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Abstract: We have reviewed a number of studies of voiced sound articulatory synthesis, but all of them have been
conducted using deterministic models. However, real voices are random processes. This paper is concerned with the
discussion of uncertainties and random variables involved in the process of voice production, based on the maximum
entropy principle, and using the mathematical-mechanical model proposed by Ishizaka and Flanagan. We discuss an
implicit numeric method for synthesizing voice, which allows us to solve the associated inverse dynamics problem; that
is, to identify the parameters of the model, given a specific voice signal. We can, then, analyze the sensitivity and random
characteristics of the frequencies involved in the process, due to uncertainties in the parameters.
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NOMENCLATURE

ag0 = neutral glottal area, area, m2
a = section or glottal area, area, m2
ã = coefficient in the Newmark method,
dimensionless
A = random variable related to the area,
area, m2
c = damping coefficient, damping, Ns/m
c̃n = expression related to the damping,
m3/N
cn = Fourier coefficients
c = vector related to the Fourier coeffi-
cients
[C] = damping matrix, damping, Ns/m
d = stickness, length, m
f0 = fundamental frequency, frequency,
Hz
f = force acting in the mass, force, N
ĥ = transfer function of the vocal tract
h = force vector function, force, N
k = linear stiffness, stiffness, N/m
kc = linear stiffness, stiffness, N/m
[K] = stiffness matrix, stiffness, N/m
� = length of the tube or the vocal fold,
length, m
�̃ = expression related to the length,
kg/m4
L = random variable related to the
length, length, m
m = mass of the vocal cord, mass, kg
mX = mean value ofX
[M] = mass matrix, mass, kg
N = number of points of the period
pm = pressure acting in the mass,
pressure, Pa
Pc = probability used for the confidence
region, dimensionless

p = radiated pressure, pressure, N/m2
pX = probability distribution ofX
q = parameter to be identified, dimen-
sionless
Q = random variable related toq,
dimensionless
qu = quantile
r = acoustic resistance in the mouth,
Pa/m3/s
ŝr = radiation impedance, Pa/m3/s
s = nonlinear stiffness function, stiff-
ness, N/m
t = damping function, damping, Ns/m
T = period, time, s
û = volume velocity, in the frequency
domain, density, m3/Hz
u = air volume velocity across the tubes,
velocity, m3/s
u̇ = derivative ofu, m3/s2
vc = sound velocity, velocity, m/s
x+ = upper envelope related to confi-
dence region
x− = lower envelope related to confi-
dence region
x = displacement of the mass, distance,
m
w = vector containingx1, x2, un

y = radius of the tubes, length, m
zi = vector used in the Newmark method

Greek Symbols
α = index used in the algorithm
α̃ = constant used in the Newmark
method

β = index used in the algorithm
Γ = Gamma function
δ = dispersion coefficient used in the
probability distribution
δ̃ = constant used in the Newmark
method, dimensionless
∆t =sampling time, time, s
ηh = nonlinear coefficient of the springs
during collision, dimensionless
ηk = nonlinear coefficient of the springs,
dimensionless
ρ = air density, density, kg/m3
µ = shear viscosity coefficient, viscos-
ity, Pas
� = function used in the coupling
equation
δ̃ = coefficient used in the Newmark
method
ν = number of the Fourier coefficients
σX = standard deviation ofX
θ = realization
ξ = damping ratio, dimensionless

Subscripts
g = relative to glottal
n = relative to the number of the tubes
r = relative to the radiated sound
1 = relative to the mass 1 in the model
2 = relative to the mass 2 in the model

Superscripts
exp = relative to the given signal
mod = relative to the model
reg = relative to the regenerated signal
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INTRODUCTION

The voice production process has been studied by many researchers, and for many different reasons such as to ob-
tain synthesis of voiced sounds (Ishizaka and Flanagan, 1972; Koizumi et al., 1987; Cataldo et al., 2006), to simulate
pathological vocal-fold vibrations (Ishizaka and Isshiki, 1976; Zhang et al., 2005), to discuss nonlinearities related to the
process (Steinecke and Herzel, 1995; Herzel et al., 1995; Lucero, 1999).

We are interested here inphonation, which is one of the larynx functions. The laryngeal complex is located between
the pharynx and the trachea, and consists of a number of cartilages and muscles. In the larynx, we can find the vocal
folds, small muscular cushions that adduct (come together) to close the laryngeal airway, or abduct (separate) to open this
airway. The opening between the vocal folds is called theglottis, and the termglottal has come to be used as a general
term for the laryngeal function. Sound results from the vibration of vocal folds, which alternately snap together and apart,
colliding with one another in a basically (quasi-)periodic fashion.

The laryngeal function is highly similar within major groups of sounds produced. For example, vocal fold vibration
differs little across vowels, which gain their distinctiveness by the shaping of the articulatory system above the larynx,
i.e., the portion that goes from the glottis up to the mouth, calledvocal tract. For this reason, the phonetic description of
speech is based largely on supraglottal articulatory features.

The vocal folds, together with glottal airflow, constitute a highly nonlinear self-oscillating system. According to the
accepted myoelastic theory of voice production proposed by Van den Berg (1968) and Titze (1980), the vocal folds are set
into vibration by the combined effect of the subglottal pressure, the viscoelastic properties of the folds, and the Bernoulli
effect. We cannot forget the coupling between the vocal folds dynamics and the vocal tract acoustics. The effective length,
mass, and tension of the vocal folds are determined by muscle action; and in this way, the fundamental frequency (pitch)
and the waveform of the glottal pulses can be controlled. The vocal tract acts as a filter which transforms the primary
signals into meaningful voiced speech.

The two-mass model of the vocal folds (Ishizaka and Flanagan, 1972) has been widely used and the capability of this
well-known model to reproduce the oscillation in detail has been successfully demonstrated. In addition to this model
of the vocal folds, it is necessary to have a model for the vocal tract; and as usual, we use an acoustic tube for it. This
complete model (vocal folds + vocal tract) will be subsequently referred as the IF72 model in this paper.

The system just discussed has been used for producing and studying voiced sounds in a deterministic way. However,
the human voice production system is not deterministic. One of our purposes here is to take into account uncertainties,
by using a probabilistic approach related to the parameters present in the IF72 model; or more generally, to the voice
production process.

We divided our work, basically, into three parts:

(1) Modeling: we discuss an implicit numerical method to synthesize voiced sounds using the IF72 model.

(2) Inverse dynamics problem (deterministic): the fundamental frequency is controlled by the parameters of the vocal
folds and the distinctiveness between the vowel sounds is related to the parameters of the vocal tract. Then, we
discuss a way to solve the inverse problem; that is, given a recorded voice signal, how to identify the parameters of
the IF72 model that best approach it.

(3) Randomization of the direct problem: the parameters of the vocal folds and the vocal tract are modeled as random
variables by taking into account that the voice production is a stochastic process. An experimental database is
constructed with experimental realizations of the stochastic process and, for each realization from that database, the
random parameters of the model are identified by solving an optimization problem.

MODELING

Figure 1 shows a sketch of the IF72 model. Each vocal fold is represented by two (nonlinear) mass-damper-spring
systems, coupled through a (linear) spring (kc) and the vocal tract is represented by a standard two-tube configuration for
vowel /a/ (Ishizaka and Flanagan, 1972; Titze, 1994).

The IF72 model assumes motion in the direction perpendicular to airflow only, which is in turn assumed to be quasi-
steady and described by Bernoulli’s energy equation. Other assumptions may be found in the cited references.

The complete model (vocal folds and vocal tract) is called a source-filter model (Fant, 1960; Ishizaka and Flanagan,
1972) and it is a well known representation of speech production acoustics, layered on the theory of linear systems. A
fundamental assumption is that the vocal tract can be decomposed into dynamic and mutually independent parts (in our
case, two) that interact linearly.

We divide the source-filter system in two parts: the subsystem of the vocal folds (source) and the subsystem of the
vocal tract (filter). They are coupled by the glottal volume velocity.
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Figure 1 – Two-mass model of the vocal folds; vocal tract model for vowel /a/.

During phonation, the filter is excited by a sequence of airflow pulses with a frequency, sayf 0, which we call the
fundamental frequency of the voice signal. The full interaction between the glottal flow and vocal tract is included by
solving the differential equations related to the airflow in the vocal tract, and the equations that specify the mechanical
vibration mechanism of the vocal folds.

In summary, the output pressure (the voice produced) can be written, in the frequency domain, as

p̂r(ω) = ûg(ω)ĥ(ω)ŝr(ω) (1)

wherep̂r(ω) refers to the radiated sound pressure,ûg(ω) refers to the air volume velocity,̂h(ω) represents the transfer
function of the vocal tract and̂sr(ω) denotes radiation characteristic, in the mouth. Putting this equation into words, we
could say that the radiated sound pressure waveform of speech is the product of the laryngeal spectrum, the vocal tract
transfer function, and the radiation characteristic.

The subglottal pressureps is the input of the subsystem source, which output is the air volume velocityu g. Conse-
quently,ug is the input of the subsystem filter, which output is the radiated pressure, denoted byp r. If we consider the
complete system,ps is the input and the output is the radiated pressurepr.

The complete IF72 model, can be described, in a simplified form, by Eq. 2 and Eq. 3

φ1(w)|ug|ug +φ2(w)ug +φ3(w)u̇g +
1
c̃1

∫ t

0
(ug(τ )−w3(τ ))dτ − ps = 0 (2)

[M]ẅ+[C]ẇ+[K]w+ h(w,ẇ,ug, u̇g) = 0 (3)

where

w(t) =


w1(t)
w2(t)
w3(t)
w4(t)
w5(t)

=


x1(t)
x2(t)
u1(t)
u2(t)
ur(t)

 (4)

The functionst �→ x1(t) andt �→ x2(t) are the displacements of the masses,t �→ u1(t) andt �→ u2(t) describe the air
volume velocity through the (two) tubes that model the vocal tract andt �→ u r(t) is the air volume velocity through the
mouth. The function, that we call radiated pressure,t �→ p r(t), is defined by Eq. 5.

pr(t) = ur(t)rr (5)

whererr = 128ρvc

9π3y2
2

, ρ is the air density,vc is the sound velocity andy2 is the radius of the second tube.

And also,
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[M] =


m1 0 0 0 0
0 m2 0 0 0
0 0 �̃1 + �̃2 0 0
0 0 0 �̃2 + �̃r −�̃r

0 0 0 −�̃r �̃r

 , [C] =


r1 0 0 0 0
0 r2 0 0 0
0 0 r1 + r2 0 0
0 0 0 r2 0
0 0 0 0 rr

 , (6)

[K] =


k1 + kc −kc 0 0 0
−kc k2 + kc 0 0 0
0 0 1

c̃1
+ 1

c̃2
− 1

c̃2
0

0 0 − 1
c̃2

1
c̃2

0
0 0 0 0 0

 , h(w,ẇ,ug, u̇g) =


s1(w1)+ t1(w1)ẇ1− f1(w1,ug, u̇g)

s2(w2)+ t2(w2)ẇ2− f2(w1,w2,ug, u̇g)
− 1

c̃1
ug

0
0

 , (7)

where

�̃n = ρ�n
2πy2

n
, �̃r = 8ρ

3π2yn
, rn = 2

yn

√
ρµ ω

2 , ω =
√

k1
m1

, an = πy2
n, c̃n = �nπy2

n
ρv2

c
, �n is the length of then th tube,yn is the radius

of then th tube, andµ is the shear viscosity coefficient.

The functionsw �→ φ1(w), w �→ φ2(w), w �→ φ3(w) and(w, ẇ,ug, u̇g) �→ h(w,ẇ,ug, u̇g); and also the functionsw1 �→
s1(w1), w2 �→ s2(w2), t1 �→ s1(t1), t2 �→ s2(t2), (w1,ug, u̇g) �→ f1(w1,ug, u̇g) and(w1,w2,ug, u̇g) �→ f2(w1,w2,ug, u̇g) are
described in the appendix.

In order to solve the system (Eq. 2 and Eq. 3); that is, findu g andw, given ps, a centered finite difference scheme is
used for Eq. 2 and an unconditionnally stable Newmark scheme is used for Eq. 3. All of the values used here are the same
used by Ishizaka and Flanagan (1972).

Let ∆t be the sampling time andwi = w(i∆t), ẇi = ẇ(i∆t), ẅi = ẅ(i∆t), ugi = ug(i∆t) andu̇gi = u̇g(i∆t).

Then, for alli ≥ 1, we can write

φ1(wi)|ugi |ugi +φ2(wi)ugi +φ3(wi)
1
∆t

(ugi −ugi−1)+
1
c̃1

∆t
i−1

∑
k=0

(ugk −w1k)− ps = 0 (8)

and

[A]wi + h
(

wi,
wi −wi−1

∆t
,ugi ,

ugi −ugi−1

∆t

)
= zi (9)

where

[A] = [K]+ ã0[M]+ ã1[C]

zi = [M](ã0wi−1 + ã2ẇi−1 + ã3ẅi−1)+ [C](ã1wi−1 + a4ẇi−1 + ã5ẅi−1)
(10)

and


ẅi = ã0(wi −wi−1)− ã2ẇi−1− ã3ẅi−1

ẇi = ẇi−1 + ã6ẅi−1 + ã7ẅi

ã0 = 1
α̃ ∆t2

, ã1 = δ̃
α̃ ∆t , ã2 = 1

α̃∆t

ã4 = δ̃
α̃ −1, ã5 = δ̃

2

(
δ̃
α̃ −2

)
, ã6 = ∆t(1− δ̃) , ã7 = δ̃∆t

(11)

with ug0 = 0, w0 = 0, ẇ0 = 0, ẅ0 = 0, δ̃ = 0.5 andα̃ = 0.25.

Algorithm used

The method used to construct the solution of Eq. 8 and Eq. 9 consists in findingu gi as the limit of the sequence{uα
gi
},

α ≥ 0, whenα tends to infinity such that, for allα ≥ 1, i ≥ 1,

φ1(wα−1
i )|uα

gi
|uα

gi
+φ2(wα−1

i )uα
gi

+φ3(wα−1
i )

1
∆t

(uα
gi
−ugi−1)+

1
c̃1

∆t
i−1

∑
k=0

(ugk −w1k)− ps = 0 , (12)
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with w0
i = wi−1, u0

gi
= ugi−1.

In Eq. 12,wα−1
i is the limit of the sequence{wα−1,β

i }, β ≥ 0, whenβ tends to infinity; such that for allβ ≥ 1, α > 1,
i ≥ 1,

[A]wα−1,β
i = zi −h

(
wα−1,β−1

i ,
wα−1,β−1

i −wi−1

∆t
,uα−1

gi
,

uα−1
gi

−ugi−1

∆t

)
(13)

with wα ,0
i = wα−1

i .

In other words, our strategy consists in considering two loops ( outerα and innerβ ). For each iterationi, we findu g

and we use this value for findingw, but with this value ofw found, we must return to correctu g and we repeat this process
up to the tolerances are reached.

As an example, we simulated a vowel /a/, considering two tubes for the vocal tract and the same data used by Ishizaka
and Flanagan (1972):d1 = 0.25cm, d2 = 0.05cm, ag0 = 0.05cm2, ps = 8000Pa , m1 = 0.125g, m2 = 0.025g, k1 =
80.000dyn/cm, k2 = 8.000dyn/cm, kc = 25.000dyn/cm, ξ1 = 0.1, ξ2 = 0.6, ηk1 = ηk2 = 100,ηh1 = ηh2 = 500. The
graphs obtained are showed in the Fig. 2. These results are coherent with those presented by Ishizaka and Flanagan
(1972).
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Figure 2 – Displacements of the two masses ( x 1 and x2); glottal volume velocity ( ug); radiated pressure ( pr).
Production of a vowel /a/.

INVERSE DYNAMICS PROBLEM (DETERMINISTIC)

Most speech simulation models are based on the assumption of one-dimensional wave propagation, as the IF72 model.
This means that the tubular vocal tract shape can be approximated as a finite number of cylindrical elements that are
stacked consecutively from the larynx to the mouth. A particular vocal tract shape can be imposed on a model by spec-
ifying the cross-sectional area of each cylindrical element as a function of the distance from the glottis. For modelling
purposes, any vocal tract shape can be defined by its uniquearea function. Hence, a necessary component for the simula-
tion of natural sounding speech is an inventory of vocal tract area functions that correspond to the vowels (and consonants)
used to produce human speech. The success of speech simulators has been limited, in part, by the lack of a body of mor-
phological information about the vocal tract shape on which to base these area functions and many efforts have been made
to find the description of the vocal tract configurations for vowels relative to their acoustic output (Fant, 1960; Adachi
and Yamada, 1999; Titze and Story, 1996; Takemoto and Honda, 2006). Here, we will discuss a method for finding the
parameters of the vocal tract, from a given voice signal.

We also introduced a factorq, as done by Ishizaka and Flanagan, calledtension parameter, that controls the funda-
mental frequencyf0 of the vocal folds oscillation, because vocal fold abduction and tension should be the main factor
used by speakers to control phonation (Koenig, 2000; McGowan et al., 1995). We writek 1 = q2 k̂1, k2 = q2 k̂2, kc = q2 k̂c

and we control the parameterq, wherek̂1, k̂2 andk̂c are values fixed (we used the same values that Ishizaka and Flanagan
(1972)).

One of the objectives of this paper is to identify the values ofq (tension parameter), � 1, �2, a1 anda2 (geometrical
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parameters of the vocal tract) corresponding to the recorded signal, by solving an optimization problem in terms ofq, � 1,
�2, a1 anda2 in a mean-square sense. This identifies the appropriated parameters to reconstruct a recorded signal.

This optimization problem consists in: (1) finding the value ofq that minimizes the functionq �→ | f exp
0 − f mod

0 (q)|2,
where f exp

0 is the fundamental frequency of the recorded signal andf 0(q) is the fundamental frequency of the signal
generated by the model, for a givenq; (2) finding the values of� 1, �2, a1, a2 that minimizes the function(�1, �2,a1,a2) �→
||cmod(�1, �2,a1,a2)− cexp||2.

The components of the vectorcmod are the Fourier coefficients obtained from an signal generated by the modelt �→
pmod

r (t), wherepmod
r (t) = ur(t)rr and the components of the vectorcexp are the coefficients of apseudo Fourier expansion

of the quasi-periodic recorded signalt �→ pexp
r (t); pexp

r (t) is the radiated pressure obtained from a real voice at timet.

We writecexp = (cexp
−ν , . . . ,cexp

ν ) andcmod = (cmod−ν , . . . ,cmod
ν ), where

cexp
n =

1
N −Nexp ∆t

N−Nexp

∑
m=0

cexp,m
n , −ν ≤ n ≤ ν , (14)

cexp,m
n =

1
T exp ∆t

m+Nexp−1

∑
k=m

pexp
r (k∆t)exp(− jn2π f exp

0 k∆t) , T exp =
1

f exp
0

, Nexp =
T exp

∆t
, N =

T
∆t

, (15)

cmod
n =

1
T mod ∆t

Nmod−1

∑
k=0

pmod
r (k∆t)exp(− jn2π f mod

0 k∆t) , −ν ≤ n ≤ ν , T mod =
1

f mod
0

, Nmod =
T mod

∆t
, N =

T mod

∆t
. (16)

We will consider a signal, collected from a brazilian person, speaking a (sustained) vowel /a/. The data were read into
MATLAB software, which was used for all further processing.

Figure. 3 shows the signal recorded, in the time domain and in the frequency domain.
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Figure 3 – Signal recorded. (a) signal in the time domain; (b) signal in the frequency domain.

Figure 4 shows the graph of the recorded signal,t �→ p exp
r (t), and the graph of the signalt �→ preg

r (t), given by

preg
r (t) =

ν

∑
n=−ν

cexp
n exp( jn2π f exp

0 t)

usingν = 30pseudo Fourier coefficients.

We can observe that the regenerated signal is well reproduced.

RANDOMIZATION OF THE DIRECT PROBLEM

Up to now, we have discussed the deterministic problem, direct and inverse. However, our principal goal is to analyse
the system when uncertainties are present.
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Figure 4 – Signal recorded: section of the original signal; section of the regenerated signal.

We collected three signals, frow two different people (P1 andP2), each one spoke the sustained vowel /a/. Then, for
each signal, we solved the inverse problem discussed in the previous section. We found the values showed in the Tab. 1.

Table 1 – Identified parameters for P1 and P2.

Parameters q a1 (cm2) a2 (cm2) �1 (cm) �2 (cm)
P1 Signal 1 0.6300 1.5975 5.9258 9.9780 9.4872

Signal 2 0.6000 1.8052 5.8557 8.6928 8.9612
Signal 3 0.6150 1.7948 5.9964 8.2503 9.4466

P2 Signal 1 1.25 1.66 6.1871 8.6303 9.2965
Signal 2 1.25 1.6576 6.0046 9.1714 9.1696
Signal 3 1.27 1.7900 5.1090 9.2100 9.1600

As we can see, the values for the parameterq and for the parameters of the vocal are different, for each signal produced,
as we expected.

We consider, then, the random variablesQ, A1, A2, L1 andL2 related to the variablesq, a1, a2, l1 andl2 and we are
going to study the results obtained from the system when these quantities vary.

Construction of the probabilistic model for the random parameters

To take into account the uncertainties, a probabilist model is constructed (Soize, 2000), which consists in modeling
the parametersq, a1, a2, �1 and�2 as random variablesQ, A1, A2, L1 andL2, respectively.

The probabilistic model of each random variable (Q, A 1, A2, L1 andL2) is constructed taking into account the following
available informations:

(1) E{Q} = q, E{A1} = a1, E{A2} = a2, E{L1} = �1, E{L2} = �2

(2) E{Q−2} < +∞, E{A−2
1 } < +∞, , E{A−2

2 } < +∞, E{L−2
1 } < +∞, E{L−2

2 } < +∞

whereE{.} denotes the mathematical expectation operator. The maximum entropy principle (Shannon, 1948) yields
the following probability distribution

pX(x) = 1]0,+∞[(x)
1

mX

(
1
δ2

) 1
δ2 1

Γ (1/δ2)

(
x

mX

) 1
δ2 −1

exp

(
− x

δ2mX

)
(17)

whereX representsQ, L1, L2, A1, A2; δ = σX
mX

is a dispersion coefficient such that 0≤ δ ≤ 1/
√

2; σX is the standard de-
viation of X ; mX is the mean value ofX and α �→ Γ(α ) is the Gamma function defined by

Γ(α ) =
∫ +∞

0
tα−1e−tdt.
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Confidence region for the random frequencies

We construct the confidence region associated with a probability levelPc (we consideredPc = 0.95) for each one of the
frequencies (we considered the three first significant frequencies in the spectrum of the signals). The confidence region is
constructed using the quantiles (Serfling, 1980). LetFX(ξ )(x) be the distribution function of random variableX(ξ ). For
0 < p < 1, thepth quantile (denoted byqu(p)) of FX is defined as

qu(p) = in f{x : FX(ξ )(x) ≥ p} . (18)

Then, the upper envelopex+(ξ ) and the lower envelopex−(ξ ) of the confidence region are defined by

x+(ξ ) = qu((1+ Pc)/2) andx−(ξ ) = qu((1+ Pc)/2) (19)

Let x1(ξ ) = X(ξ ;θ1), . . . ,xn(ξ ) = X(ξ ;θn) be then independent realizations of random variableX(ξ ).
Let x̃1(ξ ) < .. . < x̃n(ξ ) be the order statistics associated withx1(ξ ), . . . ,xn(ξ ). Therefore, one has the following estima-
tion:

x+(ξ ) � x̃ j+(ξ ) , j+ = f ix(n(1+ Pc)/2) andx−(ξ ) � x̃ j−(ξ ) , j− = f ix(n(1−Pc)/2) , (20)

in which f ix(z) is the integer part of the real numberz.

First, the geometrical parameters of the vocal tract are modeled as random variablesA 1, A2, L1 andL2, while the
tension parameter is fixed atq = 1.25. Figure 5(a) shows the confidence region, obtained in this case, for the first three
frequencies considered. It can be seen that these frequencies are not sensitive to the geometrical parameters.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

frequency number

fr
eq

ue
nc

y 
(H

z)

frequency number
(a) (b)

Figure 5 – Confidence region for the first three frequencies: ∗→ x − and o → x+. (a) Geometrical parameters are
random variables and q = 1.25; (b) Tension parameter is random variable and a 1 = 1.7cm2, a2 = 5.9cm2, �1 = 9.0cm,

�2 = 9.0cm.

Secondly, thetension parameter is considered as the random variableQ and the geometrical parameters of the vocal
tract are values fixed ata1 = 1.7cm2, a2 = 5.9cm2, �1 = 9.0cm and�2 = 9.0cm. Figure 5 (b) shows the confidence region
obtained for the three first frequencies and it can be seen, in this case, that these frequencies are very sensitive to the
tension parameter.

The values considered for the realizations above were:E{Q} = 1.25, E{A 1} = 1.7cm2, E{A2} = 5.9cm2, E{L1} =
9.0cm, E{L2} = 9.0cm and δ

E{Q} = 0.4, δ
E{A1} = 0.4, δ

E{A2} = 0.2, δ
E{L1} = 0.1, δ

E{L2} = 0.1.

These two graphs justify the method used for solving the inverse problem, for which two independent optimization
problems were set, one for thetension parameter, related to the fundamental frequency, and other for the geometrical
parameters of the vocal tract, related to thepseudo Fourier coefficients of the signal.

Figure 6, we show the results for the probability distribution forQ, whose analytical expression is given by Eq. 17
(with X = Q), and we show also the probability distribution for the fundamental frequency, which were obtained from the
model, consideringQ as a random variable.
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Figur e 6 – Probability distribution for the fundamental frequency (top); Probability distribution for Q (bottom).

CONCLUSIONS

We used an implicit numerical method for solving the system of differential equations related to the voice production
problem, modeled by Ishizaka and Flanagan (1972). The results for the direct problem are consistent with those pre-
viously presented in the literature. This particular method was chosen because not only it is more efficient in terms of
computational cost, but it also allows the solution of the associated inverse dynamics problems; that is, the identification
of parameters used in the model, given a recorded signal. The inverse problem was divided in two parts, one to identify
the parameter that controls the fundamental frequency, and another to identify the geometrical parameters of the vocal
tract. The results obtained here support the strategy used and also confirm that the voice production system is stochastic.
In addition, we constructed a probabilistic model to analyze the uncertainties in the parameters involved in the process,
considering only the available information and the maximum entropy principle. We also investigated the sensitivity of
some frequencies involved in the process to the parameter uncertainty. Finally, we constructed the probability distribution
for the fundamental frequency, considering thetension parameter as a random variable, using the maximum entropy prin-
ciple. These results indicate our next step, that will be pursued in a future work: to solve the stochastic inverse problem;
that is, to identify the statistics of the parameters involved in the process of voice production.

APPENDIX

φ1(w) = ( 0.19ρ
ag0+2�gw1

+2�gw1)+ ρ
(ag0+2�gw2)2

[
0.5− ag0+2�gw2

a1

(
1− ag0+2�gw2

a1

)]
φ2(w) = (12µ�g

d1
(ag0+2�gw1)3 +12�2

g
d2

(ag0+2�gw2)3 + r1) , φ3(w) = ( ρd1
ag0+2�gw1

+ ρd2
ag0+2�gw2

+ �̃1)

s1(w1) =


k1ηk1w3

1 , w1 > − ag0
2�g

k1ηk1w3
1 +3k1

{(
w1 +

ag0
2�g

)
+ηh1

(
w1 +

ag0
2�g

)3
}

, w1 ≤− ag0
2�g

s2(w2) =


k2ηk2w3

2 , w2 > − ag0
2�g

k2ηk2w3
2 +3k2

{(
w2 +

ag0
2�g

)
+ηh2

(
w2 +

ag0
2�g

)3
}

, w2 ≤− ag0
2�g

t1(w1) =

{
0, w1 > − ag0

2�g

2ξ
√

m1k1 , w1 ≤− ag0
2�g

, t2(w2) =

{
0, w2 > − ag0

2�g

2ξ
√

m2k2 , w2 ≤− ag0
2�g

f1(w1,ug, u̇g) =

{
�gd1pm1(w1,ug, u̇g) , w1 > − ag0

2�g

0, otherwise

pm1(w1,ug, u̇g) = ps −1.37ρ
2

(
ug

ag0+2�gw1

)2− 1
2

(
12µ�g

d1
(ag0+2�gw1)3 + ρd1

ag0+2�gw1

)
u̇g
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f2(w1,w2,ug, u̇g) =


�gd2pm2(w1,w2,ug, u̇g) , w1 > − ag0

2�g
andw2 > − ag0

2�g

�gd2ps , w1 > − ag0
2�g

andw2 ≤− ag0
2�g

0 , otherwise

pm2(w1,w2,ug, u̇g) = pm1 −∗
∗= 1

2

{
(12µ�g

d1
(ag0+2�gw1)3 +12�2

g
d2

(ag0+2�gw2)3 )ug +( ρd1
ag0+2�gw1

+ ρd2
ag0+2�gw2

)u̇g

}
− ρ

2 u2
g

(
1

(ag0+2�gw2)2 − 1
(ag0+2�gw1)2

)
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