Proceedings of the XI DINAME, 28th February-4th March 2005, Ouro Preto - MG - Brazil
Edited by D.A. Rade and V. Steffen Jr. © 2005 - ABCM. All rights reserved.

VEHICLE MODELLING BY SUBSYSTEMS

Georg Rill
FH Regensburg, University of Applied Sciences, Galgenbergstr. 30, 93053 Regensburg
GeorgRill@aol.com

Abstract. Computer simulations have become very popular in the automotive industry. In order to achieve a good
conformity to field test sophisticated vehicle models are needed. A real vehicle incorporates many complex dynamic
systems, like the drive train, the steering system and the wheel/axle suspension. On closer inspection some force elements
such as shock absorbers and hydro-mounts turn out to be dynamic systems too. Modern vehicle models consist of different
subsystems. Then, each subsystem may be modelled differently and can be tested independently. If some subsystems are
available as a set of nested models of different complexity it is even possible to generate overall vehicle models which are
well tailored to particular applications. But the numerical solution of coupled subsystems is not straight forward. This
paper shows that by suitable interfaces and an implicit integration algorithm the overall vehicle model can be solved
very effectively. The presented concept is realized in the product ve-DYNA applied world wide by automotive companies
and suppliers.
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1. Modelling Concept

For dynamic simulation the vehicles are usually modelled by multi-body-systems (MBS), van der Jagt (2000). Usually the
overall vehicle model is separated into different subsystems, Rauh (2003). Fig. 1 shows the components of a passenger car
model which can be used to investigate handling and ride properties. The vehicle model consists of the vehicle framework

Figure 1: Vehicle Model Structure

and subsystems for the steering system and the drive train.

The vehicle framework represents the kernel of the model. It includes at least the module chassis and modules for the
wheel/axle suspension systems. The vehicle framework is supplemented by modules for the load, an elastically suspended
engine, and passenger/seat models. A simple load module just takes the mass and inertia properties of the load into
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account. To describe the sloshing effects of liquid loads dynamic load models are needed, Rill and Rauh (1992). The
subsystems elastically suspended engine, passenger/seat and in heavy truck models a suspended driver’s cabin can all be
handled by the presented generic free body model. For standard vehicle dynamic analysis the chassis can be modelled by
one rigid body. For applications where the chassis flexibility has to be taken into account a suitable flexible frame model is
presented. Most wheel/axle suspension systems can be described by typical multi-body-systems elements like rigid bodies,
links, joints and force elements, Rill (1994). Using a modified implicit Euler algorithm for solving the dynamic equations
axle suspensions with compliancies and dry friction in the damper element can be handled without any problems, Rill
(2004). Due to their robustness leaf springs are still a popular choice for solid axles. Leaf springs combine guidance and
suspension properties which causes many problems in modelling, Fickers and Richter (1994). In this paper a leaf spring
model is presented which overcomes this problems.

The steering system consists at least of the steering wheel, a flexible steering shaft and the steering box which may
also be power-assisted. Neureder (2002) has developed a very sophisticated model of the steering system which includes
compliancies, dry friction, and clearance.

Tire forces and torques have a dominant influence on vehicle dynamics. The semi-empirical tire model TMeasy has
mainly been developed to meet both the requirements of user-friendliness and sufficient model accuracy, Hirschberg et.
al. (2002). For special applications complex tire models like the FTire Model provided by Gipser (1998) can be used. The
module tire also includes the wheel rotation which acts as input for the drive train model. The presented drive train model
is generic. It takes lockable differentials into account, and it combines front wheel, rear wheel and all wheel drive. The
drive train is supplemented by a module describing the engine torque. It may be modelled quit simply by a first order
differential equation or by using the enhanced engine torque module en-DYNA developed by TESIS.

Road irregularities and variations in the coefficient of friction present significant impacts to the vehicle. A road model
generating a two-dimensional reproducible random profile was provided by Rill (1990).

This modelling concept is realized with a MATLAB/Simulink® interface in the product ve-DYNA which also includes
suitable models for the driver, TESIS.

2. Module Flexible Frame

2.1. Multi Body Approach to First Eigenmodes

The chassis eigenmodes of most passenger cars start at f > 20 Hz. Hence, for standard vehicle dynamic analysis the
chassis can be modelled as one rigid body. The lower chassis stiffness of trucks and pickups results in eigenmodes starting
at f ~ 10 Hz, Fig. 2. The first eigenmodes consist of chassis torsion and bending. This modes can be approximated by a

Figure 3: Flexible Frame Model

multi body chassis model where the chassis is divided into three parts, Fig. 3.



2.2. Free Body Motions

The position and orientation of the reference frame x ¢, yc, 2o which is fixed to the center body with respect to the inertial
frame x, yo, 2o is given by the rotation matrix

cos Yoo — sinyge 0 cos Boc 0 sin Byo 0 0 0
Aoc = | sinyoc  cosyoc O 0 1 0 0 cosape — sin age 1
0 0 1 —sin Boc 0 cos Boc 1 sinage  cos ape

and the position vector

Toc
roc,0 = | Yoo | )
2o0C

where the comma separated subscript ( indicates, that the coordinates of the vector from 0 to C' are expressed in the
inertial frame. The generalized coordinates roll, pitch and yaw angle cgc, Boc, Yoo as well as the coordinates xoc, Yoo,
zgc of the vector roc o describe the free body motion of the vehicle.

2.3. Modal Coordinates

The motions of the front and rear body relative to the center body are small compared to the free body motions of the
center part. Hence, the linearized rotation matrices

1 —vcr Beor 1 —vcr Ber
Acr=| cr 1 —acr |, Acr=| Yer 1 —acr |, 3)
_ﬂCF acFr 1 _ﬁCR QCR 1

and the position vectors

TCF TCR
rerc =TcrK + | YoF | TCR,C =TCR,K + | YCR 4
2CF 2CR

are used to describe the orientation and position of the front and rear body relative to the center part. The vectors ror
and r¢ R, i denote the initial position of the front and rear body.
The generalized coordinates

T
yr = [ Tcr, Yor, zcr, ocr, Bor, Yor |,

)

T
yr = | Zcr, Yor, Z2cr, @cr Bcr, YoR |

describe the motions of the front and rear body relative to the center body. This motions are now approximated by n s
eigenmodes ey, e, ..., €y,

mi m
mo ma

yr = [th epa, - anM] . and ygp = [em, €R2, " eRnM] . 6)
EF My, ER Mn

where my, ma, ..., my,, are modal coordinates, and E'r and Er are 6 X njs matrices containing the eigenmodes.

2.4. Generalized Coordinates

The flexible chassis is here modelled by 3 rigid bodies. The orientation and the position of the bodies are described by
free body motions and modal coordinates
] T

. )

where the 6 free body motions and the 5, modal coordinates are collected in the vector yc-. The dimension of y< depends
on the number n ), of modal coordinates, 1, = 6 + 1.

Yyc = [foc Yoc 20c oo Boc Yoo M1 Mg ccr Mgy,



2.5. Equations of Motion

To generate the equations of motion Jordain’s Principle with generalized speeds is used. For a multi body system consisting
of m rigid bodies it results in a set of two first order differential equations

Ky = =z,
Mz = gq.

®)

The kinematic matrix K follows from the definition of the generalized speeds. The elements of the mass matrix M are
given by

T 81} owl, Ow,
M, = Ok . Y0k | Tk 0k
J Z{ Tt o O } ©)

where my, is the mass and Oy the inertia tensor of body k. Finally, the components of the generalized forces and torques
are defined by

“~ [ o7 Owl,
qi = Z{ 8;k |:FAk mka(lfk] + a;k |:TAk @kaé%k — Wok X @kak] } ’ (10)
k=1 v
where F'ay, T4y, denote the forces and torques applied to body & and a{]{k, affk are remaining parts of the accelerations
which do not depend on the derivatives of the generalized speeds.
2.6. Applied Forces and Torques

The forces and torques applied to the bodies can be written down as

Fo = FE'+FR" +Foy”,
Fp = FF' —FG7, (11)
Fp = Fg'—FY

and
Te = T+ T + 1oy,
Tp = T TR, (12)
Ty = T -TgR",

were the superscripts “** and “™*P denote external and compliance forces and torques.

Applying Jordain’s Principle one part within the equations of motion describes the whole chassis motion. For the
whole chassis the compliance forces and torques are internal forces and therefore do not show up in the corresponding
parts of the generalized force vector.

If we assume that the compliance forces and torques are proportional to the motions of the front and rear body then,
we get

chp chp
{ Tglr;p ] =ccryr and { Tglr:zip } = CCRYR (13)

were cor and co g are 6 X 6 stiffness matrices. The modal coordinate approximation Eq. (6) results in

mi mi
e mo Femp mo
{ Tgr’;p =ccr EF and T%@?‘p =ccrER ) . (14)
CF CR :
mpp mnF

Within Jordain’s Principle the compliance forces and torques are reduced to generalized forces which are calculated by

mi mi

m2 m2
P = Fhcor Eg , , (15)

qgm?t = FEfcor Ep : and ¢p"

mnFr mnFr



where

cpp 0 oo 0 crpi 0 - 0
ET o 0 cr2 T | 0 cre’
FCCF = and ERCCRER— . (16)
0 s 0
0 0 cpny 0 - 0 Chny,

are nr X nyy stiffness matrices. which are defined by the modal stiffnesses cr1, cra, ... €Fn,, and cri, CR2, ... CRn,, -
Thus, to describe the motions of a flexible chassis only some eigenmodes and modal stiffnesses have to be provided.

2.7. Results

Depending on the vehicle layout a flexible frame has a significant influence on the driving behavior, Fig 4. The rear axle
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Figure 4: Step Input on Bus with rigid and flexible Frame

of the bus under consideration is guided by four links. The arrangement of the links generate here a steer effect which
depends on the roll angle of the rear part of the chassis and therefor also on the torsional stiffness of the chassis.

3. Module Leaf Spring

3.1. Modelling Aspects

Poor leaf spring models approximate guidance and suspension properties of the leaf spring by rigid links and separate
force elements, Matschinsky (1998). For realistic ride and handling simulations the deformation of the leaf springs must
be taken into account.

Within ADAMS leaf springs can be modelled with sophisticated beam-element models, ADAMS/Chassis 12.0. But,
according to Fickers (1994) it is not easy to take the spring pretension into account. To model the effects of a beam,
ADAMS/Solver uses a linear 6-dimensional action-reaction force (3 translational and 3 rotational) between two markers.
To provide adequate representation for the nonlinear cross section usually 20 elements are used to model one leaf spring.
A subsystem consisting of a solid axle and two beam-element leaf spring models would have f = 6 + 2 * (20 x 6) = 246
degrees of freedom. In addition, the beam-element leaf spring model results in extremely stiff differential equations. This
and the large number of degrees of freedom slow down the computing time significantly.

For real time applications the leaf springs must be modelled by a simple but still accurate model. Fig. 5 shows a model
of a solid axle with leaf spring suspension which is typical for light truck rear axle suspension systems. There are no
additional links. Hence, only the forces and torques generated by leaf spring deflections guide and suspend the axle.

The position of the axle center A and the orientation of an axle fixed reference frame x 4, y 4, 24 are described relative
to a chassis fixed frame x g, yp, zp by the displacements &, 1, ¢ and the rotation angles «, 3, v which are collected in the
6 x 1 axle position vector

ya=1&m¢a, B, 7] . (17)

Similar to Fickers (1994) each leaf spring is modelled by five rigid bodies which are connected to each other by spherical
joints, Fig. 5.

Each leaf spring is connected to the frame via the front leaf eye X . Furthermore each leaf spring is attached to the
shackle at Y, and again to the frame at Z. In C the center part of each leaf spring is rigidly connected to the axle. The front
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Figure 5: Axle Model with Leaf Spring Suspension

eye bushings are modelled by spring/damper elements in z-, y-, and z-direction. The shackles are modelled by radial and
a lateral spring/damper elements. Within each leaf spring the angles 1, 11, and 4, 19 describe the motions of part P-Q)
and part R-S relative to the center part. The outer parts (- X and P-Y perform their rotations, (3, ©3, and 4, 14, relative
to part P-Q and part R-S. As each leaf spring element is considered as a rigid rod, the roll motions can be neglected. The
angles are collected in 4 x 1position vectors

T T
Yir = |:80§_1)7 ](_1)7 Soél)u {g,l) jl ) YR = [Soél)u 51)7 (104(11)7 ¢z(11) :| ) (18)

T T
Yor = |:<)0§2)a §2)7 410;(32)a §2) ] ; Y2RrR = [@;2)3 wémv 904(12)7 %(;2) j| ) (19)
where y1 7, yor and y1 g, y2r describe the momentary shape of the front and the rear part of the left (1) and the right (2)

leaf spring.

A fully dynamic description of a solid axle with two five link leaf spring models would resultin f = 6 + 2 % 8 = 22
degrees of freedom. Compared to the beam-element model this is a really significant reduction.

But a dynamic description of the five link leaf spring model still includes some high frequent modes which will cause
problems in the numerical solution of the equations of motion. As mass and inertia properties of the leaf spring model
parts are small compared to the solid axle, a quasi static solution of the internal leaf spring deflection should be accurate
enough within the overall vehicle model.

A quasi static solution provides the position vectors of the leaf spring parts as functions of the axle position vector,
viFr = y1r (Ya), Y1r = Y1r (Ya), y2r = yo2r (ya), Y2r = Ya2r (y4). Hence, the sub system solid axle with two leaf
springs has only f = 6 degrees of freedom.

3.2. Initial Shape and Pretension

At first it is assumed that the leaf spring is located in the xz-plane of the leaf spring fixed frame x, yr,, 21, and its shape
in the design position can be approximated by a circle which is fixed by the points X, C and Y. By dividing the arc X-Y
into 5 parts of equal length the position of the links P, R, S, @ and the initial values of the angles ©o1, Y01, Y02, Yo2,
003> Y03, P04, Wo4 can be calculated very easily.

In design position each leaf spring is only preloaded by a vertical load which results in zero pretension forces in the
y1,-direction, FS’B =0, Foys = 0 and zero pretension torques around the z;-axis, T5p = 0, TOZQ =0,T5r = 0,T55 = 0.
In addition the torques around the z;-axis vanish, T, = 0, T§, = 0, Tgp = 0, Tjg = 0.

To transfer the vertical preload Fj to the front eye bushing and the shackle, the joints P, @), R, S must provide torques
around the y -axis, Fig. 6. The pretension forces in the front eye bushing F{{5, Fi5 and in the shackle F{g, can easily be
calculated from the equilibrium conditions of the five link leaf spring model,

Fip + Fosuy, = 0,
Fip + Fo + Fosuy, = 0, (20
—rxc Fo+rky Fosuyz — 1%y Fosuy, = 0,

where uy 7 is the unit vector in the direction of the shackle, and 7%y, 7%y are the  and z components of the vector from
pointing from X to Y. The pretension torques in the leaf spring joints around the y;-axis, T¢p, TS’Q, Ty, Tds follow from

Y z g x z _ Y z T x _
—Top +rpx Fop—rpx Fip = 0, —Too +rox Fop—rox Foz = 0, 21
y _ Y _

Tor + TRy Fosuy ;—rgy Fosuy, = 0, Tys + 15y Fosuy z—rgy Fosuy, = 0,

were 15,1 = P, Q, R, S, j = X, Y are vectors pointing from ¢ to j.



Figure 6: Pretension Forces and Torques

3.3. Compliance

The leaf spring compliance is defined in the design position by the vertical and the lateral stiffness, cy and cr. In Fig. 7
a the leaf spring is approximated by a beam which is supported on both ends and is loaded in the center by the force F'.
The deflection w and the force F' are related to each other by the stiffness ¢

a) beam model %Z'-

b) link model

Figure 7: Leaf Spring Stiffness

F=cw. (22)
If we transfer the beam model to the five link leaf spring model and look at the front half, Fig. 7b, then one gets

w = apr + a(p1+p3), (23)

where a is the length of one link, and small deflections in the x 1, 21, plane were assumed. The torques around the y -axis
in the joints P and () would be proportional to the deflection angles 1 and 3

Tp = cpyp1 and T = cpy 3. (24)
The equilibrium condition results in
F F
T%:Qa; and Té:a;:. (25)

The leaf spring bending mode due to a single force can be approximated very well by a circular arc. Hence, the relative
angle between connected links is equal, 1 = @3 = ¢ and Eq. (23) can be simplified to w = 3ap or ¢ = 3 From
Eq. (24) and Eq. (25) it follows

w F w F
%1%:2@5 and C%%:(IEI' (26)
Using Eq. (22) one finally gets
3
Cop = 3 a? cy and c,, = 3 ac , 27

where the beam stiffness ¢ was replaced by the vertical leaf spring stiffness cy . Assuming symmetry, the stiffnesses in the
rear joints are given by c,, = ¢y, and ¢, = c,,. The stiffnesses around the vertical axis cy,, ¢y, , ¢y, and ¢y, can be
calculated in a similar way. In this approach the torsional stiffness of the leaf spring is neglected.



3.4. Actual Shape

In an equilibrium position the energy of a flexible system achieves a minimum value, £ — Min. The energy of the five
link leaf spring model is given by

_ 1.7 1 2,1 2,1 2,1 2
E = Swxcpwy + 5Cp, $1+ 5Cp YT+ 5Cps 93+ 5 Cps U3

1

(28)
1 1 1 1 1
3 Cou 05+ 5 Cpp U3 + 5 Coy 05 + 5 ¢y, V3 + 3 CsRWER + S cspwEy

where wx is the 3 x 1 displacement vector and cp is the 3 x 3 stiffness matrix of the front eye bushing, wsr, wgy, are the
radial and lateral shackle displacements, and csr, csr, denote the corresponding stiffnesses.

According to Eq. (18) and Eq. (19), the actual shape of the leaf spring is determined by the position vectors y; =
[©1, U1, @3, ¥3]” and yo = [@2, 12, @4, ths]". If the leaf spring energy becomes a minimum, then the following
equations hold

oE oE o~ o~

dp1 7 O Ops 1 O
As the shackle displacements wgsg, wsr do not depend on y; and the front bushing displacement vector wx does
not depend on yo the conditions in Eq. (29) form two independent sets of nonlinear equations fi(y1, ya) = 0 and
f2(y2, ya) = 0, where y4 denotes the dependency of the actual position and orientation of the solid axle. These equa-

tions are solved iteratively by the Newton-Algorithm. Starting with initial guesses 37, y9 one gets an improvement by
solving the linear equations

0, 0. (29)

of
871 (Z/fJrl —ylf) = —fily1ya)
o k=0,1,2,... (30)
67312 (y§+1 - ylzc) = —f2(y29y4)
Here, the Jacobians g—?ﬁ % can be calculated analytically.

3.5. Leaf Spring Reaction Forces

The actual forces in the front leaf eye bushing is given by
Fp = Fop + cgwx + dgux, a3n

where Fjp is the pretension force and cp, dp are 3x3 matrices, characterizing the stiffness and damping properties of the
front leaf eye bushing. The displacement vector wx in the front leaf eye bushing depend on the generalized coordinates
y1 and y4 which describe the actual shape of the front leaf spring part and the actual position and orientation of the solid
axle. By solving Eq. (30) y; is given as a function of (y4). Hence, w, only depends on y4 and its derivative can be
calculated by

Ux = 35— YA, (32)
X EA Y
where y4 describes the velocity state of the solid axle.
The radial and lateral components of the shackle forces can be calculated from

Fsp = ulpFos + csrwsr + dspiwsr and Fsp = ub; Fos + cspwsr + dspwsr , (33)

where Fyg is the pretension force, ugpr, usr are unit vectors in the radial and lateral shackle direction, and csg, csr.,
dsgr, dsy are constants, characterizing the stiffness and damping properties of the shackle. The shackle displacements
wgpr and wgy, depend on the generalized coordinates yor and y 4 which describe the actual shape of the rear leaf spring
part and the actual position and orientation of the solid axle. Similar to Eq. (32) the displacement velocities are given by

. Ou . . Oousr, .

Usp = motgs and sy = ot ga (34)
dya Oya

Finally the shackle force read as

Fs = Fspugsgp + Fspusy, - (35)



Figure 8: Forces Applied to Axle

3.6. Forces Applied to the Axle

In this approach the leaf springs act like generalized force elements, Fig. 8. Guidance and suspension of the solid axle is
done by the resulting force

F = Fpi+ Fpa+ Fs1 + Fyo (36)
and the resulting torque
T = rap1XFp1 +1ap2xFpa +ras1XFg1 +1a52%xFs2 37

where rap1 = rap1(ya), ... Tas2(ya) describe the momentary position of the front eye bushings and the shackles relative
to the axle center.

As the forces in the front eye bushings F'z1, F'ipo and the shackle forces Fis1, Fiso depend on the axle state y 4, 4
only

Fp1 = Fpi (Ya> Ya) » FB2 = FB2 (Ya, 94) , Fs1 = FB1 (Ya, 94) » Fs2 = Fpa (Ya, 94) , (38)

the resulting force F' and the resulting torque 7" are also mere functions of the axle state.
As each leaf spring acts herby as a generalized force element it can easily be integrated into the vehicle framework.
By suppressing high frequent leaf spring eigenmodes it is perfectly adopted to real-time application.

3.7. Bending Modes

The quasi-static approach reproduces all significant bending modes of the leaf spring, Fig.9.

wind up

0.2 lateral deflection

Figure 9: Bending Modes

A leaf spring is stiffer in the lateral direction than in the vertical direction. Hence, a displacement in the front eye
bushing is noticeable only on lateral leaf spring deflections.
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Figure 10: Comparison to Measurements

3.8. Model Performance

The five link leaf spring model was integrated into a ve-DYNA Ford Transit vehicle model. Using the five link leaf spring
model at the rear axle instead of a poor kinematic approach means only 85% more computer run time. Hence, real time
applications are still possible. The simulation results are in good conformity to measurements, Fig. 10. The nonlinearity
in the spring characteristics is caused by an additional bump stop and by the change of the shackle position during jounce
and rebound. Obviously the five link model is accurate enough.

4. Free Body Module

4.1. Position and Orientation

To describe the momentary state of the body E the frame g yg, zg located in the center of gravity is used. In addition,
sensor points S monitor position, velocity and acceleration at specific body points, Fig. 11. The frame B is fixed to the

free body 4 Zg

force
element

vehicle-fixed

< reference frame
Xe
Zg
YE rubber
mount
road-fixed

inertial frame

Figure 11: Elastically Suspended Body

vehicle. The suspension of body E on the vehicle, frame B may consist of force elements and/or rubber mounts. The
road-fixed frame 0 is considered as inertial frame. The position of frame B with respect to the road-fixed inertial frame 0
is given by the position vector
B
T0B,0 = YB . 39
2B
The orientation of the frame axis are described by a rotation matrix. Three elementary rotations are put together. The
sequence

Ao = A’YB AﬁB Aagp
yaw pitch roll (40)



results in

—cosapsinyp sinap sinyp
cos g cos . . ;
P B +sinap sin B cosvp + cosapsin B cosvp
AOB — COSB sin COS g COSYB —sinaB COSvYB (41)
BSIMIB | dinag sin Bp sinypg + cosapsin Bp sinypg
—sin g sin ag cos Bp cos ag cos Op

Hence, position and orientation of the vehicle-fixed reference are described by 6 generalized coordinates x5, y5, 25, and

aB, BB, VB
The position and orientation of the elastically suspended body with respect to the reference frame B is given by

TR
TBEB = | YE | - (42)
2B
and
1 0 0 cosfg 0 sinfg cosyg —sinyg 0
Apg = 0 cosag —sinag 0 1 0 sinyg —cosyg O . 43)
0 sinag Cos g —sinfBg 0 cosfg 0 0 1

4.2. Generalized Speeds
The velocity of the reference frame B with respect to the inertial frame 0 is given by
TR
VoB,0 = T0B,0 = .'Q:/B (44)
2B
The velocity denoted in the inertial frame can be transformed to the reference frame
wp,5 = Ajp s - (45)
In doing so the orthogonality of the rotation matrix
Apo = Agp = Alp (46)

was already taken into consideration.
The angular velocity of the reference frame B with respect to the inertial frame 0 may be expressed directly in
reference frame B

1 0 —sin Op OfB
wop,s = | 0 cosap sinagcosfp B | - 47
0 —sinap cosapcosfp 4B

The 6 components of vop, g and wop,p Will now be chosen as generalized speeds. First order kinematical differential
equations connect generalized speeds with derivatives of generalized coordinates. From Eq. 45 and Eq. 47 one gets

TR V0 Bz
yB | = Aos | voBy | - (48)
L ZB VoBz
and
1 0 —sin ,33 dB WoBzx
0 cosap sinapgcosfp BB = WoBy . 49)
0 —sinap cosagcos(p B WOB=

Where the solution of Eq. 49 is given by

4 = (wop.cosap +wopysinag)/cosfp
Bp = —wop:sinap+wopycosag (50)
B = woBz + B cosap

The momentary state of the reference frame B is fully characterized by 6 generalized coordinates
B, YB, 2B, @B, BB, 7B and 6 generalized speeds voBz, VoBy, V0Bz» WoBx, WoBy, W0Bz-



The velocity and the angular velocity of the elastically suspended body with respect to the inertia frame O is given by

VoE,B = VoB,B + WoB,B X TBE,B + TBE,B , 1)

WoE,B = WoB,B + WBE,B

where the derivative of the position vector and the angular velocity of the elastically suspended body follow from Eq. 42
and Eq. 43. They read as

TE
"BE,B = | UE 42
Zp
and
1 0 sin Bk ap
wpe,g = | 0 cosag —sinagcosfEr BE (53)
0 sinap  cosagcosfg YE

By using the components of the velocity

T
vop,B = [ YoB, voE, voE. | (54)

and the angular velocity

T
wop,B = | wop, woE, WoE, | (55)
as generalized speeds, Eq. 51 can be written as a set of kinematical differential equations
TE VoE, — V0B, WoE, TE
9 | = | vog, —voB, | — | wor, | X | YE (56)
| ZE UoE, — VOB, WoE, | 2E
1 0 sin Bp ap WoE, — WOB,
0 cosagp —sinagcosfg Or = WoE, — WoB, 57
| 0 sinag cos g cos O g | WoE, — WoB,

Whereas the 6 generalized coordinates g, Yy, 2E, &g, B, i describe the position and orientation of frame F relative
to frame B, the 6 generalized speeds vogs, VoEy, VoEz, WoEz, WoEy, WoE- are the components of the absolute velocity
and angular velocity of body F.

4.3. Accelerations

The accelerations of body E with respect to the inertia frame 0 can be expressed in reference frame B. They read as

aop,B = UoE,B T WoB,B X VOE,B ; (58)
QVE,B = WoE,B T+ WoB,B X WOE,B ,
where
Yop,B = | Yom, Uom, U0k, }T (59)
and
Wop,p = | Wom, Wom, WoE. ]T (60)

follow from Eq. 54 and Eq. 55.



4.4. Force Elements

If a force element is attached to the chassis at point ¢ and to the body at point j the momentary position of force element
17, is given by

Tij,B = T"BE,B tTEjB —TBiK ; 61)
N——
TBj,B
where
regjB = ABETEjK (62)

TBi, K> TEj, K are given by data and v, p follows from Eq. (42).
The actual length can be calculated from

a __ T
Ui = /T8 ijB (63)

and the unit vector

Tij,B
Cijp = — (64)
ug;

describes the momentary direction of the force element.
It u?j denotes the initial length of the force element, the displacement of the force element is given by

U = u?j —ug; . (65)

The displacement velocity follows from

d
Vij = 65»3@ (Tiij) . (66)

Using Eq. 61, Eq. 62, and 7"g; x = 0 one gets
Vi = 63;-,3 ("BE,B + WBE,B X Tej.B) (67)

where g, g and wpg, p are given by Eq. 52 and Eq. 53.
The forces F;; g, I;; p and the torques T35 g, T}; p applied to body and chassis are given by

Fij B = f(uij, vij) €ij,B Fy;p = —Fi; B, (68)
and
TijB = Te;,B X Fij.B, Ty = rBi,k X Fjip, (69)

where f describes an arbitrary spring/damper characteristics.

4.5. Equations of Motion

Applying liner and angular momentum to the elastically suspended body one gets

mg e, = Fe.8 — MmEe (9, +wWoB,B X VoE,B) (70)

and

Op,puwoe,B = Te,p — woE,B X O Bwor,B — O B (WoB,B X WOE,B) , (71)

where mg, © g, p denote mass and inertia tensor of the free body, F'g, g, Tk, p are the resulting forces and torques applied
to the free body, and g g is the vector of gravity expressed in the body fixed reference frame. This equations are coupled
with the chassis equations of motion only by the applied forces and torques. Due to the particular choose of generalized
speeds no mass or inertia coupling terms appear.

By using this modelling technique, Seibert and Rill (1998) showed that the comfort of a passenger car is significantly
influenced by the engine suspension system. The free body model can also be used to model an elastically suspended
driver’s cab, Rill (1993).
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Figure 12: Drive Train Model

5. Subsystem Drive Train
5.1. Generic Model Structure

The subsystem drive train, Fig. 12, interact on one side with the engine and on the other side with the wheels. Hence, the
angular velocities of the wheels w1, ..., wy, and the engine or respectively the gear output angular velocity wy are input
quantities. That is why, the calculation of the engine torque and the dynamics of the wheel rotation are performed in other
subsystems. Via the tire forces and torques the drive train is coupled with the steering system and the vehicle frame work.

The drive train model includes three lockable differentials. The angular velocities of the drive shafts wg;: front left,
wgo: front right, wgr: front, wgr: rear, wgs: rear left, wgy: rear right are used as generalized coordinates.

The torque distribution of the front and rear differential is 1:1. If r and rg are the ratios of the front and rear
differential then one gets

1 1
w = swg1+t 35ws2,
HF 7 WS1 5 WS2 (72)
Wip = TFWHF;
WHR — le3+le4a
2 2 (73)
WIR = TRWHR-
The torque distribution of the center differential is given by
tp 1z
= =1 (74)

tR 1—p



where t -, t g denote the torques transmitted to the front and rear drive shaft, and p is a dimensionless drive train parameter.
A value of ¢ = 1 means front wheel drive, 0 < g < 1 stands for all wheel drive, and i = 0 is rear wheel drive. If the
ratio of the center differential is given by r¢ then

wge = pwsr+ (1—p)wsr s
wic = TcoWwWHC

holds.

5.2. Equation of Motion

The equation of motion for the drive train is derived from Jordain’s Principle, which for the drive train reads as

Z(@id)ifti)éwizo, (76)

where O; is the inertia of body 4, w; denotes the time derivatives of the angular velocity, ¢; is the torque applied to each
body, and § w; describe the variation of the angular velocity. Applying Eq. (76) for the different parts of the drive train
model results in

front drive shaft left: Og1ws1 —ts1 —tor ) dws1 = 0,

front drive shaft right: Ogowge —tge +trp ) dwge = 0,

front differential housing: ( Oprwygr ) dwyr = 0,

)
front differential input shaft: Orrwrr +isk ) dwip = 0,
front drive shaft: ( Ogrwsr —tsp —trLo ) dwsp = 0,
rear drive shaft: ( Osrwsr —tsr +tLc > dwsg = 0,
(78)
center differential housing: ( OgcwhHC ) dwge = 0,
center differential input shaft: ( Orcwrc +tso ) dwre = 0,
rear differential input shaft: ( Orrwir +1lsr ) dwrr = 0,
rear differential housing: ( OyRrRWHR ) dwgr = 0,
(79
rear drive shaft left: ( Og3wg3 —tgz — LR ) dwgz = 0,
rear drive shaft right: ( Og4wgs —tss +1rLR ) dwgye = 0
Using Eq. (72), Eq. (75), and Eq. (73) one gets
(951 w1 —ts1 —trp ) dwst = 0,
(952 Ws2 —tsa +trp ) dwse = 0,
(@HF (ds1+ §ws2) %5ws1+%5w32) =0,
(@IF( TRWs1+ 3TEWs2) + s %TF5ws1+%TF5w52) =0,
(@SF wsk —tsp —tre ) dwsr = 0,
Ospwsr —tsp+trc ) dwsr = 0,
(80)

(9Hc (pwsr+ (1—

L) WSR
(@zc (prewsp + (1—p)rewsr) + tso

predwse + (1—p)re 5wSR) =0,

(
(
(WWSF + (1_/~L)5WSR> =0,
(
(
(

A W S N W T e T T T T

(@IR( rRWs3 + 5 TRWsa) +tsr ) (3TROwWSs + 3 TR5WS4) =0,
(91{3 (Ldss+ 3 wsa) §5WSS+§5WS4) =0,
(933@53*7553*%1% dwgs = 0,
<@S4ws4—t54+tLR dwss = 0.



Collecting all terms with d wg1, d wga, I wsr, d WsRr, 0 wss, 0 wsy and using the abbreviation v = 1—y one finally gets
three blocks of differential equations

which

(Os1+2Onp+37201p)ws1 + (2 Our+11201p) We2 = tg, +trp — Trptsp

81)
(5Our+35r201p)ws1 + (Os2+ 5 Our+57501p) Ws2 = tgy —trp — Lrptsp o
(Osp+u? Ouc+p?rE O10) wsr + (LvOnc+uvré Or1c) sk = tgp +tro — uretso )
(pvOpc+upvrd ©c)wsr + (Osr+12Ouc+12 12 01c) Wsk = tgr — tro — vrotso
(Os3+31Our+37%401R) Wwss + (L Our+1rEO1r) wsa = tgy +trp — Lrptsr 03
(83)

(1Our+1ir%Or)wss + (OsatiOur+iriO1r)bsa = tgy —trp — STRtSR 5

describe the dynamics of the drive train. Due to its simple structure an extension to a 4x4-drive train will be straight

forward.

53.D

rive Shaft Torques

The torques in the drive shafts are given by

ts1 = cs1lps1,  where: Apg = wi —wst;

ts2 = cs2lpsa, wherer Apgy = wy —wsa;

tsp = cspDpsp, where: Apsp = wip — WsF ;

tso = csoNpso, where: Apgy = wic —wo ; (34)
tsg = cspDpsr, where: Apsp = wip —WsR;

tss = cs3Dypgs,  where: Agbsg = w3 — ws3;

tss = csalpsy, wherer Apgy = wg—wsa;

and cgo, cs1, €52, CS3, CS4, CSF, Csr denote the stiffness of the drive shafts. The first order differential equations can be
arranged in matrix form

where

Ay = Kw + Q, (85)

T
w= [ ws1, ws2, Wsp, WSR, Ws3, Ws4 | (36)

is the vector of the angular velocities,

T
Np = [ Dps1, Dpsa, Dpsre, Dpso, Dpsr, Dpss, Dpss | 87
contains the torsional angles in the drive shafts,
Q = [wi, ws, 0, —wo, 0, wy wy] (88)
is the excitation vector, and
[ —1 0 0 0 0 0 |
0 -1 0 0 0 0
%T‘F %TF -1 O 0 0
K = 0 0 wure (I-wre 0O 0 (89)
0 0 0 -1 % TR % TR
0 0 0 0 —1 0
. 0 0 0 0 0 -1 |

is a 7 x 6 distribution matrix.



5.4. Locking Torques

The differential locking torques are modelled by an enhanced dry friction model consisting of a static and a dynamic part

tor = tip +1t0r,

trr = tip+105.

The dynamic parts are modelled by a torque proportional to the differential output angular velocities

tPp = dop (ws2 —ws1) ,
the = dre (wSR*wSF) y o1
tPr = dir (wsa — ws3)

where dy r, drc, dp g are damping parameters which have to be chosen appropriately. In steady state operating conditions
the static parts 3 ., t7, t7p will provide torques even if the differential output angular velocities are equal. From
Eq. (81), Eq. (82), Eq. (83), one gets

tPe = & (ts2—ts1)
tPp = L (tsp—tsp+C2u—1)rctso ) , (92)
tPr = % (tsa—tss) .

By this locking torque model the effect of dry friction inside the differentials can also be taken into account.

5.5. Numerical Solution

The equations of motion Eq. (81), Eq. (82), and Eq. (83) can be combined in a matrix differential equation

Mo = q¢(Ap, w), ©3)
where w, Ay are given by Eq. (86), Eq. (87) and the mass matrix M is built by three 2 x 2 submatrices
Mrp 0O 0
M = 0 Mc O , (94)
0 0 Mg

where the elements of My, M., and My follow from Eq. (81), Eq. (82), and Eq. (83). The vector of the generalized
torques is given by

ts1 +iLp — %TFtSF
tso —tLp — 3 Tptsre
tsrp +tLc — wrotso
tsr —trc — (1 —p)rotso
ts3 +1iLr — %TRtSR

(95)

1
tsa —tlpr — 5TRESR

Because the model also includes the high frequent drive shaft vibrations the differential equations for the drive train are
stiff. Hence, implicit integration algorithm should be used for the numerical solution. Vehicle dynamic equations can be
solved very effectively by a modified implicit Euler algorithm, Rill (2004).

The implicit Euler-Formalism for Eq. (93) and Eq. (85) results in

Mw*tt = Mw* + hg (Ackarl, wk+1) , (96)

AT = AP + b (KW + Qo) (97)

where h is the integration step size, and the superscripts ¥ and **! indicate the states at ¢ and ¢ + h. Applying the
Taylor-Expansion to ¢ at Ap* +h A¢F and w” one gets
g (AL M) g (DpPHRAGE, WF)

Jq

—+ @ k+1 k
aw w — W



By using Eq. (85) and Eq. (97) the second term on the right side can be written as

dq _ g k+1 k 2k
RN (Asﬂk“ — (B¢t + hM’“)) = 3Ap (Agt1-np hogt )
9q k 99)
= L (h (KM 400) — h (Kwh+00))
FYNE ( ( w T+ 0) ( w”+ 0)
Jq
_ h—K( k+1 k)
FYNE w w
Now, the implicit algorithm in Eq. (96) can be approximated by
k+1 _ k k ko k 9q 9q k+1 k
Mw = Mw —i—hq(Agp —l—hA(p,w)—i—h —— K+ =] (w —w", (100)
OYANY) Ow
which finally results in
= (o 0 D) g (D" +hAk, W) (101)
0N Ow ’ ’
where the partial derivatives dq/0/\p and 0q/dw can be calculated quite easily.
5.6. Partial Derivatives
Only the dynamic locking torques t2r., tP, and tP5 depend on the angular velocities. Hence, one gets
—drr  drr 0 0 0 0
drr  —drr 0 0 0 0
9q _ 0 0 —die dic 0 0
ow 0 0 dre  —dre 0 0 (102)
0 0 0 0 —drr  drr
0 0 0 0 drr  —drLr
The change of ¢ with respect to A leads to a 6 x 7 matrix
[es1 0 —Lrpesr 0 0 0o 0 |
0 cs2 —3TRCSF 0 0 0
0 0 0 — 0 0
9 _ CSF KTC Cso (103)
oJANY: 0 0 0 —(1—p) reeso Csr 0 0
0 0 0 —% TRCSR Cs3 0
0 0 0 —srresr 0 csy
The term which is finally needed in Eq. (101) is symmetric and reads as
—C& —ir%cSF %TFCSF 0 0 0
_% rhcsp —Ch % TrCsF 0 0 0
9q _ 3TFCsF  3TRCSE —ckp  —HRTE Cgp 0 0 (104)
00 0 0 —nhTECgo  —CSp 3TFCsF  3TFCsE
0 0 0 %’I‘RCSR —Cgg —ir%cSR
L 0 0 0 3TRCsR “iTRCsr s
where the abbreviations g = 1— pu, and
&1 = csitiThCsE sy = CsatiThCsp,
csp = csptiuTécsy,  Cip = cCcsptRPTECso s (103)
Cs3 Cs3+ 17Tr CsR Coa = CsatiTicsg

were used.
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Figure 13: Vehicle starting on p-split

5.7. System Performance

Locking the differential improves the traction of a vehicle. In Fig. 13 the simulation results of a vehicle with rear wheel
drive starting on a p-split surface are shown. At first all differentials are unlocked. The left rear wheel which is running
on a low p-plate immediately starts to spin. At = 2.5 s the rear differential is locked. Now, the locking torque which is
generated by the drive train model forces both wheels to run with the same angular velocity.

6. Conclusion

Vehicle modelling by subsystems make a large variety of applications possible. The Combination of simple subsystems
and modules results in a vehicle model with a minimum number of data and a very good run time performance. Such
”light models” can be used to develop an enhance control strategies for electronic safety devices. Depending on the focus
of interest more and more subsystems and modules may be replaced by enhanced ones. Then, sophisticated design studies
or a comfort analysis are possible. If the modified implicit Euler algorithm is also applied to the critical subsystems drive
train and steering system the numerical solution of the overall vehicle model is still not time consuming.
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