order to achieve higher levels of 
availability. However, these materials are vulnerable to damage due to the presence of cracks or moisture absorption. A 
deterioration of mechanical properties of such materials may occur reducing the fatigue life, the main cause of failure of 
rotating machinery, Chen et. al (1991). 

Localized faults and transverse cracks are common faults in rotating shafts. Under the own weight of the rotor, a 
crack will open and close once per revolution; this periodic closing and opening is called "breathing". The fault 
diagnosis can avoid destructive accidents.  Many papers deal with mechanical fault diagnosis, only a few include some 
kind of active control. 

Such as the papers by Gash (1993) and Nelson and Nataraj (1986), deal with the dynamics of faults in rotors, 
especially transverse cracks. Darpe et al. (2004) studied the coupling between longitudinal and torsional vibrations for 
rotating cracked shafts. The present paper presents the formulation of the damage in a shaft, taking into account that the 
damage introduces changes in the shaft deformation energy and, hence, changes in the stiffness matrix at the element in 
which the damage is located, as developed by Chen et. al (1991) and Simões and Steffen (2002).  

Using AMB’s, Zhu et al. (2003) studied the dynamic characteristics of a cracked rotor; Anton and Ulbrich (1985) 
investigated a rotor with asymmetrical stiffness and damping properties; Sinha et al. (1993) studied the sensor faults in 
an electromagnetic suspension system; and Nordmann and Aenis (2002) applied model-based fault detection in a pump 
with AMB's.  

Chiarello and Pederiva (1999) proposed an approach to face of fault detection in stationary dynamic system, the 
relations between correlation functions and physical parameters are used.  Eduardo and Pederiva (2004) expand the 
proposed formulation introducing the relationship between the Ljapunov matrix and an Artificial Neural Network 
(ANN) to detect changes in the system; in this methodology it is not necessary to know the parameter values -- it is 
sufficient to know the model structure. The present work expands this formulation for the case of a more complex 
mechanical system with damage supported by an Active Magnetic Bearing (AMB), including the action of a closed 
loop control. 

General system configuration 
AMB's have a number of interesting characteristics that represent advantages over conventional bearings. They 

work without any contact or lubrication, and display high dynamical performance, allowing their use as active damping 
actuators in vibration control. Have been successfully applied in turbomachinery, centrifuges, pumps, and high-
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precision machine tools, Brunet (1988). It possesses potential applications in micro-technique such as video heads, 
medical instruments, hard disk drives, and optical scanners, Schweitzer (2002). 

A system having this feature, integrated with fault diagnosis, prognosis and correction systems, constitutes the so-
called “Smart Machine Technology”. 

The rotor system under study is a flexible shaft with four identical discs. The discs at each end are supported by 
AMB's. The motor acts on one of the intermediate discs, and the rotation sensor is positioned on the other. 

position 
sensor 

AMB motor 

rotation sensor 

disc disc d2 disc d3 disc dd1 4

segment s1 segment s2 segment s3 

 
Figure 1 – General system configuration 

The closed loop control of the rotor bearing system is essential for stable operation; Fig. 2 shows a basic block 
diagram of the entire system. 
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Figure 2 – Closed-loop system-block diagram (z direction) 

The position of the rotor is determined by the sensor. The controller receives this information compute and sends a 
tension signal to the power amplifier. The power amplifier sends a proportional current signal for the actuators. The 
actuator transforms this signal into magnetic force. 

MATHEMATICAL MODEL 

AMB model 
The relationships between the magnetic force and applied bias currents can be found by:  
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Where g is the air gap, i is the current in the coils in the z direction, and km is a constant that depends of air 
permeability, number of the windings, and flux cross-sectional area in the air gap. For the radial AMB with two 
opposite pairs of symmetrical electromagnetic poles, linearizing the magnetic forces, the stiffness elements can be 
expressed by Alves et. al (1996): 
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Where fz is the the magnetic force in the z direction, ic is the control current, kmz is the displacement stiffness 
element of the magnetic bearing, and kmi is the current stiffness element of the magnetic bearing in the z direction. The 
constants kmz and kmi depend on the chosen design point of the magnetic bearing (bias current ib and air gap g). 
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Controller Model 
The transfer function of the SISO controller (single in - single out) designed for the 6th order is expressed as: 
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The state space equation of the controller for magnetic forces and displacements can be written as: 

)(.)(.)( tyBtxAtx ccccc +=&      and  )(. txCf ccm =     (5) 

  Ac is the system matrix, xc is the state vector, BBc is the input matrix, yc is the output of the mechanical system with 
sensor gain ks and Cc is the output matrix of the controller. The matrices have the following structures: 
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Where:              (7)    
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The matrices: , , , and , , , are the terms of the system and output matrix respectively, 

for each controller axe ( , , ,and ); ks
1yA 4yA 1zA 4zA 1yC 4yC 1zC 4zC

1y 4y 1z 4z yi,  kmyi and kpyi are the sensor, bearing, and power amplifier gains for 
each controller axe, respectively. 

Rotor model  
Figure 3 presents the mechanical system. In this modelling the finite element method is used, containing 5 shaft 

elements,  to  and 4 rigid discs, d1L 5L 1 to d4. The 6 nodes are also represented in the Fig. 3. 
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Figure 3 - Mechanical model 

The mechanical system may be represented by a differential equation as follows: 

)(...
...

tfKGM =++ ξξξ      (9) 

Where matrix M includes the influence of the second rotatory inertia of the shaft, mass and diametral moments of 
the disc. Matrix G contains the damping due to the air resistance and gyroscopic effect; matrix K is the stiffness matrix 
of the shaft; and f(t) are the external forces: white noise, unbalance forces and feedback control forces produced by the 
magnetic bearing. 

The rotation speed of the rotor is ω. Neglecting axial displacements which will be very small, the shaft has the 
motion described by displacements y(t) and z(t), and rotations θ(t) and ϕ(t) around the y and z axis respectively. Vector 
ξ(t) represents system displacements and rotations. 

Tzyzyzyzyzyzyt ][)( 666655554444333322221111 θϕθϕθϕθϕθϕθϕ=ξ (10)  
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The state space equation of the mechanical system can be written as: 
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The square matrix Am is called the system matrix; BBm is the input matrix, Cm is the output matrix; and ym is the vector 
composed of the measured variables. xm(t) is the state vector of the mechanical system. The dots indicate 
differentiations with respect to time. 

Mechanical fault model  
The mechanical fault under study is modelled by the finite element method as proposed by Simões and Steffen 

(2002), and Chen et al. (1991). The damage can locate in the portion of the shaft (L1, L2, L3, L4 or L5), as shown in Fig. 3. 
In this region the deterioration per unit length is assumed to be uniform and distributed in such a manner as not to cause 
a shift in the action line of the resultant force. The coordinates of the region with damage are the same as in Fig 3. The 
stiffness matrix of the shaft element with damage is: 
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Where Ss  are the cross-section area and Is inertia moment of the area, Ld is the damage length, E and G are Young's 
modulus and shear modulus respectively, ks represents the loss in cross-section area of the shaft, and kb the inertia loss. 
ξb and ξs are factors representing the magnitude of the losses. Matrix Kd is inserted into the stiffness matrix Eq. (9) on 
shaft elements L1, L2, L3, L4 or L5 when a mechanical fault is simulated. 

Complete closed loop system 
The state space representation of the final model is obtained from Eq. (5) and (11) and can be written as: 
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f is the input matrix, fd are the external unbalance forces and white noise 
perturbations, and xf is the state vector of the complete system in closed loop. 

CORRELATION FUNCTIONS AND COMPATIBILITY EQUATIONS 
For the development of the fault detection procedure based on the correlation equations, a model simpler than the 

previous one was chosen, with 4 rigid discs and 3 massless shaft elements. The mechanical model has 16 degrees of 
freedom (DOF), showed in the Fig. 4. 
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Figure 4 – Mechanical model with 16 DOF  
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Vector   represents the displacements and rotations of the system: )(* tξ

T
4444333322221111 zyzyzyzyt ][)(* θϕθϕθϕθϕ=ξ       (17) 

The complete system including the controller is a 56th-order system, and its state space equation is: 
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The correlation matrix between the states of Eq. (18) is defined by: )(** iff xRx τ
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where represents the time lag. iτ

Evaluating Eq. (20) with the solution of Eq. (18), the following relationship is obtained for a stationary condition, 
according to Chiarello and Pederiva  (1999): 
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Equation (21) is called Ljapunov Matrix Equation, and is used to develop the method of fault detection in the 
present work. Correlation matrices are defined by: 
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Where  is the correlation matrix between mechanical states,   between mechanical states and 

controller states,  correlations between states of the controller and mechanical,  between controller states, 

 correlations between unbalance and mechanical states, unbalance and controller states,  
mechanical and unbalance and correlations between controller and unbalance states. Equation (21) contains the 
relationships involving the correlation functions between system outputs and the physical parameters of differential Eq. 
(18). These relationships represent the basis for the procedure employed in the current work. 
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Equation (21) was developed by means of algebraic computation software and resulted in 3136 compatibility 
equations. In order to select the equations that correlate with mechanical fault parameters, a three-steps method was 
used: (a) find, within the dynamic state matrix Eq. (18), the element that relates to the fault; (b) select the matrix column 
that relates to measurable states Eq. (22); and (c) with help of the search command of the software, locate the desired 
equations. The equations selected for the proposed mechanical faults are: 
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The parameters ,  and , , ,   are the terms of the matrices  and , which are part of Eq. (19). 
Parameters , , , and   are the terms of the matrices  and ,  Eq. (6) and (7). 

ijk ijc 1b 2b 3b 4b mA* mB*

iay1 iay4 i1az i4az kmkpccy ijij ..= cA cC

Equations (23) to (26) just a few number of correlations functions can be estimated, because of the measuring 
restriction condition imposed. This method for fault diagnosis in stationary rotor systems uses the correlation analysis 
and artificial neural network (ANN) with a multi-layer perceptron to map the correlation functions involving variables 
that cannot be directly estimated, showed in Fig. 5. 



Mechanical Fault Diagnosis in a Flexible Rotor through Correlations Functions and Artificial Neural Network 
 
NUMERICAL RESULTS AND ANALYSIS 

The parameters of the system without faults are listed in Tab. (1) and (2), where each AMB axis is denoted by 
subscripts (y1, y4, z1 and z4).  

Table 1- Mechanical parameter value  Table 2- Bearing parameter value 

Parameter value unit  Parameter value unit 
md1,md2,md3,md4 210808 −×.  kg  ksy1=ksy4=ksz1=ksz4 19000 V/m 

Id1,Id2,Id3,Id4 510103 −×.  Kg.m2  kpy1=kpy4=kpz1=,kpz4 -0.25 A/V 

Ip1,Ip2,Ip3,Ip4 510026 −×.  Kg.m2  kmy1=kmy4=kmz1=kmz4 8 N/A 

Is 1110105 −×.  Kg.m2  ky1=ky4=kz1=kz4 -2450 N/m 

As 510571 −×.  m2  iby1=iby4=ibz1=ibz4 0.307 A 

ω  315  rad/s  g 1 mm 

The compatibility Eq. (23) to (26) has different dependences on the parameters. Equations (23) and (26) are 
sensitive to shaft and bearing stiffness at nodes (1) and (4). Equations (24) and (25) are only sensitive to shaft stiffness 
associated to nodes (2) and (3). These dependences are very useful not only to determine parameter variations but also 
to locate where a failure is present. It is not necessary to know the parameter value 

ANN’s configuration 
The equation terms containing correlation functions of variables that cannot be directly measured are modelled by 

the ANN. To detect the faults each of the Eq.  (23) to (26) the inputs and outputs are listed in Tab. 3. 

Table 3: ANN’s - Inputs and Outputs 

Equation. State Node Inputs Output Network. 
23 y1 1 ⇒ 113112111112 1 yRyyRyyRyyRyRyRy ccc ,,,, &&  ⇒ 11 yRy  ⇒ A1 

24 y2 2 ⇒ 22222321 yyRyyRyRyyRy &&& ,,,  ⇒ 22 yRy  ⇒ A2 

25 y3 3 ⇒ 33333432 yyRyyRyRyyRy &&& ,,,  ⇒ 33yRy  ⇒ A3 

26 y 4 A4 ⇒4434424414443 yRyyRyyRyyyRyRy ccc ,,,, && 44 yRy  ⇒ ⇒4

The Levenberg-Maquart algorithm was used to train the network. The ANN architecture contains 10 neurons on the 
first layer and 10 neurons on the second layer, and the unit activation function is sigmoidal. All neurons from one layer 
are connected to all neurons in the next layer, Fig. 5. 
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Figure 5 -  Multi layer perceptron to map equation 23 

Mechanical faults 
The comparison between the autocorrelations of the signals without mechanical fault and with mechanical fault was 

done by computing the MSD indices by the following equation: 
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where: the network output is yk and the estimated response is ky . N is the number of points. 
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fault

1 2 3 4 

70bs .=ξ=ξ
L3 =Ld=0.02 m 

Figures 6 to 14 show the results for the case of damage in the shaft at segments s1, s2 and s3, considering the 
parameters of the mechanical faults as follows: 020.=dLand m. 7.0== bs ξξ

Case 1: Mechanical Fault at Central Shaft Segment- s2  

For this case the disc d1 is positioned in node (1), the disc d2 is in node (2), the disc d3 is in node (5) and disc d4 is in 
node (6). The faults were applied to shafts element ,  e  respectively, by means of Eq. (13) and (14). The 
following results were found: 
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  Figure 6 – Mechanical fault – central damage - segment s2  
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Figure 7 – Mechanical fault - damage near disc d2 - segment s2  
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Figure 8 – Mechanical fault – damage near disc d3 - segment s2  

In Fig. 6, for a central fault at segment s2, the MSD indicates that the fault is located between the two adjacent 
nodes (2) and (3). The deviations are equally distributed in networks A2 and A3; in Fig. 7 it was predominant in node 
(2); and in Fig. 8 in node (3), as expected. It is interesting to notice that only one sensor in central discs already 
guarantees the detection the fault in this region. 
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Case 2: Mechanical Fault at Shaft Segment- s1 

For this case disc d1 is positioned in node (1), disc d2 at node (4), disc d3 is in node (5) and disc d4 is in node (6). The 
fault applied to shafts element ,  and  respectively, by means of Eq. (13) and (14). The following results were 
found: 
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Figure 9 – Mechanical fault - central damage - segment s   1
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 - segment sFigure 10 – Mechanical fault - damage near disc d   2 1
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Figure 11 – Mechanical fault - damage near disc d - segment s   1 1

In Fig. 9, for a central fault at segment s1, the MSD indicates that the fault was predominant in node (2), network 
A2. However relatively to the network A1 the deviation was not accented. In Fig. 10 it was more predominant in 
network A2 and small in network A1. In Fig. 11 small deviations in networks A1 and A2 can be seen. These deviations 
are not significant when compared with other analyzed cases. However, they have shown coherent due to localization to 
be near of the bearing. 
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Case 3: Mechanical Fault at Shaft Segment- s3

For this case disc d1 is positioned in node (1), disc d2 is in node (2), disc d3 is in node (3) and disc d4 is in node (6). 
The fault applied to shafts element ,  and  respectively, by means of Eq. (13) and (14). The following results 
were found: 
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Figure 12 – Mechanical fault – central damage - segment s3  
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Figure 13 – Mechanical fault – damage near disc d  - segment s   3 3
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Figure 14 – Mechanical fault – damage near disc d  - segment s   4 3

In Fig. 12, for a central fault the MSD indicates that the fault is located between the two adjacent nodes (3) and (4). 
It was predominant in node (3) network A3; In Fig. 13 the effect was more predominant in network A3 and small in 
network A4. The deviations presents in networks A3 and A4, Fig. 14, are not significant when compared with other 
analyzed cases. However, they have shown also coherent due to the fault localization to be near of the bearing. 



Mechanical Fault Diagnosis in a Flexible Rotor through Correlations Functions and Artificial Neural Network 
 
CONCLUSION 

A method of fault monitoring system was developed, by means of the Ljapunov Matrix Equation and an artificial 
neural network, in a rotor with active magnetic bearing and control system. Although the model used in this study was 
of a high order, and the limitations of the measured states were severe, very good results were obtained. In this method 
it is not necessary to know the value of model parameters: the model structure is sufficient 

The studied cases of mechanical fault presented satisfactory results. It is possible to detect the mechanical fault and 
its location within the system. The method presented some limitations for the cases of the fault near to the bearing 
because the unbalance configuration simulated basically excites the first bending mode and these points to be on the 
node of the mode. 

 These are good indications that the proposed approach deserves further study. An experimental set-up has already 
been built to study the method under practical limitations such as measurement errors, non-linearities, and noise. 
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