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Abstract. It is widely known that the presence of mechanical stresses can have a significant influence on the static and dynamic 
behavior of structural components, due to the so called stress-stiffnening effect. As a complement to studies previously  published by 
the authors, in this paper the influence of normal and shear membrane stresses on the dynamic behavior of thin rectangular plates is 
addressed, emphasis being placed on two particular aspects: a) the numerical characterization of the influence of membrane stresses 
on the natural frequencies associated to the bending modes; b) the possibility of identifying applied in-plane external loads given a 
set of experimentally-measured natural frequencies associated to bending modes. The underlying theory is first presented including 
the development of a low-order mathematical model for the flexural vibrations of plates subjected to in-plane loads, based on 
Kirchhoff’s theory and the assumed modes method. Then, the parameterization of the stress field is discussed and the use of 
polynomial approximations for the Airy’s stress function is suggested. A parameter identification problem is formulated in such a 
way that the stress distributions – or alternatively, the external loads -  are identified by solving an optimization problem in which 
the cost function represents the deviations between the values of the natural frequencies of the loaded plate and their model-
predicted counterparts. The results of numerical simulations and experiments are presented to illustrate some of the main aspects of 
the study. 
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1. Introduction  
 

The so called stress-stiffening effect is characterized by the fact that when subjected to a given stress field, structural 
components such as strings, beam and plates exhibit variations in their bending stiffness and, as a result, modifications 
in their static and dynamic behavior. Such fenomenon is observed in the presence of stress fields generated either by 
external loading or by self-equilibrating residual stresses that can be produced by various thermo-mechanical 
manufactoring processes such as welding and cold-forming.  

A number of studies have been reported in the literature focusing the stress-stiffening effect in connection with the 
static or dynamic structural behavior of structural components. Simons and Leissa (1971) used the Rayleigh-Ritz 
approach to investigate the influence of in-plane acceleration loads on the natural frequencies of rectangular cantilever 
plates. The same method, combined with the use of beam characteristic functions in the deflection series was used by 
Kaldas and Dickinson (1981) to characterize the influence of various types of stress distributions on the vibration and 
buckling behavior of rectangular plates. Donadon et al. (2002) investigated numerically and experimentally the effect of 
in-plane stresses induced by piezoelectric actuators on the natural frequencies of composite plates. More recently, the 
effect of non-uniform in-plane thermal stresses on the vibration and buckling behavior of rectangular plates was studied 
numerically by Mead (2003). Rojas (2004) carried-out a comprehensive study about the stress-stiffening effect on the 
dynamic behavior of two-dimensional frames and rectangular plates, considering both direct and inverse problems. 
Greening and Lieven (2001) demonstrated experimentally the variability in the dynamic responses of nominally 
identical structures, due to residual stresses introduced through manufactoring processes. The same authors developed a 
strategy for including the stress-stiffening effect in a model updating procedure intended for the identification of the 
axial loads acting on the member of two-dimensional frames. In a similar approach, Rojas et al. (2004) used heuristic 
optimization methods for the identification of external loads in frames. Most of these studies demonstrated the strong 
influence the stress-state can have upon the dynamic characteristics of vibrating systems, leading to conclude that in 
many circunstances, the stress-stiffening effect must be taken in account in the modeling procedures so as to guarantee 
the accuracy of model predictions. 



This paper is devoted to a feasibility study of a methodology for the identification of external in-plane loads applied 
to rectangular plates, given a set of natural frequencies corresponding to bending modes of the loaded plate and a 
mathematical model relating such frequencies with the loading.  An inverse problem is formulated in such a way that 
the unknown loading parameters are identified by solving a nonlinear constrained optimization problem. In the 
remainder, various aspects related to the identification method are discussed, including the underlying theory and the 
results obtained from numerical simulations and laboratory tests. 
 
2. Modeling of Flexural Vibrations of Thin Plates Subjected to Membrane Stresses by the Assumed-Modes 
Approach  
 

Figure 1 illustrates a uniform rectangular plate of dimensions hba ×× , being also depicted an element which is 
acted upon by normal and shear stress components  and . yx ,σσ xyτ
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Figure 1. Stress components applied to an element of the plate 
 

According to Kirchhoff’s plate theory, the following assumptions are adopted: 
• plate thickness is small and constant. External faces are parallel to the middle plane, which is assumed to 

coincide with x-y plane; 
• cross-sections remain plane and perpendicular to the middle plane after deformation; 
• plane stress state is assumed, transverse shear stresses being neglected. 

 
Neglecting dissipation effects, the Assumed-Modes Method (Craig Jr., 1981) is used to derive a discrete model for 

the flexural vibrations of the plate, taking into account the membrane stresses. With this aim, the kinetic and strain 
energies of the plate are first written as follows (Géradin and Rixen, 1997): 
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where:  
 

• : transverse displacement field ( t,y,xww = )
• m: mass density of the plate (mass per unit area) 
• ν : Poisson’s ratio 

• ([ )]23 112EhD ν−= : plate flexural stiffness 
• E : Young modulus 
 



 
According to the Asssumed-Modes Method, the plate transverse displacement field is expressed as a truncated linear 

combination of arbitrarily selected admissible functions. Following the approach adopted by Kaldas and Dickinson 
(1981), these functions are chosen to be the eigenfunctions of vibrating beams satisfying the geometrical boundary 
conditions of the plate in directions x and y. Thus, one writes: 
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where p, q are the numbers of eigenfunctions considered in the series in x and y directions, respectively; qij(t) are 
unknown generalized coordinates and ( )xiφ  and ( )yjψ  designate the beam eigenfunctions which are expressed as 
combinations of trigonometric and hyperbolic functions as follows (Young, 1950): 
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In equations (4), Ai, Bi, Ci, Di, ηi , Ei, Fi, Gi, Hi, ξi are constant coefficients that depend on the boundary conditions. 
Young (1950) provides the numerical values of these coefficients for three combinations of boundary conditions: 
clamped-clamped, clamped-free and free-free. 

 
To avoid unnecessary complication in the notation, the expansion expressed by Equation (3) is rewritten as follows: 
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• N = p × q  
• k = (j-1)p + i 

   
Introducing matrix notation, Eq. (5) is written:  
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where: 
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Upon introduction of Equation (6) into equations (1) and (2), the following expressions for the kinetic and strain 
energies are obtained:  
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with:  
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In the equations above, the indices indicate partial derivatives of the products of beam functions with respect to the 

corresponding space variables and { }  indicates the vector of the stress components. [ T
xyyx τσσσ =

It should be pointed out that the influence of the membrane stresses on the plate dynamics appear in matrix 
{ }( )[ σ2K  which is referred to as initial-stress stiffness or geometric stiffnness matrix. As can be seen in Equation (13), 

this matrix is a linear function of the stress components. 
To obtain the differential equations of motion, Lagrange equations are used:  
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where the Lagrangian function is defined as: 
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By introducing (15) into (14) and performing the indicated derivations, one obtains:     

    
[ ] ( ){ } { }( )[ ] ( ){ } { }0tCKtCM =+ σ&&             (16) 

 
which represents a N  d.o.f. discrete model for the flexural vibrations of the plate accounting for the membrane stresses.  

Equations (16) can be numerically solved for the generalized coordinates ( ){ }tC  and then the transverse 
displacement field of the plate expressed in physical coordinates can be obtained by introducing the computed 
generalized coordinates back in Equation (5), for a selected set of coordinates ( )y,x . 

From equation (16), the following eigenvalue problem is formulated: 
 

{ }( )[ ] [ ]( ) { } { }0CMK rr =− λσ            (17) 
 

Once solved this problem, the eigenvalues rλ  provide the natural frequencies of the plate ( )2
rr ωλ =  and the 

eigenvectors , after back transformation into physical coordinates through equation (13), provide the 
corresponding vibration mode shapes. 

{ rC }

Besides the eigensolutions, the frequency response functions can be calculated from the mass and stiffness matrices 
obtained through the Assumed Modes Method. For this, harmonic variation with frequency ω  for the transversal 
distributed load and displacements is assumed, as indicated in the following equations:  
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where the functions ( y,xP ) and ( y,xW )  indicate the spatial distribution of the lateral load and displacement, 
respectively. By combining equations (6), (18.b) and (18.c), one writes:  
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The generalized forces associated to the transversal load are defined as follows:  
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with: 
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After some algebraic manipulation, it can be found that the relation between the amplitudes of the generalized forces 

and the amplitudes of the generalized coordinates is expressed as:  
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The harmonic responses in terms of physical coordinates observed in a set of c points of the plate identified by their 
coordinates ( ) ( ) ( )cc2211 y,x,y,x,y,x L are obtained by using the coordinate transformation (6):   
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where: 
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The formulation developed above puts in evidence the fact that the presence of membrane stresses do influence the 

static and dynamic flexural behaviour of the plate. Clearly, the accuracy of the numerical model obtained from the 
Assumed Modes Method depends on the number of beam eigenfunctions used in the expansion (3).   

Considering the dependency of the dynamic responses on the stress state (or, alternatively, on the external load), one 
is lead to consider the possibility of assessing the magnitudes and/or distributions of the stress components (or the 
external loading), given a set of measured natural frequencies of a loaded plate. The feasibilty of such an inverse 
approach is examined in the next sections. 
 
3. Modeling of stress fields using Airy’s stress functions 
 

In the context of the identification procedure focused in this paper, it is convenient to express the stress field over 
the plate in terms of a small number of parameters. A suitable model of the in-plane stress distribution can be obtained 
by using an Airy's stress function U  defined so as to satisfy (Timoshenko and Goodier, 1980): ( y,x )
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The stress components xσ ,  and  must satisfy the compatibility and equilibrium conditions. Neglecting 

body-forces, these conditions are satisfied if, at each and every point of the plate, the following relation holds: 
yσ xyτ

 
( ) 0U4 =∇                                                                                               (26) 

 



Various types of functions can be used as Airy's stress functions, such as trigonometric, hyperbolic and polynomial 
functions. In this study, polynomials have been adopted, as follows: 
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By associating equations (13), (17), (25), (26) and (27), the influence of the stress field on the plate natural 

frequencies and frequency response functions can be expressed in terms of a finite set of polynomial coefficients C .  
Hence, having adopted an adequate polynomial, the stress identification problem consists in determining the values of 
the coefficients appearing in (27). Clearly, those coefficients are not all independent since equation (26) must  be 
satisfied. 

ij

 
4. Modeling of stress fields using a priori knowledge about stress distributions  
 

In many circunstances, it may be difficult, or even impossible, to model with sufficient accuracy the stress state of 
the plate using low-order polynomials to represent the corresponding Airy’s stress functions. In the case of plates 
subjected to external loads, a simplified approach can be devised, which consists in using a base-line finite element 
model by assuming that the actual distribuition of external loads is known a priori and only their magnitudes are 
unknown. Such magnitudes are thus considered as the load parameter to be determine. Following this approach, 
equation (13) is re-written as follows: 
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where xσ ′ ,  and  are the stress components computed from the finite element model submitted to an arbitrary 
external load and  is the load factor to be determine. 

yσ ′ xyτ ′

ℑ
 
5. Stress identification as an optimization problem 
 

Stress (or load) identification is dealt with by formulating a constrained optimization problem in which the design 
variables are the parameters featuring in the model the stress distributions (either the coefficients of the polynomial 
representing the Airy’s stress function or the load factor defined in the previous section). In this paper, it was adopted a  
cost function representing the dimensionless difference between the values of the measured natural frequencies of the 
loaded plate and those predicted by the Assumed-Modes model, described in Section 2.  

Thus, the optimization problem is formulated as follows:  
 

{ }

( ) ( ) { }( )[∑
=

−=
freq_nb

1p

c
p

m
pp

P
pW1Jmin ωω

ω
]                                        (29) 

 

      ( )∑
=

=
freq_nb

1i

m
ifreq_nb

1 ωω   

 
where designates, generically, the set of unknown stress or load parameters, nb_freq is the number of natural 

frequencies used for identification, W  are user-defined weighting factors and 
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p
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and calculated values of the natural frequencies, respectively.  
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Lateral constraints are introduced to limitate the stress levels to feasible domains, accounting for material yielding 
and buckling, for instance.  
  
6. Experiments 
 

The load identification procedure was evaluated by using experimental data obtained from laboratory tests 
performed on a rectangular plate made of aluminum, subjected to a specially designed fixture which acts also as a 
loading device (Figure 2). The plate was attached to the fixture in such a way to simulate clamped-clamped-free-free 
boundary conditions. A non-uniform in-plane traction (either tension or compression) could be applied to the plate by 
means of a bolt and the force could be measured through a load cell. For a given value of the applied load, vibration 
tests to determine the frequency response functions related to the bending vibrations of the loaded plate were carried-
out. The basic components of the experimental setup are illustrated in Figure 2.  



 
The vibration tests were performed for different values of the applied load, either in tension or compression. For 

each value of the load, a set of frequency responses were obtained by processing the Fourier-transformed input (impact 
forces) and output (transverse accelerations). The amplitudes of one of these, a driving-point FRF, corresponding to the 
load P =190.3 N, are illustrated in Figure 3, as compared to the amplitudes of the same FRF of the plate under the 
unloaded condition. In this figure one can evaluate the influence of the in-plane loading on the natural frequencies of 
the plate. Table 1 provides the values of the first six natural frequencies for both conditions, as well as the relative 
variations caused by loading. It can be noticed that, since the applied load is tensile, the general trend observed is the 
increase of the values of the natural frequencies, meaning that the plate becomes stiffer in bending, as a result of the 
stress-stiffening effect. The sensitivity of the natural frequencies with respect to the load varies from one mode to the 
other. It was found, from numerical simulations, that for a given mode such sensitivity is related to the amount of 
bending deformation exhibited in the direction of loading.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1-Plate; 2-Load cell; 3-Pivot points; 4-Loading bolt; 5-Microcomputer; 6-Dual-channel frequency analyser; 7-Charge 
amplifiers; 8-Piezoelectric accelerometer; 9- Modal hammer instrumented with load cell; 10-Signal conditioner. 

 
Figure 2. Scheme of the plate, fixture and loading device and experimental setup of the vibration tests 
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Table 1. Values of the natural frequencies of the plate under unloaded and loaded condition (Hz). 

 1 2 3 4 5 6 
Unloaded 113.75 152.50 290.00 322.50 368.75 533.75 
Loaded 126.25 158.75 302.50 328.75 370.00 541.25 

Variation (%) 10.99 4.10 4.31 1.94 0.34 1.41 
 

 

 
Figure 3. Amplitudes of a driving-point FRFs of the unloaded and loaded plate 

 



7. Modeling of stress distribution 
 

For the purpose of loading identification, it was adopted the following simplified model, also illustrated in 
Figure 4(a), for the load distribution along the clamped borders of the plate, in which 1σ  and 2σ  are assumed to be 
unknown. According to this simplified model, the stress distribution over the plate is the following: 
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By imposing the equilibrium of moments about the pivot joints of the fixture’s arms, as illustrate in Figure 4(b), the 

following relation between the applied force and parameters 1σ  and 2σ  is obtained: 
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It can thus be seen that two parameters ( 21 ,σσ  are to be determined, enabling to fully characterize the stress-state 

of the plate, according to (30). Subsequently, the applied external load P can be estimated according to (31) and the 
estimated value can then be compared to the exact one provided by the load cell. 

However, an important question that arises concerns the accuracy of the model expressed by equations (30) in 
representing the actual stress-distribution of the plate. To evaluate this point, a detailed finite element model of the 
system plate-fixture, with an applied load P = 710 N, has been developed to obtain a reasonably accurate description of 
the actual stress distributions, which are depicted in Figure 5. As can be seen, the assumption of a linearly varying 
distribution of xσ  and null values of  and  holds for the major portion of the plate, except in the vicinity of its 
clamped borders, where stress gradients introduced by the boundary conditions take place. Nonetheless, the magnitudes 
of  and  are much lower then those of 

yσ xyτ

xyσ xyτ σ . It is then believed that the simplified model of stress distribution (30) 
is adequate for identification purposes. As an additional check, the natural frequencies of the plate subjected to the 
simplified stress state were computed using the Assumed Modes Approach described in Section 2 and compared to their 
counterparts computed from the detailed finite element model, as shown in Table 2.  It can be seen that the values of the 
two sets of frequency values are very close, demonstrating that the boundary effects have little influence on the dynamic 
behavior of the plate in the frequency band of interest and confirming the adequacy of the simplified model of stress 
distribution adopted. 
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Figure 4. (a) model for the load distribution along the clamped edges; (b) free-body-diagram

 

a = 252.4 × 10-3 m
b = 201.0 × 10-3 m
h  = 1.37 ×10-3 m 
d1 = 49.0 ×10-3 m 
d2 = 95.9 ×10-3 m
 of the fixture arm 



 

 
(a) (b) (c) 

Figure 5. Stress distributions obtained from the FE model (a) xσ ; (b) ; (c)  yσ xyτ

 
Table 2. Values of the natural frequencies predicted by the FE and Assumed-Modes models 

Frequencies (Hz)  
1 2 3 4 5 6 

Detailed FE model 141.53 174.77 303.42 355.44 408.74 555.90 
Simplified model + 

Assumed Modes Method 141.88 175.81 303.99 356.08 410.14 556.07 

Deviations (%) 0.25 0.60 0.19 0.18 0.34 0.03 
 
8. Load identification 
 

Initially, the identification procedure was applied to the unloaded plate to check whether residual stresses, possibly 
introduced by manufacturing of the plate, could have some influence on the identification results. For this, the set of 
experimental natural frequencies given in Table 3 were used in the optimization procedure, assuming equal weighting 
factors  in Eq. (29). The optimization computations were carried-out by using the Sequential Quadratic 
Programming algorithm available in the MATLAB

pW
® Optimization Toolbox. At the end of 12 iterations, the 

identification results obtained were those presented in Table 3, in which the “Identified” natural frequencies correspond 
to the values predicted by the model derived by the Assumed Modes method acted upon by the identified stress field. 
 

Table 3. Results for the first identification test 
Natural frequencies (Hz)  

1 2 3 4 5 6 
Force (N) 

Experimental 113.75 152.50 290.00 322.50 368.75 533.75 0 
Identified 116.66 148.72 291.96 321.57 368.86 531.06 0 
Error (%) 2.56 -2.48 0.68 -0.29 0.03 -0.50 0 

 
 

In a second identification test, the plate was loaded by applying a force of 190.3 N. The set of experimental natural 
frequencies given in Table 4 was used in the optimization procedure assuming equal weighting factors W in Eq. (29). 
As in the first identification test, the optimization computations were carried-out by using the Sequential Quadratic 
Programming. At the end of 8 iterations, the identification results obtained were those presented in Table 4.  

p

 
Table 4. Results for the second identification test 

Natural frequencies (Hz)  
1 2 3 4 5 6 

Force (N) 

Experimental 126.25 158.75 302.50 328.75 370.00 541.25 190.3 
Identified 126.25 156.99 295.94 334.88 381.67 539.52 192.0 
Error (%) 0.00 -1.11 -2.17 1.86 3.16 -0.32 0.91 

 
The results presented above show that, in both identification tests, reasonably accurate results could be obtained. 

This demonstrates that the suggested identification procedure is robust with respect to measurement and modeling  
uncertainties. 

 
 
 
 
 
 
 



9. Discussion and conclusions 
 

As demonstrated in a number of  previous studies, stress-stiffening can be generated either by stresses induced by 
external loads or by residual stresses produced by thermo-mechanical manufacturing processes The numerical and 
experimental results presented in the previous sections clearly demonstrate that the stress-stiffening effect can have a 
significant influence upon the flexural dynamic behavior of thin rectangular plates. As a result, this effect should be 
accounted for in the modeling of vibrating systems in order to ensure the predictive capability of the models. Also, in 
dealing with the adjustment of finite element models based on experimental dynamic responses, the stress-stiffening 
effect must be taken into account since it can be responsible, at least partially, for the observed differences between 
model-predicted and experimentally-measured dynamic responses. 

As in any inverse problem, the identification procedure presented in this paper exhibit some inherent difficulties 
that must be properly dealt with in practical applications: the identification can fail due to the existence of local minima 
of the objective function; the presence of experimental noise and model uncertainties can lead to biased solutions; 
uniqueness of the solution is not always guaranteed. 

The results obtained in a number of applications using both numerically simulated and experimental data confirm 
the possibility of obtaining the external load or the stress-state within the structure by means of an inverse procedure. 
Clearly, such possibility depends on the availability of an adequate model to represent the stress-state. Ideally, this 
model should be accurate enough to represent the actual stress distribution and contain a reduced number of unknown 
parameters to be identified. In simple cases, such a model can be obtained by approximating an Airy’s stress function 
by polynomial functions, as suggested in Section 3. For more complex cases, an alternative would be to use a base-line 
finite element model to represent the stress distributions, as suggested in Section 4 and then to identify scaling factors to 
be applied to the magnitudes of the loads used in the base-line model. 
 
10. Acknowledgements 
 
The authors gratefully acknowledge agencies CNPq of the Brazilian Ministry of Science and Technology and CAPES 
of the Brazilian Ministry of Education for the grant of Ph.D. and research scholarships.  
 
11. References 
 
Almeida, S.F.M., Hansen, J.S., 1999, “Natural Frequencies of Composites Plates with Tailored Thermal Residual-

Stresses”, International journal of Solids and Structures, Vol. 36, pp. 3517-3539. 
Craig Jr., R.R., 1981, “Structural Dynamics: an Introduction to Computer Methods”, John Wiley. 
Donadon, M.V., Almeida, S.F.M., Faria, A. R., 2002, “Stiffening Effects on the Natural Frequencies of Laminated 

Plates with Piezoelectric Actuators”, Composites: Part B, vol. 33, pp. 335-342. 
Géradin, M., Rixen, D., 1997, “Mechanical Vibrations – Theory and Application to Structural Dynamics”, second 

edition, Wiley. 
Lieven, N.A.J., Greening, P.D., 2001, “Effect of Experimental Pre-Stress and Residual Stress on Modal Behavior”, Phil. 

Trans. R. Soc. London, vol. 359, pp. 97-111. 
Kaldas, M.M., Dickinson, S.M., 1981, “The Flexural Vibration of Welded Rectangular Plates”, Journal of Sound and 

Vibration, 75(2), pp. 163-178. 
Mead, D.J., 2003, “Vibration and Buckling Behavior of Flat Free-Free Plates Under Non-Uniform In-Plane Thermal 

Stresses”, Journal of Sound and Vibration, n. 260, pp. 141-165. 
Rojas, J. E., Viana, F. A.C., Rade, D.A., Steffen Jr., V., 2004, “Identification of External Loads in Mechanical Systems 

Through  Heuristic-Based Optimization Methods and Dynamic Responses”, Latin American Journal of Solids and 
Structures, v. 1, n. 3, pp. 297-318. 

Rojas, J.E., 2004, “Characterization of Stress-stiffening Effect and Identification of Loads in Structures from Dynamic 
Responses” (in Portuguese), M.Sc. Dissertation, Federal University of Uberlândia, School of Mechanical 
Engineering. 

Simons, D.A., Leissa, A.W., 1971, “Vibrations of Rectangular Cantilever Plates Subjected to In-Plane Acceleration 
Loads”, Journal of Sound and Vibration, vol. 17, n. 3, pp. 407-422. 

Timoshenko, S., Goodier, J.N., 1970, “Theory of Plates and Shells”, McGraw-Hill Book. 
Young, D., 1950, “Vibration of Rectangular Plates by the Ritz Method”, Annual Conference of the Applied Mechanics 

Division, Purdue University, Lafayette. 
 
12. Responsibility notice 
 

The authors are the only responsible for the printed material included in this paper. 


