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Abstract: Sliding mode control is a very attractive control scheme because of its robustness against modelling imper-
fections and external disturbances. It has been successfully employed to the dynamic positioning of remotely operated
underwater vehicles. In such situations, the discontinuities in the control law must be smoothed out to avoid the un-
desirable chattering effects. The adoption of properly designed boundary layers have proven effective in completely
eliminating chattering, however, leading to an inferior tracking performance. This work describes the development of a
dynamic positioning system for underwater robotic vehicles. The adopted approach is based on the sliding mode control
strategy and enhanced by an adaptive fuzzy algorithm for uncertainty/disturbance compensation. Numerical results are
presented in order to demonstrate the control system’s performance.
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INTRODUCTION

The control system is one of the most important elements of an underwater robotic vehicle, and its characteristics (ad-
vantages and disadvantages) play an essential role when one has to choose a vehicle for a specific mission. Unfortunately,
the problem of designing accurate positioning systems for underwater robotic vehicles still challenges many engineers
and researchers interested in this particular branch of engineering science. A growing number of papers dedicated to the
position and orientation control of such vehicles confirms the necessity of the development of a controller, that could deal
with the inherent nonlinear system dynamics, imprecise hydrodynamic coefficients, and external disturbances.

It has already been shown (Yuh, 1994; Goheen and Jefferys, 1990) that, in the case of underwater vehicles, the tra-
ditional control methodologies are not the most suitable choice and cannot guarantee the required tracking performance.
On the other hand, sliding mode control, due to its robustness against parameter uncertainty and external disturbance,
has proven to be a very attractive approach to cope with this problems (Bessa et al., 2006; Pisano and Usai, 2004; Guo
et al., 2003; Kiriazov et al., 1997; Christi et al., 1990; Healey and Lienard, 1985; Yoerger and Slotine, 1985). But a well
known drawback of conventional sliding mode controllers is the chattering effect. To overcome the undesired effects of
the control chattering, Slotine (1984) proposed the adoption of a thin boundary layer neighboring the switching surface,
by replacing the sign function by a saturation function. This substitution can minimize or, when desired, even completely
eliminate chattering, but turnsperfect trackinginto a tracking with guaranteed precisionproblem, which in fact means
that a steady-state error will always remain. In order to enhance the tracking performance inside the boundary layer, some
adaptive strategy should be used for uncertainty/disturbance compensation.

Due to the possibility to express human experience in an algorithmic manner, fuzzy logic has been largely employed
in the last decades to both control and identification of dynamical systems. In spite of the simplicity of this heuristic
approach, in some situations a more rigorous mathematical treatment of the problem is required. Recently, much effort
(Bessa, 2005; Liang and Su, 2003; Wong et al., 2001; Ha et al., 2001; Yu et al., 1998) has been made to combine fuzzy
logic with sliding mode methodology.

An appealing option is to embed an adaptive fuzzy inference system inside the boundary layer of a sliding mode con-
troller, to cope with the uncertainties and disturbances that can arise. This control strategy has already been successfully
applied to the depth regulation of remotely operated underwater vehicles (Bessa et al., 2006). In this article, a rigorous
demonstration of the stability and convergence properties of the closed-loop systems by means of Lyapunov stability
theory and Barbalat’s lemma was also presented.

In this work, the aforementioned control scheme is employed for full positioning system,i.e., in the regulation of all
controllable degrees of freedom. The adoption of a reduced order mathematical model for the underwater vehicle and
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the development of control system in a decentralized fashion, neglecting cross-coupling terms, is discussed. Numerical
results are presented in order to demonstrate the control system performance.

VEHICLE DYNAMICS MODEL

A reasonable model to describe the underwater vehicle’s dynamical behavior must include the rigid-body dynamics of
the vehicle’s body and a representation of the surrounding fluid dynamics. Such a model must be composed of a system
of ordinary differential equations, to represent rigid-body dynamics, and partial differential equations to represent both
tether and fluid dynamics.

In order to overcome the computational problem of solving a system with this degree of complexity, in the majority
of publications (Bessa et al., 2006; Smallwood and Whitcomb, 2004; Hsu et al., 2000b; Kreuzer and Pinto, 1996; Yoerger
and Slotine, 1985) a lumped-parameters approach is employed to approximate vehicle’s dynamical behavior. In this way,
the equations of motion for underwater vehicles are commonly presented, with respect to the body-fixed reference frame,
in the following vectorial form:

Mν̇ + k(ν) + h(ν) + g(x) + p = τ (1)

whereν = [υx, υy, υz, ωx, ωy, ωz]T is the vector of linear and angular velocities in the body-fixed reference frame,
x = [x, y, z, α, β, γ]T represents the position and orientation with respect to the inertial reference frame,M is the6× 6
inertia matrix, which accounts not only for the rigid-body inertia but also for the so-called hydrodynamic added inertia,
k(ν) is the vector of generalized Coriolis and centrifugal forces,h(ν) represents the hydrodynamic quadratic damping,
g(x) is the vector of generalized restoring forces (gravity and buoyancy),p stands for occasional current disturbances,
andτ is the vector of control forces and moments.

It must be noted that, in the particular case of remotely operated underwater vehicles (ROVs), the disturbances caused
by the umbilical or tether cable should also be taken into account. The umbilical can be treated as a continuum, discretized
with the finite element method or modeled as multibody system (Bevilacqua et al., 1991; Pinto, 1996). However, the
adoption of any of these approaches requires a computational effort that would be prohibitive for on-line estimation of the
control action. A common way to surmount this limitation is to consider the forces and moments exerted by the tether as
random, and incorporate them into the vectorp.

The most relevant forces and moments acting on underwater vehicles are discussed in the following subsections.

Restoring forces

The forces and moments due to gravity (Mg) and buoyancy (ρg∇), whereM is the vehicle’s mass,g is the ac-
celeration of gravity,ρ is the water’s density and∇ is the displaced volume of water, can be expressed by the vector
g(x) ∈ R6:

g(x) =
[

RT [0 0 (ρg∇−Mg)]T

rf ×RT [0 0 ρg∇]T − rg ×RT [0 0 Mg]T

]
(2)

whereR ∈ R3×3 stands for the rotation matrix.

The vectorsrg andrf represent the gravity and buoyancy center with respect to the body-fixed reference frame.

Hydrodynamic forces

Remotely operated underwater vehicles typically operate with velocities never exceeding 2 m/s. Consequently, the
hydrodynamic forces (Fh) can be approximated using theMorison equation(Newman, 1986):

Fh = CD
1
2
ρAv|v|+ CMρ∇v̇ + ρ∇v̇w (3)

wherev and v̇ are, respectively, the relative velocity and the relative acceleration between rigid-body and fluid,v̇w is
the acceleration of underwater currents,A is a reference area,CD andCM are coefficients that must be experimentally
obtained.

The last term of Eq. (3) is the so-calledFroude-Kryloff forceand will not be considered in this work due the fact, that
at normal working depths, the acceleration of the underwater currents is negligible. In this way, the coefficientCMρ∇ of
the second term will be called hydrodynamic added mass. The first term represents the nonlinear hydrodynamic quadratic
damping. Experimental tests (Kleczka et al., 1992) show that Morison equation describes with sufficient accuracy the
hydrodynamic effects due to the relative motion between rigid-bodies and water.
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Quadratic Damping

The effects of the hydrodynamic dampingh(ν) over the vehicle, due not only to the translational but also to rotational
motions, can be described in the body-fixed reference frame by (Pinto, 1996; Hsu et al., 2000a):

h(ν) =



1
2CDx(υ)ρ∇ 2

3 |υ|2
1
2CDy (υ)ρ∇ 2

3 |υ|2
1
2CDz (υ)ρ∇ 2

3 |υ|2
1
2CDαt(υ)ρ∇|υ|2 + 1

2CDαrρ∇
5
3ωx|ωx|

1
2CDβt(υ)ρ∇|υ|2 + 1

2CDβrρ∇
5
3ωy|ωy|

1
2CDγt(υ)ρ∇|υ|2 + 1

2CDγrρ∇
5
3ωz|ωz|


(4)

whereυ = [υx, υy, υz]T is a vector containing only the first three components ofν, i.e., the translational velocities.

The parametersCDx , CDy , CDz , CDαt , CDβt , CDγt , CDαr , CDβr andCDγr depend on the geometry of the vehicle
and should be experimentally obtained in a wind tunnel (Pinto, 1996), or on-line estimated with adaptive algorithms in a
water tank (Smallwood and Whitcomb, 2003).

Added inertia

Considering that an underwater vehicle typically operates at low speeds, the added inertia matrix,MA ∈ R6×6, could
be assumed as diagonally dominant and described as follows:

MA = diag {CMx
ρ∇ , CMy

ρ∇ , CMz
ρ∇ , CMα

ρ∇ , CMβ
ρ∇ , CMγ

ρ∇} (5)

As with the computation of the hydrodynamic damping, the coefficientsCMx
, CMy

, CMz
, CMα

, CMβ
andCMγ

should be experimentally determined. The matrixMA must be combined with the rigid-body inertia matrix in order to
obtain the matrixM of Eq. (1).

Thruster forces

Underwater vehicles are commonly equipped with electrically actuated bladed thrusters. As previously addressed in
many works (Bessa et al., 2005; Whitcomb and Yoerger, 1999; Healey et al., 1995; Yoerger et al., 1990), at low speeds,
the dynamic behavior of the vehicle can be greatly influenced by the nonlinear dynamics of the thruster system.

Regarding the dynamic behavior of the thruster, the following first order nonlinear model, with propeller’s angular
velocity (Ω) as state variable, can be adopted (Bessa et al., 2005; Yoerger et al., 1990):

JmspΩ̇ + kvΩ|Ω| =
kt
Rm

Vm (6)

Fp = CT Ω|Ω| (7)

whereJmsp is the motor-shaft-propeller inertia,Vm is the motor input voltage,Fp is the resulting thruster force andCT
is a function of the advance ratio. The constantskt andRm, which represents the motor torque constant and winding
resistance, respectively, can be obtained from motor’s data-sheet. The values ofkv andCT depends on constructive
characteristics of each thruster and must be experimentally determined.

Furthermore, the effect on the vehicle of the force produced by everyone of theN thrusters can be described in
body-fixed reference frame by

τ = BFp (8)

whereFp ∈ RN is a vector containing the force produced by each thruster andB ∈ R6×N is a matrix which represents
the distribution of the thrust forces on the vehicle.

DYNAMIC POSITIONING SYSTEM

The dynamic positioning of underwater robotic vehicles is essentially a multivariable control problem. Nevertheless,
as demonstrated by Slotine (1983), the variable structure control methodology allows different controllers to be separately
designed for each degree of freedom (DOF). Over the past decades, decentralized control strategies have been successfully
applied to the dynamic positioning of underwater vehicles (Smallwood and Whitcomb, 2004; Da Cunha et al., 1995;
Kiriazov et al., 1997; Yoerger and Slotine, 1985).
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Considering that the control law for each degree of freedom can be easily designed with respect to the inertial reference
frame, Eq. (1) should be rewritten in this coordinate system.

Remembering that

ẋ = J(x)ν (9)

whereJ(x) is the Jacobian transformation matrix, it can be directly implied that

ν = J−1(x)ẋ (10)

and

ν̇ = J̇−1ẋ + J−1ẍ (11)

Therefore, the equations of motion of an underwater vehicle, with respect to the inertial reference frame, becomes

M̄ẍ + k̄ + h̄ + ḡ + p̄ = τ̄ (12)

whereM̄ = J−TM J−1, k̄ = J−Tk + J−TM J̇−1ẋ, h̄ = J−Th, ḡ = J−Tg, p̄ = J−Tp andτ̄ = J−Tτ .

It should be noted that in the case of remotely operated underwater vehicles (ROVs), the metacentric height is suf-
ficiently large to provide the self-stabilization of roll (α) and pitch (β) angles. This particular constructive aspect also
allows the order of the dynamic model to be reduced to four degrees of freedom,x = [x, y, z, γ]T, and the vertical
motion (heave) to be decoupled from the motion in the horizontal plane. This simplification can be found in the majority
of works presented in the specialized literature (Zanoli and Conte, 2003; Guo et al., 2003; Hsu et al., 2000b; Kiriazov
et al., 1997; Pinto, 1996; Da Cunha et al., 1995; Yoerger and Slotine, 1985).

Thus, the positioning system of a ROV can be divided in two different parts: Depth control (concerning variablez),
and control in the horizontal plane (variablesx, y andγ).

Considering the aforementioned assumptions and using the Euler angles parameterization, the Jacobian transformation
matrix associated to the horizontal plane becomes

J(γ) =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (13)

whereJ(γ) is orthogonal, and consequentlyJ−1(γ) = JT(γ).

Adaptive fuzzy sliding mode controller

LetSi(t) be a sliding surface defined in the state space of each degree of freedom (xi) by the equationsi(t, xi, ẋi) = 0,
with si : R2 → R satisfying

si(t, xi, ẋi) = ˙̃xi + λix̃i (14)

wherex̃i = xi − xdi is the tracking error associated to each DOF,˙̃xi is the time derivative of̃xi, xdi is the correspondent
desired trajectory andλi are strictly positive constants.

So, given the main characteristics of the system to be controlled and assuming that the restoring forces can be pre-
viously compensated (Kiriazov et al., 1997), adaptive fuzzy sliding mode controllers (AFSMC) are proposed to regulate
each degree of freedom of the underwater robotic vehicle:

τ̄i = ˆ̄ki + ˆ̄hi + ˆ̄mi

(
ẍdi − λi ˙̃xi

)
+ d̂i(si)−Kisat

(
si
φi

)
, i = 1, 2, 3, 4 (15)

where sat(·) is the saturation function,φi are strictly positive constants,τ̄i represents the components of vectorτ̄ , ˆ̄ki and
ˆ̄hi are, respectively, the components of vectorsˆ̄k andˆ̄h, which stands for estimates of vectorsk̄ andh̄.

Concerningˆ̄mi, it represents in the depth controller the mass of the vehicle plus the respective added mass. In the
horizontal plane, estimates of the main diagonal terms ofJ−TM J−1, with J defined according to Eq. (13), may be
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attributed to the correspondentˆ̄mi. To ensure the stability of the closed-loop system, estimates of the off-diagonal terms
of J−TM J−1 should be incorporated in the vectorp̄, as will be discussed further in the paper.

It should be emphasized that the lumped parameters approach, adopted to describe the hydrodynamic effects (quadratic
damping and added inertia), represents a simplification, and hence only estimates of the actual phenomena are available.
Due to the presence of the termJ−TM J̇−1ẋ, the vector̄k cannot be exactly known.

The gainKi of each controller should be carefully determined in order to ensure the global stability of the closed-loop
system, and robustness with respect to disturbances and uncertainties. According to the sliding mode methodology,Ki

must be defined as follows (Bessa et al., 2006; Bessa, 2005):

Ki ≥ Pi + ˆ̄miGiηi + |d̂i(si)|+ ˆ̄mi(Gi − 1)|ẍdi − λi ˙̃xi| (16)

whereηi are strictly positive constants related to the reaching time of each controller.

Defining ˆ̄mi =
√
m̄maxm̄min andGi =

√
m̄max/m̄min automatically implies that

G−1
i ≤

ˆ̄mi

m̄ i
≤ Gi (17)

RegardingPi, this term should be defined for each controller in order to compensate the uncertainties of the respective
components of vectors̄k andh̄, and perturbations provided bȳp, i.e.,

∣∣∆k̄i + ∆h̄i + p̄i
∣∣ ≤ Pi (18)

Returning to the control law, Eq. (15), the adoption of a saturation function, sat(·), instead of the well-known sign
function, sgn(·), leads to the formation of a thin boundary layer neighboring each switching surfaceSi(t). The incor-
poration of this boundary layer can minimize or, when desired, even completely eliminate chattering, but turnsperfect
tracking into atracking with guaranteed precisionproblem, leading to an inferior tracking performance.

In order to enhance the tracking performance, in this work, an adaptive fuzzy inference system is embedded inside the
boundary layer, to cope with the uncertainties and disturbances that can arise.

The adopted fuzzy inference system was the zero order TSK (Takagi–Sugeno–Kang), whose rules can be stated in a
linguistic manner as follows:

If s is Sr thend̂r = D̂r ; r = 1, 2, · · · , R

whereSr are fuzzy sets, whose membership functions could be properly chosen, andD̂r is the output value of each one
of theR fuzzy rules.

Considering that each rule defines a numerical value as outputD̂r, the final outputd̂ can be computed by a weighted
average:

d̂(s) =
∑R
r=1 wr · d̂r∑R
r=1 wr

(19)

or, similarly, but now for every degree of freedom,

d̂i(s) = D̂T
i Ψi(si) (20)

where,D̂ = [D̂1, D̂2, . . . , D̂N ]T is the vector containing the attributed valuesD̂r to each ruler, Ψ(s) = [ψ1(s), ψ2(s),
. . . , ψN (s)]T is a vector with componentsψr(s) = wr/

∑N
r=1 wr andwr is the firing strength of each rule.

In order to obtain the most suitable values ford̂i(s), the vectors of adjustable parameters will be automatically updated
by the following adaptation law:

˙̂Di = −ϕi si Ψi(si) (21)

whereϕi are strictly positive constants related to the adaptation rate.

For a more detailed discussion about the stability and convergence properties of the proposed control law, the reader
is referred to Bessa (2005) and Bessa et al. (2006).
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Now, given the required control forcēτ from Eq. (15) and the thruster’s arrangement on the vehicle, the force that
should be produced by every thruster can be determined.

Nowadays, most ROVs have the standard thruster configuration in the horizontal plane, with four thrusters in a square
arrangement and angled at 45o, which provides a better actuation overx, y andγ. So, from Eq. (8), it can be easily verified
that

Fpxy = BT(BBT)−1J(γ)Tτ̄ (22)

whereτ̄ = [τ̄x, τ̄y, τ̄γ ]T andBT(BBT)−1 ∈ R4×3 is the pseudo-inverse of matrixB ∈ R3×4.

Regarding the vertical motion, the required thrust force can be directly obtained byFpz = τ̄z/Nz, whereNz is the
available number of thrusters in the vertical direction.

SIMULATION RESULTS

The numerical simulations were performed with an implementation in C, with sampling rates of 500 Hz for control
system and 1 kHz for dynamic model. The differential equations of the dynamic model were numerically solved with the
fourth order Runge-Kutta method.

In order to simplify the design process, some parameters of the controller were chosen identical for all degrees of
freedom,λi = 0.6, φi = 0.05 andϕi = 1 × 103. Concerning the fuzzy system, the same triangular and trapezoidal
membership functions, with the central values defined asCi = {−3 ; −1 ; −0,5 ; 0 ; 0,5 ; 1 ; 3}, were adopted for
each DOF. The vectors of adjustable parameters were initialized to zero,D̂i = 0, and automatically updated according
to Eq. (21). For the dynamic model, the following values were adopted:M = diag {80 kg, 80 kg, 100 kg, 8 kg m2}
andh = [125 υx|υx|, 175 υy|υy|, 250 υz|υz|, 12,5ωz|ωz|]T. The disturbance force was chosen to vary randomly in the
range of±3 N. The random nature of the disturbance was simulated using the functionsrand() andsrand() of the C
Standard Library. For controller design, the vehicle’s parameters were chosen based on the assumption that exact values
are not known, but with a maximal uncertainty of±25%.

To evaluate the control system performance, two different numerical simulations were performed. In the first case,
the underwater robotic vehicle was intended to move only in theXY plane, from his initial position/orientation at rest,
x0 = [0, 0, 0, 0]T, to the desired final position/orientationxd = [2.5 , 2 , 0 , π/2]T. Once this final position/orientation
is reached, it should stay there indefinitely, besides the disturbance forces. The obtained results were presented in Fig. 1
and Fig. 2.

Figure 1 shows the obtained response in the time domain. These results confirm that the proposed control strategy
was able to regulate and stabilize the dynamical behavior of the underwater vehicle in the horizontal plane. As observed
in Fig. 1(b), Fig. 1(d) and Fig. 1(f), the adaptive fuzzy sliding mode controller was also efficient in minimizing the
undesirable chattering effect.

The propeller’s angular velocity, associated to the control problem in the horizontal plane, are presented in Fig. 2. It
should be noted that the maximal angular velocity,≈ 420 rad/s, is related to the maximal voltage admitted by the thruster’s
DC motors.

Finally, the second case was a trajectory tracking inR
3. Here, from the initial positionx0 = [0, 0, 0, 0]T at rest, the

vehicle was forced to move to the following desired positions:x1 = [0, 3, 3, 0]T, x2 = [3, 3, 3, 0]T, x3 = [3, 3, 0, 0]T,
x4 = [1, 3, 0, 0]T andx5 = [1, 1, 0, 0]T, wheret0 = 0 s, t1 = 30 s, t2 = 60 s, t3 = 90 s, t4 = 120 s, t5 = 150 s. During
the entire path, the yaw angle should be kept constant,γ = 0. The obtained results were presented in Fig. 3 and Fig. 4.
By observing both figures, it can be verified that, with the proposed control system, the vehicle could follow the desired
trajectory, in spite of the disturbance forces. It can be also observed, Fig. (4(d)), that the yaw angle (γ) was held within
the acceptable bounds, defined by the chosen width of the boundary layer,φγ = 0.05.

CONCLUDING REMARKS

In this paper, the problem of compensating uncertainty/disturbance in the dynamic positioning system of underwater
robotic vehicles was considered. An adaptive fuzzy sliding mode controller was implemented to deal with the stabilization
and trajectory tracking problems. The adoption of a reduced order mathematical model for the underwater vehicle and the
development of a control system in a decentralized fashion, neglecting cross-coupling terms, was discussed. By means
of numerical simulations, it could be verified that the proposed strategy was able to cope with both the disturbances,
that can typically arise in the subaquatic environment, and uncertainties in hydrodynamics coefficients. As observed,
the incorporation of an adaptive fuzzy algorithm within the boundary layer made the better trade-off between tracking
performance and chattering possible.
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Figure 1 – Dynamic positioning of the vehicle in the horizontal plane.
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Figure 2 – Propeller’s angular velocity, related to the dynamic positioning in the horizontal plane.
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Figure 3 – Dynamic positioning of the vehicle in R
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Figure 4 – State variables in the time domain, associated to the dynamic positioning in R
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