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Abstract: The finite element method (FEM) is used for the firsttime to investigate the vibration response of a spherical
cap to either moving force and moving mass. Significant errors are observed when the element used to model the
spherical cap is the Mindlin element and when the load is located at off-nodal positions. Since the load is moving, it
would forcibly be at off-nodal positions at several instants of time. The solution proposed is to remesh the spherical cap
domain at all instants of time in order to guarantee that the load is always exactly on a node. The forward time integration
is done by the Newmark method accompanied by a perturbation scheme to account for the inherent nonlinearities due
to the moving mass modeling. The perturbation scheme is shown to be more accurate when the moving mass is much
smaller than the spherical cap mass, which is a realistic situation. The finite element code implemented is compared and
validated against a commercial finite element code. Two scenarios are investigated: traversing load along the equator
and moving load orbiting the apex. Simulations are carried out for both moving force and mass.
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NOMENCLATURE

A = membrane stiffness matrix
As = zero order shear stiffness matrix
B = membrane-bending coupling stiff-
ness matrix
Bs = first order shear stiffness matrix
CbI = transformation matrix
Cm = moving load global damping
matrix
Cme = moving load element damping
matrix
D = bending stiffness matrix
Ds = second order shear stiffness matrix
eθ , eφ , en = versors in the local coordi-
nate system
E = Young modulus
f = dummy function ofθ andφ
f = global load vector
fe = element load vector
fm = moving load global load vector
fme = moving load element load vector
g = gravitational acceleration
h = spherical cap thickness
K = global stiffness matrix
Ke = element stiffness matrix
Km = moving load global stiffness
matrix
Kme = moving load element stiffness
matrix
K̄ = effective global stiffness matrix
m = concentrated moving mass
M = global mass matrix
Me = element mass matrix
Mm = moving load global mass matrix
Mme = moving load element mass
matrix
N = vector of interpolation functions

Nu = vector of longitudinal displace-
ment interpolation functions
Nv = vector of meridional displacement
interpolation functions
Nw = vector of transverse displacements
interpolation functions
Nψθ = vector of meridional rotation
interpolation functions
Nψφ = vector of longitudinal rotation
interpolation functions
p = position vector of the moving mass
q = global vector of nodal degrees of
freedom
q0 = zero order perturbation displace-
ments
q1 = first order perturbation displace-
ments
q2 = second order perturbation displace-
ments
qe = element vector of nodal degrees of
freedom
qi = ith order perturbation displace-
ments
qu = element vector of longitudinal
displacements
qv = element vector of meridional
displacements
qw = element vector of transverse
displacements
qψθ = element vector of meridional
rotations
qψφ = element vector of longitudinal
rotations
Q = in-plane matrix of material stiffness
Qs = transverse shear matrix of material
stiffness

R = spherical cap radius
r = position vector of a point in the cap
t = time
T = total kinetic energy
Tc = spherical cap kinetic energy
Tm = moving mass kinetic energy
u = longitudinal displacement
u∗ = u+hψθ /2
ū = mid point longitudinal displacement
Uc = spherical cap strain energy
Um = gravitational potential energy
v = meridional displacement
v∗ = v+hψφ /2
v̄ = mid point meridional displacement
w, w̄ = transverse displacement
X, Y, Z = Cartesian global coordinates
z = through the thickness coordinate

Greek Symbols
α = aperture angle
γ = out-of-plane shear strains
γ0 = mid point out-of-plane shear strains
δ = variational operator
∆t = time step
ε = in-plane strains
ε0 = mid point in-plane strains
θ = spherical coordinate
κ i = mid point in-plane curvatures
κs = mid point out-of-plane shear
curvatures
ν = Poisson ration
ρ = spherical cap mass density
φ = spherical coordinate
ψθ = meridional rotation
ψφ = longitudinal rotation
Ω = spherical cap domain
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INTRODUCTION

Modeling of structures traversed by moving loads is often required in several ares such as ocean, aerospace and civil
engineering. Examples of such structures are: airport runaways, railroads, bridges and overhead cranes (Stokes, 1849;
Oguamanam, Hansen and Heppler, 1998; Pesterev and Bergman,1997; Michaltsos, Sophianopoulos and Kounadis, 1996;
Sadiku and Leipholz, 1987; Stanišić, 1985; Hinoet al., 1984; Olsson, 1985; Gbadeyan and Oni, 1995; Gbadeyan and
Oni, 1992; Frýba, 1972). The majority of the works conducted on the subject relied on either beam (Stokes, 1849;
Oguamanam, Hansen and Heppler, 1998; Pesterev and Bergman,1997; Michaltsos, Sophianopoulos and Kounadis, 1996;
Sadiku and Leipholz, 1987; Stanišić, 1985; Hinoet al., 1984) or plate (Gbadeyan and Oni, 1992, 1995) models. Few
authors proposed more general techniques aimed at modelingof real world structures of arbitrary geometry traversed by
moving loads (Olsson, 1985; Frýba, 1972). Even when they did, the authors limited themselves to showing traditional
examples of beam or plate type of structures.

There is undoubtedly a lot of research about spherical caps although no attempt has ever been made to study the
response of this type structure under moving loads. The termmoving load is applied either to refer to a moving force or a
moving mass. However, spherical structures are more and more employed, specially in marine and submarine applications
(Souza and Croll, 1980) where they are subjected to traversing loads (Gbadeyan and Oni, 1992). Large oil reservoirs are
a typical application of spherical caps that are routinely subjected to moving loads during maintenance.

This article presents a study of the dynamic behavior of a spherical cap subjected to a moving concentrated load. The
finite element governing equations of motion are obtained through the energy functional and Lagrange bilinear elements
(Hughes, 1987). Selective reduced integration is used to eliminate the possibility of shear locking. Static and free vi-
bration analyses of the spherical cap are made with the finiteelement code implemented as well as the commercial code
MSC.Nastran, in order to validate the code implemented.

The numerical method selected to integrate the equation of motion in time is the Newmark method. The inertial
effects of the moving mass are taken into account through a perturbation technique that permits the use of the traditional
Newmark method without modifications as opposed to the work of Olsson (1985) where a special procedure is employed.
Essentially, the dynamic response is written as an infinite series of terms where each term is smaller than its preceding
in some norm. In this context, it is observed that the moving force problem corresponds to the solution of the perturbed
problem when only the first term in the series is retained. It is therefore possible to investigate what are the differences
between the moving force and the moving mass models. This is an study important since Sadiku and Leipholz (1987),
Pesterev and Bergman (1997), and by Gbadeyan and Oni (1995) have shown that the moving force model does not always
provides upper bounds for the moving mass situation.

The accuracy of the results rapidly deteriorates when the concentrated load is at an off-nodal position, unless a pro-
hibitive mesh refinement is used. It happens because of the finite element implemented that is based on Reissner as-
sumptions (Reissner, 1941). The strategy to overcome this difficulty without using fine meshes is to remesh the domain
whenever the concentrated load falls off a nodal position, thereby maintaining accuracy. Remeshing strategies have been
used previously in structural dynamics problems (Dutta, 2002) in order to enhance accuracy.

Souza and Croll (1980) observed that, due to the spherical coordinates, the governing spherical cap equations possess
a singularity at the apex. Two approached have been proposedto go about this problem. Souza and Croll (1980) placed a
very small hole in the apex and verified that no significant error is incurred. Zarghamee and Robinson (1967) and Kraus
(1967) intentionally modify the governing equations in theneighborhood of the apex to enforce continuity of the solution.
The solution proposed in this paper is to recognize that the singularity stems from the spherical coordinates that possess
singularities at the poles. Hence, the spherical cap domainis positioned away from the poles, in the equatorial region.

EQUATION OF MOTION

A spherical cap with a moving massm is shown in Fig. 1. The massm traverses the spherical cap top surface with
known velocity and acceleration. The spherical cap radius is R and its aperture angle isα. The Cartesian inertial frame
of referenceXYZhas its origin in the center the sphere and is accompanied by the versorsex, ey, andez, along theX, Y,
andZ axes respectively. A moving reference system is associatedwith the moving mass and has versorseθ tangent to the
meridian curve,eφ tangent to the longitudinal curve anden normal to the spherical surface.

Following Mindlin assumptions, the in-plane displacements ū and v̄ vary linearly along the shell thickness whereas
transverse displacement ¯w is constant along the shell thickness. Hence,

ū(θ ,φ ,z, t) = u(θ ,φ ,t)+zψθ (θ ,φ ,t)
v̄(θ ,φ ,z, t) = v(θ ,φ ,t)+zψφ (θ ,φ ,t)
w̄(θ ,φ ,z, t) = w(θ ,φ ,t)

(1)

The displacement fields in Eq. (1) are described in the movingframe of reference. The transformation matrixCbI (from
moving mass toXYZframes) is given by:
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Figure 1 – Schematic of a spherical cap with moving load.

CbI =
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
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

 (2)

Using Mindlin assumptions in Eq. (1) and the strain× displacement relations in Wang (1953), the linear strain×
displacement relations applicable to the spherical cap canbe written as
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
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= γ0 +zκs (3)

whereε0 andγ0 are the middle surface strains andκ i andκs are the changes in curvatures.

The strain energy of the spherical cap can be written with theintroduction of the in-plane matrix of material stiffness
Q and the transverse shear matrix of material stiffnessQs such that

Uc =
1
2

∫

Ω

{

ε0

κ i

}T [

A B
B D

]{

ε0

κ i

}

dΩ +
1
2

∫

Ω

{

γ0

κs

}T [

As Bs

Bs Ds

]{

γ0

κs

}

dΩ (4)

where

(A,B,D) =

∫ h/2

−h/2
(1,z,z2)Qdz , (As,Bs,Ds) =

∫ h/2

−h/2
(1,z,z2)Qsdz ,

h is the spherical cap thickness andΩ is the spherical cap domain (dΩ = R2cosφdθdφ ). Assuming that gravity is along
the negativeZ direction, the gravitational potential energy of the moving massUm is

Um = mg

[(

v+
h
2

ψφ

)

cosφ +wsinφ
]

(5)

The position vectorr of an arbitrary point in the spherical cap may be expressed as

r = (u+zψθ ) eθ +(v+zψφ) eφ +(R+w) en (6)

The position of the moving mass,p, is written as
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p =

(

u+
h
2

ψθ

)

eθ +

(

v+
h
2

ψφ

)

eφ +(R+w) en = u∗eθ +v∗eφ +(R+w) en (7)

The total kinetic energy of the systemT is the summation of the spherical cap kinetic energyTc and the moving mass
kinetic energyTm. Tc can be expressed as

Tc =
1
2

∫

V
ρ

[

(

∂ ū
∂ t

)2

+

(

∂ v̄
∂ t

)2

+

(

∂w
∂ t

)2
]

dV =
1
2

∫

Ω
ρh

[

u̇2+ v̇2 + ẇ2 +
h2

12

(

ψ̇2
θ + ψ̇2

φ
)

]

dΩ (8)

whereasTm may be written as

Tm =
m
2

dp
dt

·
dp
dt

(9)

In order to computeTm in Eq. (9) the time derivatives ofp must be evaluated. This must be done with the transforma-
tion matrixCbI given in Eq. (2) since the versorseθ , eφ anden are time dependant. Hence, time derivatives ofeθ , eφ and
en must be obtained.

deθ
dt

= θ̇ sinφ eφ − θ̇ cosφ en,
deφ

dt
= −θ̇ sinφ eθ − φ̇ en,

den

dt
= θ̇ cosφ eθ + φ̇ eφ (10)

Differentiation ofp in Eq. (7) with respect to time, consideration of Eq. (10) andsubstitution into Eq. (9) yields
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m
2
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}
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The first variation ofTm given in Eq. (11) is taken and, integration by parts after integration in time leads to:
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Total derivatives are present in Eqs. (9)-(12). However, convective term arise since the mass position may vary with
time. Using the chain rule, first and second total derivatives are computed through Eq. (13):

d f
dt

=
∂ f
∂ t

+
∂θ
∂ t

∂ f
∂θ

+
∂φ
∂ t

∂ f
∂φ

= ḟ + θ̇ f,θ + φ̇ f,φ

d2 f
dt2

= f̈ +2θ̇ ḟ,θ +2φ̇ ḟ,φ + θ̈ f,θ + φ̈ f,φ + θ̇ 2 f,θθ + φ̇2 f,φφ +2θ̇ φ̇ f,θφ (13)

where f is a dummy function ofθ andφ .
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It was mentioned that the spherical coordinates possess singularities at the poles. According to Fig. 1, the computation
of the strain× displacement relations would result in singularity due to division by zero whenφ =±π/2. This singularity
might be avoided by introducing an artificial infinitesimal hole centered about the apex as implemented by Souza and Croll
(1980) or the method adopted by Zarghamee and Robinson (1967) and by Kraus (1967) where the equations of motion
are modified within a neighborhood of the apex while enforcing continuity conditions.

These strategies have been used in the past and provided satisfactory results. However, the traversing load is expected
to cross the spherical cap and be, at some time, exactly at theapex, what precludes the first strategy. The second strategy
involves special mathematical treatments that are inappropriate for dynamic problems. The spherical cap is only a portion
of the whole sphere. Hence, theoretically, any cap that doesnot contain the poles would not suffer from the singularity
effects. Hence, the approach adopted in this paper is to consider a spherical cap in the region of the equator. In particular,
the spherical cap is aligned with theX axis and gravity is assumed to act in the negativeX axis direction. This particular
position of the domain does not alter the previously derivedequations, except for the relatively simple Eq. (5). The new
equation for the gravitational potential energy is

Um = −mg[u∗sinθ +v∗sinφ cosθ −wcosφ cosθ ] (14)

NUMERICAL PROCEDURES

The finite element method requires discretization of the problem. The vector of shape functions isN andqe is the
element vector of nodal degrees of freedomqe = { qT

u qT
v qT

w qT
ψθ

qT
ψφ }T . Exact displacements and rotations are

substituted by their finite element counterparts through the use of Eq. (15).

u = [ N 0 0 0 0 ]qe ≡ Nuqe v = [ 0 N 0 0 0 ]qe ≡ Nvqe

w = [ 0 0 N 0 0 ]qe ≡ Nwqe ψθ = [ 0 0 0 N 0 ]qe ≡ Nψθ qe

ψφ = [ 0 0 0 0 N ]qe ≡ Nψφ qe u∗ = [ N 0 0 h
2N 0 ]qe ≡ Nu∗qe

v∗ = [ 0 N 0 0 h
2N ]qe ≡ Nv∗qe (15)

The usual element stiffness matrixKe, element mass matrixMe and element load vectorfe can be obtained when the
expressions foru, v, w, ψθ andψφ given in Eq. (15) are substituted into Eqs. (4), (8) and (14).The moving load element
stiffness matrixKme, moving load element mass matrixMme, moving load damping matrixCmeand moving load element
load vectorfme can be obtained similarly by substitution ofu, v, w, ψθ andψφ into Eq. (12) and recalling Eq. (13).Kme,
Mme, Cme andfme are detailed in Appendix A. Traditional assembly of the element arrays yields the governing matrix
equations:

(M+ Mm)q̈+ Cmq̇+(K + Km)q = f + fm (16)

Two types of arrays can be observed in Eq. (16): those that areindependent ofθ , φ , θ̇ , φ̇ , θ̈ andφ̈ (K, M, Mm, f) and
those that depend onθ , φ and their time derivatives (Km, Cm, fm).

The equations of motion, Eq. (16), reduce to that of a spherical cap with a static concentrated mass when the time
derivatives ofθ , φ are zero. The moving mass changes the stiffness of the systemand adds a forcing term. However, its
effects cannot be determined beforehand since they depend on the moving mass velocity and acceleration. As observed
in Appendix A,Km, Cm are nonsymmetric matrices dependent onθ , φ and their time derivatives.

SinceKm andCm vary with time and are nonsymmetric, a traditional forward integration scheme cannot be directly
employed. This fact motivates the use of a perturbation approach to integrate the equations of motion in time. This
approach consists in separating the nonlinear, nonsymmetric original problem into a number of linear, symmetric sub-
problems by representing the total displacement as a series:

q = q0 + q1 + q2+ ...+ qn (17)

and admitting that each term in the series is smaller than itspreceding term in some norm. Substituting Eq. (17) into (16)
and collecting terms inq0, q1,...,qn, yields the sub-problems:

Mq̈0 + Kq0 = f

Mq̈1 + Kq1 = fm−Mmq̈0−Cmq̇0−Kmq0

Mq̈2 + Kq2 = −Mmq̈1−Cmq̇1−Kmq1
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...

Mq̈n + Kqn = −Mmq̈n−1−Cmq̇n−1−Kmqn−1 (18)

The left hand side of all Eqs. (18) are of the formMq̈i + Kqi. SinceK andM are constant, symmetric matrices, a
traditional time integration scheme such as the Newmark method can be used without modifications to solve numerically
each of Eqs. (18) individually. The effective stiffness matrix of each of the sub-problems assume the same form:Kqi+1 =
f(qi ,θ ,φ , θ̇ , φ̇ , θ̈ , φ̈ ). Because of this, only one matrix decomposition ofK is required for all sub-problems. Subsequently,
each sub-problem is solved sequentially fromi = 0 ton.

Determination of the number of termsn to be used in the series depends on the relative inertia of themoving mass
compared to the spherical cap. If the moving mass is much smaller than the structure mass, then fewer terms can be
used. This claim has been rigorously proven by de Faria (2004). When the moving massm is appreciable, a full nonlinear
numerical procedure may be more adequate.

THE FINITE ELEMENT MODEL AND ADAPTIVE MESHES

The finite element code implemented is validated through comparison against the commercial code MSC.Nastran. A
spherical cap fully clamped along its edge is used. Its geometric and material properties are shown in Table 1.

Table 1 – Material properties

Parameter Value
ρ 7.8×103 kgm−3

h 30.0 mm
E 2.08×1011 Nm−2

ν 0.30
R 100.0 m
α 10o

The finite element code used bilinear elements with four nodes and selective reduced integration to alleviate eventual
shear locking. A static problem is initially solved where a concentrated force of 1,000 N is applied perpendicular to the
cap at its apex and the transverse displacement under the force is computed. A free vibration simulation is also made to
extract the five lowest natural frequencies. Results of the validation analyses are shown in Table 2 and compared against
those found by MSC.Nastran. The mesh used in the present codehas 768 elements whereas MSC.Nastran has 3,200
elements, i.e., MSC.Nastran used approximately four timesmore nodes. The results in Table 2 are accurate and reliable.

Table 2 – Verification of finite element code

Frequencies (Hz) Apex deflection (mm)
Mode Present code Nastran Present code Nastran

1 8.24 8.24
2 8.30 8.31
3 8.30 8.31 0.230 0.228
4 8.38 8.38
5 8.38 8.38

A simple numerical example suffices to understand why adaptive meshes are necessary in the present study. Take the
spherical cap presented in Table 1 traversed quasi-statically by a moving force always parallel to theX axis. The point
of application of the force is given byRcosθ ex + Rsinθ ey, with −α ≤ θ ≤ α. Figure 2 shows the concentrated force
applied to eleven different points. Notice that the cap apexis positioned on the equator of the sphere in order to avoid
singularities.

Fifty one static problems are solved applying 1,000 N concentrated forces along 51 equally spaced points along the
curveRcosθ ex + Rsinθ ey with −α ≤ θ ≤ α. The transverse displacementsw under the applied force are presented
in Fig. 3. These results are normalized with respect to the value of w obtained in Table 2. The results for the 40×80
MSC.Nastran fixed mesh and the 768 element adaptive mesh usedby the present code are compared in Fig. 3.

It is obvious that the ripples seen in the MSc.Nastran results are numerically induced. They exist because the concen-
trated force is sometimes applied at off-nodal positions. On the other hand, the adaptive mesh makes sure that the force is
applied always at a node. The correct results are found by MSC.Nastran when, by chance, the force is exactly at a node.
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Figure 3 – Spherical cap and moving forces.

The difficulty with remeshing schemes is that the finite element matrices change once the mesh is changed. Moreover,
numerical procedures to integrate the equations of motion in time are based on time steps where the current displacement,
velocity and acceleration depends on information of the previous time step. Since the mesh in the previous time step was
different, some kind of mapping of the old mesh onto the new mesh must be implemented.

The mapping strategy adopted can be understood in Fig. 4. Consider that the displacements (u, v, w) and rotations
(ψx, ψy) at nodeinew must be somehow obtained. The basic information required isto know which element in the old
mesh contains nodeinew. This allows one to find the local coordinatesξ , η of nodeinew. Once the local coordinates
are available, regular interpolation of the degrees of freedom of nodesiold, jold, kold and lold is used to compute the
corresponding degrees of freedom at nodesinew.

DYNAMIC SIMULATION AND DISCUSSION

Two situations are simulated: the moving force and the moving mass problems. In the moving force problem a
concentrated force is assumed to move across the spherical cap surface but the moving massm is zero. In this case
matricesKm, Cm, Mm and vectorfm are taken as zero since they are proportional tom (see appendix A). This observation
considerably simplifies the numerics involved since justq0 6= 0 whereasq1 = q2 = ... = qn = 0. Whenm> 0, the higher
order termsq1, q2, ... ,qn are nonzero but increasingly small, i.e.,q1 << q2 << ... << qn In the simulations conducted
in this work only four terms were enough to achieve good accuracy:q0, q1, q2, q3.

In the first scenario the moving load travels with constant velocity θ̇ = 0.01 rd/s along the equator, departing from the
edge and reaching the apex where it suddenly stops. Cap geometry is described in Table 1. The force is of 1,000 N and
it is oriented parallel to theX axis. The moving mass is 101.93 kg sinceg = 9.81 m/s2. The fixed time step adopted is
∆t = 0.005 s what can represent the contribution frequencies up to 20 Hz. The load reaches the apex in about 17.45 s but
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Figure 4 – Mesh mapping.

the simulation goes as far as 20 s. Advantage is taken of the symmetry about planeZ = 0 in order to model only half cap.

The simulation results are presented in in Figs. 5a-b. The curves seen in Figs. 5a-b are not too different from that
of Fig. 3 for−10o ≤ θ ≤ 0o. Therefore, it is clear that the dynamic effects are negligible when compared to the quasi-
static simulation under concentrated force. After reaching the apex the mass stops and the spherical cap displays residual
vibrations that, in real situations, eventually die out dueto structural damping. What can be inferred is that the frequency
content of the residual vibrations is high, i.e., modes associated with higher frequencies contribute to that kind of residual
vibration.
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Figure 5 – Traversing loads moving on the equator.

The relative contribution of the termsq0, q1, q2 andq3 in the perturbation series, Eq. (17), can be seen in Fig. 6. The
zero order term gives a far greater contribution than the other terms. Actually, it is observed that that magnitudes ofq1,
q2 andq3 are approximately 100, 1,000 and 10,000 times smaller than that ofq0. This shows that the inertial effects of
the moving mass are small in this particular problem.

In the second situation the load revolver around the apex along the curveY = r cosωt, Z = r sinωt with r = 7 m and
ω = π/10 rd/s, completing one revolution in 20 s.θ , φ and their time derivatives can be computed from the relations
Y = Rcosφ sinθ , Z = Rsinφ derived from Eq. (2). The spherical cap is initially deformed under the concentrated force
the time step adopted is∆t = 0.005 s and the simulation lasts for 20 s.

The moving mass and moving force results are shown in in Figs.7a-b. Notice that in Fig. 7a the normalized transverse
displacement oscillates aboutw∗ = 0.925, corresponding to the solution of the static problemKq = f obtained from
Eq. (16). However, the normalized transverse displacementof the moving mass problem is aboutw∗ = 0.920 as observed
in Fig. 7b. These differences are a consequence of the movingmass inertial effects incorporated in matrixKm and vector
fm.

The effect of the spherical cap curvature in the dynamic behavior is investigated by keeping a constant value ofRα
and varying the radiusR. Two configurations are considered:R= 500 m andα = 2o, andR= 1,000 m andα = 1o. The
normalized apex transverse displacement for the moving force and moving mass orbiting the apex are presented in Figs.
8a-b and Figs. 9a-b. The apex transverse displacements of 1.068 mm (R= 500 m) and 2.004 mm (R= 1,000 m) were
taken as normalization factors obtained when a transverse concentrated force of 1,000 N is applied at the apex.

The frequency content can be seen to increase as the curvature increases. This can be observed by comparison of Figs.
7, 8 and 9. Another interesting observation: differences between moving force and moving mass models tend to increase
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with the curvature.
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Figure 6 – Individual contribution of perturbation series t erms.
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Figure 7 – Traversing loads orbiting the apex: R= 100m, α = 10o.

CONCLUSIONS

A technique is presented to handle the problem of moving concentrated loads (mass or force) when relatively coarse
finite element meshes are employed. The coarse mesh is adaptively modified in order to guarantee that the moving load is
always exactly on a nodal position. Remeshing requires recomputation and decomposition of the global matrices involved.
However, this computations should not be intense since it isassumed that coarse meshes are used.

The problem of loss of accuracy when the load is at a off-nodalposition is inherent to the Mindlin element used. Ele-
ments whose interpolation functions are based on cubic polynomials do not suffer from this weakness but their numerical
implements is far more intricate that the Mindlin element. Since the Mindlin type of element is the most commonly used
in commercial finite element codes it is important to proposed alternative formulations such as the adaptive mesh scheme
combined with a perturbation approach presented in this work. The formulation proposed was shown to work well in two
scenarios and for either moving force or moving mass.

The perturbation technique adopted is able to separate the effects of a moving concentrated force from those of a
moving concentrated mass. It shows that the inertial effects of the moving mass can be added to the moving force solution
through solution of a series of linear sub-problems. Moreover, the number of sub-problems to be solved is small as long
as the relative inertia between concentrated mass and base structure is small. When heavy masses move on lightweight
structures more terms in the series are required or a more powerful nonlinear solver should be used.
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Figure 8 – Traversing loads orbiting the apex: R= 500m, α = 2o.
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Figure 9 – Traversing loads orbiting the apex: R= 1,000m, α = 1o.
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APPENDIX A
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