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Abstract. The recent announcement of the existence of giant natural gas fields near the largest Brazilian cities has put
the automotive usage of the gas under strong expectatives. Use of natural gas as an alternative fuel is pursued since
long time and for passenger cars an expressive number of feasible solutions are already implemented. On the other
hand, the transformation of middle or big engines, as those used on buses and trucks, to run on natural gas did not
reach the same performance specially when one considers pollutant emissions. This paper deals with the design of
robust(LMI), predictive (GPC), optimal (LQR) Multiple Model based controllers to maintain the stoichiometric air-to-
fuel ratio in order to guarantee the efficiency of the catalitic converter and, in consequence, low emission levels, even
in the occurence of large transients. Switching techniques, including a new Neuro-Fuzzy approach, are proposed and
simulated on a numerical environment that corresponds to the dynamic model of a typical bus engine converted to use
natural gas instead of Diesel oil.

Keywords: Internal Combustion Engine , Natural Gas, GPC Controller, LQR Controller, LMI Controller, Multiple
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1. Introduction

Regulations concerning pollutant emissions from internal combustion engines (ICE) and the increasing oil prices in
the international markets have been driving factors for the development of modern engines, some running in alternative
fuels. Many control technologies have been added to fuel injection and ignition systems in order to achieve the desired
figures of low fuel consumption and low pollutant emission (Moskwa and Hedrick, 1992; King and Watson, 2000). For
example, in the case of light engines fuel passenger cars, advanced material and control technology made possible the
use of compressed natural gas (CNG), a type of fuel with a small contribution to the power matrix all over the world.
On the other hand, the transformation of medium and heavy engines, as those used on buses or trucks, remains
problematic since these engines are submitted to acceleration transients most part of the time. In consequence, they
produce more emissions and there is a lack of equipments to manage that, in a time that the national state oil company
announces the existence of giant natural gas fields near the largest Brazilian cities, a fact that puts strong expectations
on the spreading use of natural gas.

As part of a large project aiming to make feasible the use of CNG on urban buses, IPT and Escola Politécnica / USP
teams have been dealing with topics such as the design of new combustion chambers or natural gas fuel injection and
ignition control systems under transient conditions. This work is related to this last topic and describes the design of
different controllers to regulate the air-to-fuel ratio. In other words, an efficient mean to reduce pollutant emissions
corresponds to the use of a 3-way catalitic converter combined to near stoichiometric mixtures on the injection system
(the other is the use of lean burn mixtures). This combination implies a complex control problem since a 1% deviation
in the air-to-fuel ratio relative to the stoichiometric value may correspond to a 50% degradation in the catalitic converter
efficiency (Dan Cho and Oh, 1993) and a considerable increase of emissions mainly NOx. Therefore, a quite accurate
fuel injection and ignition control system implemented through electronic means is a need. Several control strategies
have been investigated based on robust (LMI), predictive (GPC) and optimal (LQR) approaches (Freitas Jr, 2003)
coupled to Multiple Models techniques to take into account the non-linear engine behavior (Fleury et al., 1999a). Neuro
Fuzzy and Error Model based switching methods have also been analyzed (Starr, 2003; Freitas Jr, 2004) because of the
loop sensitivity to abrupt changes in the models. The results achieved on a numerical simulator show that robust or



predictive approaches work very well even for long excursion transients but a controller as simple as a LQR one
requires some additional cares to reach a performance similar to the other controllers.

2. Engine Model

A simplified engine simulation model for control and identification purposes has been designed based on a real six
cylinders, six liters diesel bus engine converted to compressed natural gas (CNG) use (Otto spark cycle). Three main
modules are used to describe its behavior with good accuracy: intake manifold, combustion dynamics and torque and
rotational inertias. This model is implemented in Matlab- SimulinkTM  environment, as shown in Fig. 1.

Figure 1. Natural Gas Model Engine

In order to design a model based  controller, a linear or non linear mathematical model of the plant has to be
available. A non linear model has been implemented as in the scheme above and used in several works of the group
(Lopes, 1996; Fleury et al., 1999b; Freitas Jr, 2003). In this paper the three control techniques multiple model GPC, LQ
and LMI, use different switching strategies to change between linearized models. The GPC approach is based on a
priori identified linearized models for several butterfly valve angles. From the other side, the LQR and LMI controllers
require state space linearized models for the same valve apertures.

The air mass flow through the butterfly valve is considered as a compressive flow through an orifice and given by:
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where )α(A  corresponds to the valve area:
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and p to the pressure in the manifold.

The fuel mass flow through injection valve avc  is modeled as a transport delay relative to the air flow in the
butterfly valve plus a smoothing factor represented by a first order function (Moskwa and Hedrick, 1992). This leads to
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The fuel-to-air ratio in the butterfly valve is defined by
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where the 14,5 factor is a scale factor that represents the stoichiometric air-to-fuel ratio. From the other side, the symbol
eΦ  will be used to designate the burnt mixture that, after combustion, reaches the exhaust manifold and is sensed by

the lambda sensor.
The manifold pressure dynamics p is a function of the difference between the mass air flows at the injection valve

and at the butterfly valve, given by
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The net torque generated by the ICE is supposed to depend on the engine rotation, on the mass fuel flow through the
intake valve and on the engine efficiency (an experimental curve)
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where Ef is the engine volumetric efficiency and avc  is given by:
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The engine rotation is calculated by the difference between the net torque and the load and friction torques, where
the last two torques are assumed to change linearly with the rotation. Admitting that the engine moment of inertia is
J=120Kg m3/s2, the corresponding equation is given by:
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After making the necessary mathematical simplifications, a state space non linear model for the CNG engine can be
written as (Freitas Jr, 2003):
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and the algebraic equations:

b

b
b va

vc
5,14 ⋅=Φ    (15)



( )21

6

34e x200x
pn27

π101265096xn4x400 ⋅+−⋅
⋅⋅

⋅⋅
+⋅⋅−⋅=Φ    (16)

The control techniques that require explicit plant models, as LQR and LMI, rely on linearized approximations of Eq.
(9) to (16) for different acceleration pedal positions, that is, for different values of the  α  angle in Eq. (2). The model
bank required for the Multiple Model implementation is composed by linearized versions calculated using a vector of
steady state values of b4321 vc ,n ,p ,x ,x ,x ,x  and for each chosen value of the α  angle of the butterfly valve.

Figure 2.  Natural Gas Engine Simulator

Figure 2 shows a schematic diagram of the simulator which comprises ICE, controller and Multiple Models
switching logic used to develop controller designs under any of the control techniques. The butterfly valve transients
commanded by the accelerator (input block on Fig. 2) is modeled as a first order transfer function, corresponding to the
mean time a typical driver requires to change the accelerator pedal:
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3. Multiple Model Structure

A linear model in each of the controllers is valid just for a narrow region around an operating point. Therefore, if
one intends to achieve good performance under transient conditions, the model for control calculations must change
according to different operating regions. Model tuning can be done by a Multiple Model strategy where the accuracies
of several stored models are compared and the most adequate model to that particular condition is implemented.

The Multiple Model techniques have been used for nonlinear system control since the 70's with good results
(Narendra et al., 1995). The nonlinear engine model represents the real system for this simulation study. The map of the
engine is divided in 17 areas for Multiple Models calculation, where each area corresponds to one predefined angle of
the valve butterfly opening, increasing of 10° (minimum flow) to 90° (maximum flow). The linear models are obtained
then (by identification, in the case of GPC and by linearization, in the cases of LQ and LMI) for each area and
implemented in the block of Multiple Models Logic (Fig. 2).

The structure of each one of GPC, LQ e LMI controllers is presented in the next section.

4. The GPC Controller

In this work, the basic GPC proposed by Clarke et al. (1987a and b) and adapted by Lopes (1996) for the engine
applications is used. It is based on a discret linear time-invariant system with two inputs and two outputs represented by
the polinomial form:
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where

• y(t) is a 2 x1 vector that represents the temporal sequence of the plant output;
• u(t) is a 2 x1 vector that represents the temporal sequence of the plant input;
• )t(ξ  is a 2x1 vector that represents a Gaussian white noise of the plant input;

• )q(B   ,)q(A 11 −−  and )q(C 1−  are polinomial square matrix of order 2 representing the plant model
description;

• 1q−  is the delay operator, that is, )1t(f)t(fq 1 −=⋅−  for any temporary sequence;
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then each diagonal element of ∆  is the differential operator;
• I  is the 2 order identity matrix.

The model represented by the Eq. (18) is known in the literature as CARIMA models - Controlled Auto Regressive
and Integrated Moving Average, where the A, B  and C matrices are obtained through the systems identification.

GPC Controllers are based on the optimization of the quadratic performance index J that utilizes explicitly a
predictor of future outputs  until a prediction horizon, based on the plant, is reached. The expression for the
performance index is:
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where iN  is the initial prediction horizon, fN  is the final prediction horizon, uN  is the control horizon, ry  is the
reference outputs vector and  Γ  is the weight in the control variations.

The control actions are admitted null after a control horizon is reached. For this reason, GPC is classified usually as
a strategy of finite horizon predictive control, based on model. In this article, only unrestricted GPC is used.
Furthermore, the values of initial prediction horizon, final prediction horizon and control horizon are assumed as 3, 8
and 2, respectively. This way, an analytical control law can be obtained, instead of the case that includes state
restrictions where only quasi-optimal numeric solutions can be reached. The main aspects about the GPC application to
the control of the air-fuel ratio are discussed in Lopes (1996).

The polinomial structure of the  GPC  controller allows the use of a switching logic strategy of the Multiple Models
theoretically more efficient than the formulation in state spaces as required by LQR and LMI controllers. This occurs
because, in MMGPC all the 17 linear models are running simultaneously and therefore 17 error functions are sampled at
regular time intervals. Supposing that, at a given instant, the i-th model has the least absolute value among the
calculated error functions, the switching logic commands the change from the current model to the i-th model. The
control actions for the next step are then calculated based on the i-th model and the same procedures are repeated in the
subsequent time intervals.

5. The LQ Controller

Linear Quadratic (LQ) design is known as a simple design technique (Zhou and Doyle, 1998) which other advanced
methods as GPC has originated from. Since the results achieved with GPC were considered very good, the decision in
using LQR seemed to lead to "cheap" controllers with a "little degrated" performance when compared to GPC. We have
designed a lot of MMLQ but never got near the GPC performance. This has changed with a different, new switching
method based on a Neuro-Fuzzy approach (Starr, 2003) which uses a non-linear interpolation that takes into account
besides the opening angle of the butterfly valve, the positions of each controller in the state space and  the distance from
the current engine point of operation to each of the controllers.

The resulting switching laws are mainly based on heuristics defined in natural language and later translated into a
series of formal and precise rules. In this case, the heuristics is that the closer the engine point of operation is from a
given controller, the larger is the weight attributed to that controller. This produces a N rules basis, where N is the
number of linear  controllers. Gaussian Error Functions are then employed as a Fuzzy group to generate the inference
function )x(µi  as:
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where the subscript i means rule i, the subscript j represents each of the components of the extended state vector and
ijσ  as the radius of the Gaussian function for that variable. An advantage in using Gaussian function as group of

pertinence is that these functions are never equal to zero.
Therefore, when accomplishing interpolation other controllers shall still influence in the answer since they use

models linearized around operating points known with good accuracy. This fact induces an offset error, as large as the
other controllers influence (this influence is represented for the values of ijσ , one for each controller). To circumvent
this problem a feedfoward neural network approach is used. This allows the application of backpropagation learning
techniques, as used by (Brown and Harris, 1994), and the introduction of a weight matrix (Branco and Dente, 1998),
leading to a controller structure given by:
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where [ ]iW  is a diagonal square matrix of the same dimension as [ ]iK .
The first step to design the controller corresponds to choose values for iµ . This was done using the already known

stable points for each butterfly angle. On the other side, there is no efficient way to choose values for ijσ . Following
Fuzzy approaches, these parameters are calculated from a distance norm between different controllers in the state space.
In other words, the jσ  value of the j-th controller is calculated looking for  the i-th controller with the operating point

closer to the j-th and taking ijσ  proportional to the distance between these points. In order to have valid values it is
necessary that the various state variables have the same order of magnitude. Then, the state variables are reduced to the
same scale through transformations that guarantee that the setpoints fall in a 0 to 1 interval. Instead of several ijσ  for

each rule, this method requires the calculation of just one value, iσ . Besides that, instead of calculating several values
of the Gaussian functions for each rule and after multiplying these values between them, one value of the Gaussian
function and one value of an Euclidean norm are enough and the data processing becomes faster.

Based on this procedure, Eq. (21) becomes:
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Numerical simulations have shown a great influence of iσ  in the LQ Controller performance. Then, in the current
version, we have decided to implement a scaled coefficient as
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where id  is the distance norm and iξ  the scale factor. Simulation results show that the lower the value of iξ  smoother
is the engine response. On the other side, the offset becomes larger. Analysing the results the best value for iξ  was 0.5
since it provides the lowest off-set errors.

6. The LMI Controller

Considering a linear time invariant system modeled by the generalized plant:
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where x is the state vector, w is the disturbance vector, y is the output vector and ∞z  is a performance index to be
minimized, one would like to design a controller of the type
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In this case, the closed loop system is given by:
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The ∞H  control problem through Linear Matrix Inequalities is solved by finding the closecloseclose C  ,B  ,A  and

closeD  matrices that provide internal stability to the plant and simultaneously minimizes the objective function J given
by the ∞H  norm of the transfer function ( wzT ∞ ), from w to ∞z , that is:
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The LMI switching logic is based on the butterfly valve position, where the supervisor chooses the linear model
closer to a specific valve position, as in the GPC design. For the LMI ones, the inclusion of a module to estimate the
injected fuel-mass based on the air volumetric flow through the butterfly valve is necessary. This is done by a
mathematical model ( airvz  ) whose entries are the butterfly valve position and the intake manifold pressure. This case
is the first where measurement of the manifold pressure is mandatory but in real world MAP (Manifold Air Pressure)
sensors are implemented in several ICE versions.

The MAP sensor is modeled as a simple delay, as assumed by King and Watson (2000). These authors have
observed that the lowest frequency for this type of sensor is 92 Hz when the highest depressurizations occur in the

intake manifold. Then, the model is a delay with maximum time value of 
92
1  second and the air flow through the valve

is obtained from:
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Equation (27) is also fed by an absolute pressure sensor and by the accelerator pedal position in order to determine
the instantaneous air flow through the butterfly valve, that is required to calculate the fuel mass necessary to keep the
stoichiometric mixture. In other words, the LMI controllers were designed under supervisory control strategies added to
the multiple models scheme. In consequence, for transitory response, each control action is aided by the supervisory
model in order to keep the stoichiometric mixture for the largest time interval, that is, to guarantee that the fuel/air ratio

eΦ  has the least deviations in relation to the stoichiometric value.

7. Comparisons among MMGPC, MMLQ and MMLMI controllers

As described before, each control technique has required different switching strategies to tune the Multiple Models
approach. For this reason, the results shown here synthetize, in just one case, a comparison between the best results for
each of the three techniques. Several other figures should be found in other works of this group (Freitas Jr, 2003; Starr,
2003; Freitas Jr et al., 2004).

Figure 3 showns some of the ICE outputs for a severe 50° to 90° transient on the butterfly valve. From this figure
one can observe that the MMGPC led to an error less than 3% relative to the stoichiometric values but the MMLMI has
an even better performance with a excursion less than 2% . Besides that, the MMLMI controller shows a better settling
time when compared to the MMGPC, that is, the first one requires 0,1 s to bring the fuel to air ratio back to the 1% zone
while the second requires 0,15 s. The surprising performance is given by the Neuro Fuzzy switching MMLQ whose
simulation has kept the eΦ  values inside the wright band (± 1%). From the other side, the MMLQ has shown the
largest off-sets.



Figure 3. Comparison among fuel injection, angular frequency and  fuel/air ratio ( eΦ ) values of the MMGPC (solid
line), MMLQ (dashed) and MMLMI (dashed dot) controllers, for 50° to 90° transient

The other graphics of the Fig. 3 show the performances for fuel injection and engine rotation for the 50°- 90°
transient. One can observe that the MMLMI and MMGPC controllers have faster responses than MMLQ for these two
figures of merit.

8. Conclusions

The achieved simulation results show that it is possible to control severe transient demands in a natural gas engine in
short time intervals with no or quite small excursions out of the nominal operation values. Each design technique has
required different treatments and exhibited different performances. The polynomial structure of the GPC technique has
allowed the use  of  more intelligent switching strategies since it made possible the comparison between the 17
linearized models and, as a consequence, the choice of the best representation of the ICE dynamics in a given operating
point. The consequence of a better switching logic is a larger processing time, a considerable disadvantage when
dealing with a fast machine as an ICE. Another important observation concerning the actualized version of the MMGPC
is the model dependency on the accelerator pedal position,  on the load and on the rotation of the ICE. The old version
relies on models depending just on the pedal position (Fleury et al, 1999a and 1999b). A practical implementation of the
MMGPC shall also depend on an electronic package with large data processing capacity. From the other side, it shall
require small number of sensors and actuators since it just needs the fuel to air ratio as an entry to generate fuel mass
flow and ignition angle as outputs, that is, a MMGPC implementation shall use just lambda-sensors and fuel injectors.
The LQ control structure  has required the inclusion of other devices to give adequate performance when linked to the
Multiple Models approach (Freitas Jr., 2003). The inclusion of the Neuro Fuzzy switching logic (Starr, 2003) has
allowed the most uniform behavior of the ICE variables, eliminating undesirable peaks induced by model changes.
Compared to the GPC controllers, a practical MMLQ implementation shall require an state observer in the control loop
since the LQ control law is based in the knowledge of every state variables. The LMI control design is also based on
linearized state space models and proposed as a ∞H  controller where an Index of Performance is minimized using the
usual LMI tools. For the development of the LMI controllers several switching strategies have been investigated
(Freitas Jr., 2003) without significant results other than giving the hint of the need of a supervisory model  to control the



injected fuel mass flow during transient ICE operation. Numerical simulations carried during this research have shown
that small errors in the injected fuel flow are the main reason to unstable ICE behavior. The supervisory control module
shall require implementation of a MAP sensor, besides the lambda sensor and fuel injectors for practical use. This work
points out the importance of the availability of good ICE models to get good fuel to air ratio controllers. If this is
possible then it is also possible to control the pollution emission levels generated by natural gas ICEs in order to make
them adequate to the stringent standards required by the authorities to enhance life quality in large cities.
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