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Mindlin Elements

NOMENCLATURE

A = membrane stiffness matrix

As = zero order shear stiffness matrix
B = membrane-bending coupling stiff-
ness matrix

Bs = first order shear stiffness matrix
Cp = transformation matrix

Cm = moving load global damping
matrix

Cme = moving load element damping
matrix

D = bending stiffness matrix

Ds = second order shear stiffness matrix
€p, €p, €n = versors in the local coordi-
nate system

E = Young modulus

f = dummy function ofd and¢

f = global load vector

fe = element load vector

fm = moving load global load vector
fme = moving load element load vector
g = gravitational acceleration

h = spherical cap thickness

K = global stiffness matrix

Ke = element stiffness matrix

Km = moving load global stiffness
matrix

Kme = moving load element stiffness
matrix

K = effective global stiffness matrix

m = concentrated moving mass

M = global mass matrix

Me = element mass matrix

M m = moving load global mass matrix
Mme = moving load element mass
matrix

N = vector of interpolation functions
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Ny = vector of longitudinal displace-
ment interpolation functions

Ny = vector of meridional displacement
interpolation functions

Nw = vector of transverse displacements
interpolation functions

Ny, = vector of meridional rotation
interpolation functions

Ny, = vector of longitudinal rotation
interpolation functions

p = position vector of the moving mass
g = global vector of nodal degrees of
freedom

Qo = zero order perturbation displace-
ments

gy = first order perturbation displace-
ments

g2 = second order perturbation displace-
ments

ge = element vector of nodal degrees of
freedom

gi = ith order perturbation displace-
ments

gqu = element vector of longitudinal
displacements

gv = element vector of meridional
displacements

gw = element vector of transverse
displacements

dy, = element vector of meridional
rotations

dy, = element vector of longitudinal
rotations

Q = in-plane matrix of material stiffness
Qs = transverse shear matrix of material
stiffness
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Abstract: The finite element method (FEM) is used for thetfire to investigate the vibration response of a spherical
cap to either moving force and moving mass. Significant ereoe observed when the element used to model the
spherical cap is the Mindlin element and when the load is tedat off-nodal positions. Since the load is moving, it
would forcibly be at off-nodal positions at several instaf time. The solution proposed is to remesh the spherigal ca
domain at all instants of time in order to guarantee that thed is always exactly on a node. The forward time integration
is done by the Newmark method accompanied by a perturbatioense to account for the inherent nonlinearities due
to the moving mass modeling. The perturbation scheme isrstmie more accurate when the moving mass is much
smaller than the spherical cap mass, which is a realistigagipn. The finite element code implemented is compared and
validated against a commercial finite element code. Twoates are investigated: traversing load along the equator
and moving load orbiting the apex. Simulations are carrietfor both moving force and mass.
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R = spherical cap radius

r = position vector of a point in the cap
t=time

T = total kinetic energy

Tc = spherical cap kinetic energy

Tm = moving mass kinetic energy

u = longitudinal displacement

u* =u+hyg/2

u = mid point longitudinal displacement
Uc = spherical cap strain energy

Um = gravitational potential energy

v = meridional displacement

V' =v+hiy/2

v =mid point meridional displacement
w, w = transverse displacement

X, Y, Z = Cartesian global coordinates
z = through the thickness coordinate

Greek Symbols

a = aperture angle

y = out-of-plane shear strains

y° = mid point out-of-plane shear strains
J = variational operator

At = time step

€ =in-plane strains

€% = mid point in-plane strains

6 = spherical coordinate

k' = mid point in-plane curvatures

kS = mid point out-of-plane shear
curvatures

v = Poisson ration

p = spherical cap mass density

@ = spherical coordinate

g = meridional rotation

Yy = longitudinal rotation

Q = spherical cap domain



Dynamics of spherical caps under moving loads

INTRODUCTION

Modeling of structures traversed by moving loads is ofteuied in several ares such as ocean, aerospace and civil
engineering. Examples of such structures are: airportwaws, railroads, bridges and overhead cranes (Stokes; 1849
Oguamanam, Hansen and Heppler, 1998; Pesterev and Bery@®ah Michaltsos, Sophianopoulos and Kounadis, 1996;
Sadiku and Leipholz, 1987; Stanisic, 1985; Hieioal, 1984; Olsson, 1985; Gbadeyan and Oni, 1995; Gbadeyan and
Oni, 1992; Fryba, 1972). The majority of the works conddata the subject relied on either beam (Stokes, 1849;
Oguamanam, Hansen and Heppler, 1998; Pesterev and Berty@®ah Michaltsos, Sophianopoulos and Kounadis, 1996;
Sadiku and Leipholz, 1987; Stanisi¢, 1985; Hieoal., 1984) or plate (Gbadeyan and Oni, 1992, 1995) models. Few
authors proposed more general technigues aimed at moaxliegl world structures of arbitrary geometry traversed by
moving loads (Olsson, 1985; Fryba, 1972). Even when thdytllie authors limited themselves to showing traditional
examples of beam or plate type of structures.

There is undoubtedly a lot of research about spherical chipsugh no attempt has ever been made to study the
response of this type structure under moving loads. The teoring load is applied either to refer to a moving force or a
moving mass. However, spherical structures are more and employed, specially in marine and submarine applications
(Souza and Croll, 1980) where they are subjected to travgtsads (Gbadeyan and Oni, 1992). Large oil reservoirs are
a typical application of spherical caps that are routinalyjected to moving loads during maintenance.

This article presents a study of the dynamic behavior of @<pél cap subjected to a moving concentrated load. The
finite element governing equations of motion are obtainealitph the energy functional and Lagrange bilinear elements
(Hughes, 1987). Selective reduced integration is usedinuirglte the possibility of shear locking. Static and free vi
bration analyses of the spherical cap are made with the Bféet@ent code implemented as well as the commercial code
MSC.Nastran, in order to validate the code implemented.

The numerical method selected to integrate the equationatiomin time is the Newmark method. The inertial
effects of the moving mass are taken into account throughtanpation technique that permits the use of the traditiona
Newmark method without modifications as opposed to the wb@dsson (1985) where a special procedure is employed.
Essentially, the dynamic response is written as an infi@tees of terms where each term is smaller than its preceding
in some norm. In this context, it is observed that the movargé problem corresponds to the solution of the perturbed
problem when only the first term in the series is retaineds therefore possible to investigate what are the difference
between the moving force and the moving mass models. This &umly important since Sadiku and Leipholz (1987),
Pesterev and Bergman (1997), and by Gbadeyan and Oni (188&¥hown that the moving force model does not always
provides upper bounds for the moving mass situation.

The accuracy of the results rapidly deteriorates when tineemtrated load is at an off-nodal position, unless a pro-
hibitive mesh refinement is used. It happens because of the &lement implemented that is based on Reissner as-
sumptions (Reissner, 1941). The strategy to overcome fifficudty without using fine meshes is to remesh the domain
whenever the concentrated load falls off a nodal positioergby maintaining accuracy. Remeshing strategies hare be
used previously in structural dynamics problems (Dutt®2)0n order to enhance accuracy.

Souza and Croll (1980) observed that, due to the sphericatitmates, the governing spherical cap equations possess
a singularity at the apex. Two approached have been propoggdabout this problem. Souza and Croll (1980) placed a
very small hole in the apex and verified that no significanreis incurred. Zarghamee and Robinson (1967) and Kraus
(1967) intentionally modify the governing equations in treégghborhood of the apex to enforce continuity of the soluti
The solution proposed in this paper is to recognize thatitigugarity stems from the spherical coordinates that pesse
singularities at the poles. Hence, the spherical cap dommaiositioned away from the poles, in the equatorial region.

EQUATION OF MOTION

A spherical cap with a moving massis shown in Fig. 1. The masa traverses the spherical cap top surface with
known velocity and acceleration. The spherical cap raditsand its aperture angle . The Cartesian inertial frame
of referenceXY Zhas its origin in the center the sphere and is accompanielebyersorsy, ey, ande,, along theX, Y,
andZ axes respectively. A moving reference system is assoctadhe moving mass and has verseggangent to the
meridian curveg, tangent to the longitudinal curve aeginormal to the spherical surface.

Following Mindlin assumptions, the in-plane displacensenandv vary linearly along the shell thickness whereas
transverse displacementis constant along the shell thickness. Hence,

u6,p.zt) = u(6,et)+zyp(6,9,t)
\L(G;(P;Zat) = V(G,(p,t)+zw¢(6,¢),t) (1)
W(evqovzvt) - W(ea(pat)

The displacement fields in Eq. (1) are described in the movarge of reference. The transformation matey (from
moving mass tXY Zframes) is given by:
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Figure 1 — Schematic of a spherical cap with moving load.
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Using Mindlin assumptions in Eg. (1) and the straindisplacement relations in Wang (1953), the linear strain
displacement relations applicable to the spherical cafpeasmritten as

1 tang 1 1 tang
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_ _ [
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V{ W Rl Rc]c_)sq; 0 }Jrz{ |::Lg‘~l-’9 }V)JFZKS ©)
Wo— RV+ {We —&/Y¥

whereg? andy? are the middle surface strains akidandkS are the changes in curvatures.

The strain energy of the spherical cap can be written withrttreduction of the in-plane matrix of material stiffness
Q and the transverse shear matrix of material stiffri@gssuch that

etV (8 St (Y (2 B (e

h/2
/2

where

ABD)= [ (127)Qdz . (AByDy= [ (12202

2
—h/2 —h

h is the spherical cap thickness a@ids the spherical cap domaid@ = R%cospd8dg). Assuming that gravity is along
the negative direction, the gravitational potential energy of the mavinasdJy, is

h .
Um = mg [<v+ 5#’@) cos<p+wsm(p} (5)
The position vector of an arbitrary point in the spherical cap may be expressed as

r=(u+2zyp) €g + (V+ zJp) €p+ (R+W) &, (6)

The position of the moving masg, is written as
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p= <u+ gl,U9> e+ <v+ g(,U(p) ep+ (R+w)en=u'eg+Vv'ep+ (R+w) ey (7)

The total kinetic energy of the systefis the summation of the spherical cap kinetic enéiggind the moving mass
kinetic energyly. Tc can be expressed as

1 o\ ? o\ 2 ow 2
TCE/\/FJKE} +<E) +<E> dv = /ph {u +v2+w2+—(we+wq,) 8
whereasly, may be written as
_mdp dp
M 2dt dt ®)

In order to computéy, in Eq. (9) the time derivatives @f must be evaluated. This must be done with the transforma-
tion matrixCy, given in Eq. (2) since the versoes, e, ande, are time dependant. Hence, time derivativesgfe, and
e, must be obtained.

. . d . .
% _ fsing e, — Bcosp e,, o _ —0sinpeg— @e, dﬁ

at at i fcospeg+ ey (20)

Differentiation ofp in Eq. (7) with respect to time, consideration of Eq. (10) anbstitution into Eq. (9) yields

m [ /du\? /dv\? [dw\? _. - dur
Tn = 5{(dt) +(E) +(E) +206[(R+w)cosp— v*sing| dt+

. dv* : . .d
2[u*Bsing+ p(R+w)] ot —2[u b cosp+ @v'] d_\iv""

6% [(R+w) cosp—V*sing|? + [u* B sing+ (R+w)¢]* + [u*écos<p+\f*¢}2} (11)

The first variation ofT,, given in Eq. (11) is taken and, integration by parts aftezgnation in time leads to:

2 [ dur ., - dv . . o
0Tmdt = m|-—e +u*6 +2\f‘9<pcos<p+2H95|n(p+2(R+w)9(psm(p—
ty ty L
dw - . . X
—Zaecosqoﬂf"esmqo—(Rer)ecosqo ou'dt+
[ div 5 o . dw -
m|— 7 + V'@ +V 0%siP p— (R+w)6O Singcosp—2--¢
ty L
-2 dt (R+w)q'b} Svidt+

t d2w 9 du*
/ m _WJF(RJFW) 2cofp—Vv'o SiNQCOsp+2- - 9005(p+
6]

+(R+w <p2+2 <p+u Gcosq0+\f*q0} dwdt (12)

Total derivatives are present in Egs. (9)-(12). Howevenyeative term arise since the mass position may vary with
time. Using the chain rule, first and second total derivatae computed through Eq. (13):

df of 0600f Jdeodf

G~ ot atas atag  Tofetele
d?f .- .. .. . . . . .
gz = [+2000+20fp+ 06+l g+ 6700+ 071 g+ 20010 (13)

wheref is a dummy function 0B andg.
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It was mentioned that the spherical coordinates possegslaiities at the poles. According to Fig. 1, the computatio
of the strainx displacement relations would result in singularity dueitasibn by zero wherp = +7/2. This singularity
might be avoided by introducing an artificial infinitesimalé centered about the apex as implemented by Souza and Croll
(1980) or the method adopted by Zarghamee and Robinson \&9@/by Kraus (1967) where the equations of motion
are modified within a neighborhood of the apex while enfay@antinuity conditions.

These strategies have been used in the past and providsfdcatiy results. However, the traversing load is expected
to cross the spherical cap and be, at some time, exactly aptne what precludes the first strategy. The second strategy
involves special mathematical treatments that are ingpjate for dynamic problems. The spherical cap is only aiport
of the whole sphere. Hence, theoretically, any cap that doesontain the poles would not suffer from the singularity
effects. Hence, the approach adopted in this paper is tadames spherical cap in the region of the equator. In padicul
the spherical cap is aligned with tieaxis and gravity is assumed to act in the negaXieis direction. This particular
position of the domain does not alter the previously deregudations, except for the relatively simple Eq. (5). The new
equation for the gravitational potential energy is

Um = —mg[u*sinB + v* singcosf — wcospcosd] (14)

NUMERICAL PROCEDURES

The finite element method requires discretization of thébj@m. The vector of shape functionsNsandge is the
element vector of nodal degrees of freedmn={ af dy dw dy, 9y, }. Exactdisplacements and rotations are
substituted by their finite element counterparts throughuse of Eq. (15).

u=[N O 0 0 0]ge=Nyge Vv=[0 N 0 0 O
w=[0 O N O O0Jge=Nwde Yo=[0 0 O N O ]dge=Ny,0e

Wo=[0 0 0 0 NJge=Ny,ge =[N 0 O ]
Vi=[0 N 0 ]de = Nyv-Qe (15)

The usual element stiffness mati, element mass matriM and element load vectdg can be obtained when the
expressions fou, v, w, g andy, given in Eq. (15) are substituted into Egs. (4), (8) and (T4 moving load element
stiffness matrixK e, moving load element mass matikmne, moving load damping matri€,e and moving load element
load vectorfne can be obtained similarly by substitutionafv, w, g andy, into Eq. (12) and recalling Eq. (13K me,
Mme Cme andfme are detailed in Appendix A. Traditional assembly of the edetmarrays yields the governing matrix
equations:

(M+Mm)d+Cmq+ (K +Km)g=Ff+fm (16)

Two types of arrays can be observed in Eq. (16): those thahdependent 08, ¢, 9, @, 6 andp (K, M, M, f) and
those that depend a ¢ and their time derivatives{(m, Cm, fm).

The equations of motion, Eq. (16), reduce to that of a sphkcap with a static concentrated mass when the time
derivatives off, ¢ are zero. The moving mass changes the stiffness of the systdradds a forcing term. However, its
effects cannot be determined beforehand since they depetiteanoving mass velocity and acceleration. As observed
in Appendix A,Km, Cy are nonsymmetric matrices dependentoip and their time derivatives.

SinceK , andC, vary with time and are nonsymmetric, a traditional forwartégration scheme cannot be directly
employed. This fact motivates the use of a perturbation@gyr to integrate the equations of motion in time. This
approach consists in separating the nonlinear, nonsyrmneetginal problem into a number of linear, symmetric sub-
problems by representing the total displacement as a series

d=0o+0i1+Qgz+...+0n a7

and admitting that each term in the series is smaller thagréiseding term in some norm. Substituting Eq. (17) into (16)
and collecting terms ig, qz,..-On, Yields the sub-problems:

Mqo+qu = f
Md: +Kaz fm—Mmbo — Cmlo — Kmdo
M@z +Kgz = —Mmis—Cml1—Kmaz
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MOn+Kdn = —Mmin-1—Cmln-1— Kmdn-1 (18)

The left hand side of all Egs. (18) are of the foMj; + Kgi. SinceK andM are constant, symmetric matrices, a
traditional time integration scheme such as the Newmarkatetan be used without modifications to solve numerically
each of Egs. (18) individually. The effective stiffness maof each of the sub-problems assume the same G
f(gi,0,9,0,0, 0, ). Because of this, only one matrix decompositiola required for all sub-problems. Subsequently,
each sub-problem is solved sequentially friom0 ton.

Determination of the number of ternmsto be used in the series depends on the relative inertia ahtheng mass
compared to the spherical cap. If the moving mass is muchlaenthhn the structure mass, then fewer terms can be
used. This claim has been rigorously proven by de Faria (RGHAen the moving massis appreciable, a full nonlinear
numerical procedure may be more adequate.

THE FINITE ELEMENT MODEL AND ADAPTIVE MESHES

The finite element code implemented is validated throughpaoieon against the commercial code MSC.Nastran. A
spherical cap fully clamped along its edge is used. Its géaerand material properties are shown in Table 1.

Table 1 — Material properties

Parameter Value
P 7.8x 10°kgm3
h 30.0 mm
E 2.08x 10" Nm—2
v 0.30
R 1000 m
o 10°

The finite element code used bilinear elements with four a@ael selective reduced integration to alleviate eventual
shear locking. A static problem is initially solved whereancentrated force of 1,000 N is applied perpendicular to the
cap at its apex and the transverse displacement under tteifocomputed. A free vibration simulation is also made to
extract the five lowest natural frequencies. Results of tliglation analyses are shown in Table 2 and compared against
those found by MSC.Nastran. The mesh used in the presenthasl@68 elements whereas MSC.Nastran has 3,200
elements, i.e., MSC.Nastran used approximately four timese nodes. The results in Table 2 are accurate and reliable.

Table 2 — Verification of finite element code

Frequencies (Hz) Apex deflection (mm)
Mode Presentcode Nastran Presentcode Nastran
1 8.24 8.24
2 8.30 8.31
3 8.30 8.31 0.230 0.228
4 8.38 8.38
5 8.38 8.38

A simple numerical example suffices to understand why adaptieshes are necessary in the present study. Take the
spherical cap presented in Table 1 traversed quasi-dtatigaa moving force always parallel to thé axis. The point
of application of the force is given bigcosf e+ Rsin8 gy, with —a < 8 < a. Figure 2 shows the concentrated force
applied to eleven different points. Notice that the cap dpgositioned on the equator of the sphere in order to avoid
singularities.

Fifty one static problems are solved applying 1,000 N cotreded forces along 51 equally spaced points along the
curveRcost e+ Rsind e, with —a < 8 < a. The transverse displacememsunder the applied force are presented
in Fig. 3. These results are normalized with respect to ttheevaf w obtained in Table 2. The results for the 4®@0
MSC.Nastran fixed mesh and the 768 element adaptive mestbysbd present code are compared in Fig. 3.

It is obvious that the ripples seen in the MSc.Nastran resuit numerically induced. They exist because the concen-
trated force is sometimes applied at off-nodal positionst@ other hand, the adaptive mesh makes sure that the $orce i
applied always at a node. The correct results are found by.M&gran when, by chance, the force is exactly at a node.
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Figure 2 — Schematic of a repositioned spherical cap with mov ing force.
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Figure 3 — Spherical cap and moving forces.

The difficulty with remeshing schemes is that the finite eletmeatrices change once the mesh is changed. Moreover,
numerical procedures to integrate the equations of motidime are based on time steps where the current displacement
velocity and acceleration depends on information of th&ipres time step. Since the mesh in the previous time step was
different, some kind of mapping of the old mesh onto the newhmaust be implemented.

The mapping strategy adopted can be understood in Fig. 4si@mthat the displacements, ¢/, w) and rotations
(U, Yx) at nodeinew must be somehow obtained. The basic information requiréa ksiow which element in the old
mesh contains nodgey. This allows one to find the local coordinatésn of nodeinew. Once the local coordinates
are available, regular interpolation of the degrees ofdoee of nodesSqg, joids Kolg @ndlgg is used to compute the
corresponding degrees of freedom at nageg

DYNAMIC SIMULATION AND DISCUSSION

Two situations are simulated: the moving force and the ngwirass problems. In the moving force problem a
concentrated force is assumed to move across the sphegsigaucface but the moving massis zero. In this case
matriceK , Cm, M and vectoff,, are taken as zero since they are proportionat {see appendix A). This observation
considerably simplifies the numerics involved since is# 0 whereasy; = g2 = ... = gn = 0. Whenm > 0, the higher
order termgyy, g2, ... ,qn are nonzero but increasingly small, i.g;,<< (2 << ... << gn In the simulations conducted
in this work only four terms were enough to achieve good aaoyio, d1, 42, J3.

In the first scenario the moving load travels with constaltcigy 6 =0.01rd/s along the equator, departing from the
edge and reaching the apex where it suddenly stops. Cap trgdmdescribed in Table 1. The force is of 1,000 N and
it is oriented parallel to th& axis. The moving mass is 101.93 kg singe: 9.81 m/s?. The fixed time step adopted is
At = 0.005 s what can represent the contribution frequencies up tdz2 The load reaches the apex in about 17.45 s but
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Figure 4 — Mesh mapping.

the simulation goes as far as 20 s. Advantage is taken of thengyry about plang = 0 in order to model only half cap.

The simulation results are presented in in Figs. 5a-b. Tineesuseen in Figs. 5a-b are not too different from that
of Fig. 3 for—10° < 6 < 0°. Therefore, it is clear that the dynamic effects are nelglégivhen compared to the quasi-
static simulation under concentrated force. After reagliire apex the mass stops and the spherical cap displaysaksid
vibrations that, in real situations, eventually die out ttustructural damping. What can be inferred is that the feaxqgy
content of the residual vibrations is high, i.e., modesessed with higher frequencies contribute to that kind cideal
vibration.

10 10F
0.9 f— 0.9 f—
08f 0sf
o7f o7

06F 0.6

Moving force: R=100 mp=10° Moving mass: R=100 ng=10

‘z05F zo05F
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03f 03f

02 02F

o1l o1k
8() 6()

(CY (b)

Figure 5 — Traversing loads moving on the equator.

The relative contribution of the terngg, q1, g2 andqs in the perturbation series, Eq. (17), can be seen in Fig. 6. Th
zero order term gives a far greater contribution than theratrms. Actually, it is observed that that magnitudegQf
g2 andqz are approximately 100, 1,000 and 10,000 times smaller tianof qo. This shows that the inertial effects of
the moving mass are small in this particular problem.

In the second situation the load revolver around the apengaloe curvey = r coswt, Z = r sinwt with r =7 m and
w = 11/10 rd/s, completing one revolution in 20 8, ¢ and their time derivatives can be computed from the relation
Y = Rcosgsin@, Z = Rsing derived from Eq. (2). The spherical cap is initially defodnender the concentrated force
the time step adopted s = 0.005 s and the simulation lasts for 20 s.

The moving mass and moving force results are shown in in Figih. Notice that in Fig. 7a the normalized transverse
displacement oscillates abowt = 0.925, corresponding to the solution of the static probkém= f obtained from
Eq. (16). However, the normalized transverse displacewofehe moving mass problem is abait = 0.920 as observed
in Fig. 7b. These differences are a consequence of the mavasg inertial effects incorporated in matkix, and vector

fm.

The effect of the spherical cap curvature in the dynamic Wiehds investigated by keeping a constant valudRaf
and varying the radiuR. Two configurations are considerd®@= 500 m andx = 2°, andR= 1,000 m anda = 1°. The
normalized apex transverse displacement for the movirggfand moving mass orbiting the apex are presented in Figs.
8a-b and Figs. 9a-b. The apex transverse displacement®& inm R = 500 m) and 2.004 mmR = 1,000 m) were
taken as normalization factors obtained when a transverseenitrated force of 1,000 N is applied at the apex.

The frequency content can be seen to increase as the c@rimtteases. This can be observed by comparison of Figs.
7, 8 and 9. Another interesting observation: differencéséen moving force and moving mass models tend to increase
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with the curvature.
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Figure 6 — Individual contribution of perturbation series t erms.
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Figure 7 — Traversing loads orbiting the apex: R=100m, a = 1(°.

CONCLUSIONS

A technique is presented to handle the problem of moving eoinated loads (mass or force) when relatively coarse
finite element meshes are employed. The coarse mesh is\adgptiodified in order to guarantee that the moving load is
always exactly on a nodal position. Remeshing requiresmectation and decomposition of the global matrices invablve
However, this computations should not be intense sinceagssimed that coarse meshes are used.

The problem of loss of accuracy when the load is at a off-npdaition is inherent to the Mindlin element used. Ele-
ments whose interpolation functions are based on cubiapotyals do not suffer from this weakness but their numerical
implements is far more intricate that the Mindlin elemerinhc® the Mindlin type of element is the most commonly used
in commercial finite element codes it is important to proplaéernative formulations such as the adaptive mesh scheme
combined with a perturbation approach presented in thi&widne formulation proposed was shown to work well in two
scenarios and for either moving force or moving mass.

The perturbation technique adopted is able to separateffénetseof a moving concentrated force from those of a
moving concentrated mass. It shows that the inertial effetcthe moving mass can be added to the moving force solution
through solution of a series of linear sub-problems. Moezgthe number of sub-problems to be solved is small as long
as the relative inertia between concentrated mass and trastuse is small. When heavy masses move on lightweight
structures more terms in the series are required or a morenfdwmonlinear solver should be used.
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APPENDIX A
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sin@ NT
singcosd NT
fo = / / ph| —cospcosd NT | R2cospdode (A.5)
o/% Nsing NT
Dsingpcosd NT
Mme = mM(NJNu + NNy + NjNw) (A.6)
2mNy. (9 Ny o + (-pNv*7(p+ @ Ny + Osing Nu-)
2Ny, (6 Nyg + @ Ny — 6cosp Ny — @ Ny ) (A7)
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262 cosp Ny,g + 269 cosp Ny, g — 8sing Ny + Bcosp Ny) +



Dynamics of spherical caps under moving loads

MmN (8 Ny g+ @ Ny g+ 02 Ny g9 + @7 Ny g + 209 Ny g
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